基于各向异性逆扩散方程的指纹图像锐化去噪方法

实验三 空间域数字图像的平滑与锐化

福建农林大学计算机与信息学院实验报告系:专业:年级: 姓名:学号:实验室号_______ 计算机号 实验时间:指导教师签字:成绩:报告退发(订正、重做) 实验三空间域数字图像的平滑与锐化 1.实验目的和要求 掌握空间域数字图像的平滑与锐化。 2.实验内容和原理 (1)利用加权平均掩模实现数字图像的平滑; (2)利用拉普拉斯算子实现数字图像的锐化 3.实验环境 硬件:一般PC机 操作系统:WindowsXP 编程平台:MATLAB 或高级语言 4.算法描述及实验步骤 Code: X=imread('moon.tif'); subplot(2,2,1) ;imshow(X); title 原图 b=size(X); X=double(X); %f=[0 -1 0;-1 4 -1;0 -1 0;]; %用四领域 f=[-1 -1 -1;-1 8 -1;-1 -1 -1;]; %用八领域 g=[1 2 1;2 4 2;1 2 1;]; %模糊用的算子 Y=zeros(b); for(i=2:b(1)-1)

for(j=2:b(2)-1) Y(i,j)=X(i,j)*g(2,2)+X(i+1,j)*g(3,2)+X(i,j+1)*g(2,3)+X(i+1,j+1 )*g(3,3)+X(i+1,j-1)*g(3,1)+X(i-1,j+1)*g(1,3)+X(i-1,j-1)*g(1,1) +X(i-1,j)*g(1,2)+X(i,j-1)*g(2,1); end; end; Y=mat2gray(Y/16); subplot(2,2,2) ;imshow(Y); title 模糊后 Z=zeros(b); for(i=2:b(1)-1) for(j=2:b(2)-1) Z(i,j)=Y(i,j)*f(2,2)+Y(i+1,j)*f(3,2)+Y(i,j+1)*f(2,3)+Y(i+1,j+1)* f(3,3)+Y(i+1,j-1)*f(3,1)+Y(i-1,j+1)*f(1,3)+Y(i-1,j-1)*f(1,1)+Y(i -1,j)*f(1,2)+Y(i,j-1)*f(2,1); end; end; Z=mat2gray(Z); subplot(2,2,3) ;imshow(Z); title 锐化后 M=zeros(b); for(i=2:b(1)-1) for(j=2:b(2)-1) M(i,j)=X(i,j)+Y(i,j);

基于各向异性扩散的电子散斑图像去噪

基于各向异性扩散的电子散斑图像去噪 小编为您提供一篇关于基于各向异性扩散的电子散斑图像去噪的毕业论文提纲,欢迎参考! 1.引言 电子散斑干涉(electronic speckle pattern interferometry,espi)是一种具有测量灵敏度高、非接触、可用于全场等优点的测量方法,受到了人们的关注。它的测试结果是以干涉条纹图的方式被记录和进行处理。但是,在散斑干涉条纹图中,存在着大量的散斑颗粒噪声,极大地降低了条纹的信噪比,这些斑点噪声是espi 数据处理中最主要困难之一,人们一直试图用各种方法来降低或消除散斑噪声所带来的不利影响。 传统的滤波方法,如均值滤波、中值滤波、傅立叶变换滤波等,在滤掉图像中散斑噪声的同时,也会滤除、模糊许多有用的信息。再加之散斑颗粒大且杂乱无章,很容易损伤原始条纹,从而给测量带来了误差。张东升等采用频域同态滤波技术,得到了高质量的espi条纹图。qian提出加窗傅立叶变换法,在滤除噪声的同时可以保持条纹的边缘信息。于起峰等提出的旋滤波算法以及在此基础上发展的等值线窗口滤波法,可以较好地滤除散斑条纹图的噪声,同时又不损伤条纹特性,是滤除散斑条纹图噪声的比较理想的方法。 偏微分方程(partial differential equations,pde)方法近几年开始大量应用于图像处理,引起广大学者的极大关注。tang chen 等采用pde 模型对espi 条纹图进行了去噪,获得了易于提取位相场的图像。本文基于perona 和malik[9]提出的经典各向异性扩散滤波方法(p-m 模型)对espi 条纹图进行去噪,针对原始算

法的不足,提出了改进的方法,从而在抑制斑点噪声的同时,很好地保持图像的边缘,在一定程度上克服了边缘保持和噪声消除之间的矛盾,为下一步数据处理提供了有效保障。 2.各向异性扩散模型的改进 为了克服各向同性扩散方程平滑过程的缺点,perona 和malik 提出的各向异性扩散滤波方程: 在p-m 模型只用到了中心像素点(x,y)的4-邻域点,本文将利用中心像素点的8-邻域来估算迭代后中心点的灰度值。为此,通过将x 和y 方向即水平和竖直方向旋转得到离散后的灰度值,为简单起见,旋转角度采用45°,得到两条对角线的方向来代替x 和y 方向。 3.去相关最优迭代次数的确定 由于p-m 模型的求解是一个迭代过程,因此迭代次数对图像平滑效果起到至关重要的作用。若迭代次数较小,达不到平滑的效果;而太大的迭代次数,则会出现过于光滑而使条纹边缘模糊。本文根据去相关最优停止准则,并结合espi 条纹图的特点来确定最优迭代次数。 假设理想的无噪声图像与噪声图像不相关,设i(x,y,t)表示经过时间t 迭代后获得的最佳图像,则含有噪声的原始图像i(x,y,0)=i0 与i(x,y,t)之差表示噪声图像。 4.实验结果 为了比较p-m 模型及本文算法的滤波结果,采用数字模拟条纹图,加入噪

图像平滑及锐化

1.图像锐化的目的 是使灰度反差增强,从而增强图像中边缘信息,有利于轮廓抽取。因为轮廓或边缘就是图像中灰度变化率最大的地方。因此,为了把轮廓抽取出来,就是要找一种方法把图像的最大灰度变化处找出来。 2.实现图像的锐化可使图像的边缘或线条变得清晰,高通滤波可用空域高通滤波法来实现。本节将围绕空间高通滤波讨论图像锐化中常用的运算及方法,其中有梯度运算、各种锐化算子、拉普拉斯(Laplacian)算子、空间高通滤波法和掩模法等图像锐化技术。 3.梯度算子——是基于一阶微分的图像增强. 梯度算子: 梯度对应的是一阶导数,梯度算子是一阶导数算子。 梯度方向:在图像灰度最大变化率上,反映出图像边缘上的灰度变化。梯度处理经常用于工业检测、辅助人工检测缺陷,或者是更为通用的自动检测的预处理。 4.拉普拉斯算子——基于二阶微分的图像增强 Laplacian算子是不依赖于边缘方向的二阶微分算子,是常用的二阶导数算子. 拉普拉斯算子是一个标量而不是向量,具有线性特性和旋转不变,即各向同性的性质。 拉普拉斯微分算子强调图像中灰度的突变,弱化灰度慢变化的区域。这将产生一幅把浅灰色边线、突变点叠加到暗背景中的图像。 计算数字图像的拉普拉斯值也可以借助于各种模板。拉普拉斯对模板的基本要对应中心像素的系数应该是正的,而对应于中心像素邻近像素的系数应是负的,它们的和应该为零。 将原始图像和拉普拉斯图像叠加在一起的简单方法可以保护拉普拉斯锐化处理的效果,同时又能复原背景信息。 5.同态滤波器图像增强的方法 一幅图像f(x,y)能够用它的入射光分量和反射光分量来表示,其关系式如下 f(x,y)=i(x,y)r(x,y) 图像f(x,y)是由光源产生的照度场i(x,y)和目标的反射系数场r(x,y)的共同作用下产生的。 该模型可作为频率域中同时压缩图像的亮度围和增强图像的对比度的基础。但在频率域中不能直接对照度场和反射系数场频率分量分别进行独立的操作。

基于MATLAB的图像平滑算法实现及应用

目录 1.3 图像噪声 一幅图像在获取和传输等过程中,会受到各种各样噪声的干扰,其主要来源有三:一为在光电、电磁转换过程中引入的人为噪声;二为大气层电(磁)暴、闪电、电压、浪涌等引起的强脉冲性冲激噪声的干扰;三为自然起伏性噪声,由物理量的不连续性或粒子性所引起,这类噪声又可分成热噪声、散粒噪声等。一般在图像处理技术中常见的噪声有:加性噪声、乘性噪声、量化噪声、“盐和胡椒”噪声等。下面介绍两种主要的噪声。 1、高斯噪声 这种噪声主要来源于电子电路噪声和低照明度或高温 带来的传感器噪声,也称为正态噪声,是在实践中经常用到的噪声模型。高斯随机变量z 的概率密度函数(P D F )由下式给出: }2/)(ex p{2/1)(22σμσπ--=z z p 其中, z 表示图像像元的灰度值;μ表示z 的期望;σ表示z 的标准差。 2、椒盐噪声 主要来源于成像过程中的短暂停留和数据传输中产生 的错误。其P D F 为: ?????===其他0)(b z pb a z pa z p 如果b > a , 灰度值b 在图像中显示为一亮点,a 值显

示为一暗点。如果P a和图像均不为零,在图像上的表现类似于随机分布图像上的胡椒和盐粉微粒,因此称为椒盐噪声。当P a为零时,表现为“盐”噪声;当P b为零时,表现为“胡椒”噪声。 图像中的噪声往往是和信号交织在一起的尤其是乘性 噪声,如果平滑不当,就会使图像本身的细节如边缘轮廓‘线条等模糊不清,从而使图像质量降低。

第二章、图像平滑方法 2.1 空域低通滤波 将空间域模板用于图像处理,通常称为空间滤波,而空间域模板称为空间滤波器。空间域滤波按线性和非线性特点有:线性、非线性平滑波器。 线性平滑滤波器包括领域平均法(均值滤波器),非线 性平滑滤波器有中值滤波器。 2.1.1 均值滤波器 对一些图像进行线性滤波可以去除图像中某些类型的噪声,如采用邻域平均法的均值滤波器就非常适用于去除通过扫描得到的图像中的颗粒噪声。邻域平均法是空间域平滑技术。这种方法的基本思想是,在图像空间,假定有一副N ×N 个像素的原始图像f (x ,y ),用领域内几个像素的平均值去代替图像中的每一个像素点值的操作。经过平滑处理后得到一副图像 g (x ,y ), 其表达式如下: ∑∈=s n m n m f M y x g ),(),(/1),( 式中: x ,y =0,1,2,…,N -1;s 为(x ,y )点领域中点的坐标的集合,但不包括(x ,y )点;M 为集合内坐标点的总数。 领域平均法有力地抑制了噪声,但随着领域的增大,图像的模糊程度也愈加严重。为了尽可能地减少模糊失真,也可采用阈值法减少由于领域平均而产生的模糊效应。其公式如下: ?????>-=∑∑∈∈其他),(),(/1),(),(/1),(),(),(y x f T n m f M y x f n m f M y x g s n m s n m 式中:T 为规定的非负阈值。

图像锐化处理

课 程 设 计 报 告 学 院: 自动化学院 专业名称: 信息工程 学生姓名: 赵建涛 指导教师: 赵春晖 时 间: 2011年9月

课程设计任务书 一、设计内容 对图像采用微分运算的方法进行锐化处理。 要求:编写Matlab 程序对图像进行处理。图像必须存于指定位置,处理后的图像也必须存于指定位置。该程序能运行,可处理不同的图像。图像处理算法自己制定,不得使用现成的Matlab 函数。拉普拉斯算子如下: -4-4-4 -4-4-4-4-4-41111111 111 111111111111111111 111111110 二、主要技术指标 1、熟悉图像锐化处理基本原理; 2、对彩色图像进行图像锐化处理; 3、将该模版与其他模版的图像分析效果进行比较; 4、阅读参考文献10篇以上。 三、进度要求 两周完成设计任务,写5000字以上的小论文。附参考文献并在论文上相应位置进行标注。 学 生 赵建涛 指导教师 赵春晖

基于微分运算的彩色图像锐化处理 摘要 数字图像处理(Digital Image Processing)又称为计算机图像处理,它最早出现于20世纪50年代,当时的电子计算机己经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20 世纪60年代初期。图像处理的基木目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注目、前景远大的新型学科。随着图像处理技术的深入发展,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更局、更深层次发展[1]。 在数字图像处理中,图像经转换或传输后,质量可能下降,难免有些模糊。另外,图像平滑在降低噪声的同时也造成目标的轮廓不清晰和线条不鲜明,使目标的图像特征提取、识别、跟踪等难以进行,这一点可以利用图像锐化来增强.图像锐化的主要目的有两个:一是增强图像边缘,使模糊的图像变得更加清晰,颜色变得鲜明突出,图像的质量有所改善,产生更适合人眼观察和识别的图像;二是希望经过锐化处理后,目标物体的边缘鲜明,以便于提取目标的边缘、对图像进行分割、目标区域识别、区域形状提取等,为进一步的图像理解与分奠定定基础。图像锐化一般有两种方法:一是微分法,二是高通滤波法。 本文着重介绍的是基于拉普拉斯的一种典型的微分算法,并选择不同的模版进行图像锐化,分析比较不同模版下锐化效果的异同。 关键字:图像锐化拉普拉斯算子模版

各项异性扩散由来及原理

8 Anisotropic diffusion filtering Images contain of the image itself and noise Noise: random, little disturbances of the image To improve the segmentation: the noise should be reduced Condition: ?Remove noise ?But: keep the image information unchanged

Diffusion Physical process for balancing concentration changes Now: ?the image intensity can be seen as a “concentration” ?The noise can be modelled as little concentration inhomogeneities These inhomogeneities could be smoothed by diffusion Diffusion should only be perpendicular e.g. to edges

Physical background of diffusion Given: a concentration distribution u Fick’s law: Concentration gradient causes a flux j j aims to compensate the gradient D : diffusion tensor, in general a positive definite, symmetric matrix u ???=D j

图像的平滑处理与锐化处理

数字图像处理作业题目:图像的平滑处理与锐化处理 :张一凡 学号:4 专业:计算机应用技术

1.1理论背景 现实中的图像由于种种原因都是带噪声的,噪声恶化了图像质量,使图像模糊,甚至淹没和改变特征,给图像分析和识别带来了困难。一般数字图像系统中的常见噪声主要有:高斯噪声、椒盐噪声等。 图像去噪算法根据不通的处理域,可以分为空间域和频域两种处理方法。空间域处理是在图像本身存在的二维空间里对其进行处理。而频域算法是用一组正交函数系来逼近原始信号函数,获得相应的系数,将对原始信号的分析转动了系数空间域。 在图像的识别中常需要突出边缘和轮廓信息,图像锐化就是增强图像的边缘和轮廓。 1.2介绍算法 图像平滑算法:线性滤波(邻域平均法) 对一些图像进行线性滤波可以去除图像中某些类型的噪声。领域平均法就是一种非常适合去除通过扫描得到的图像中的噪声颗粒的线性滤波。 领域平均法是空间域平滑噪声技术。对于给定的图像()j i f,中的每个像素点()n m,,取其领域S。设S含有M个像素,取其平均值作为处理后所得图像像素点()n m,处的灰度。用一像素领域内各像素灰度平均值来代替该像素原来的灰度,即领域平均技术。

领域S 的形状和大小根据图像特点确定。一般取的形状是正方形、矩形及十字形等,S 的形状和大小可以在全图处理过程中保持不变,也可以根据图像的局部统计特性而变化,点(m,n)一般位于S 的中心。如S 为3×3领域,点(m,n)位于S 中心,则 ()()∑∑-=-=++=1111 ,91,i j j n i m f n m f 假设噪声n 是加性噪声,在空间各点互不相关,且期望为0,方差为2σ,图像g 是未受污染的图像,含有噪声图像f 经过加权平均后为 ()()()()∑∑∑+==j i n M j i g M j i f M n m f ,1 ,1 ,1 , 由上式可知,经过平均后,噪声的均值不变,方差221σσM = ,即方差变小,说明噪声强度减弱了,抑制了噪声。 图像锐化算法:拉普拉斯算子 拉普拉斯算子是最简单的各向同性微分算子,具有旋转不变性,比较适用于改善因为光线的漫反射造成的图像模糊。其原理是,在摄像记录图像的过程中,光点将光漫反射到其周围区域,这个过程满足扩散方程: f kV t f 2=?? 经过推导,可以发现当图像的模糊是由光的漫反射造成时,不模糊图像等于模糊图像减去它的拉普拉斯变换的常数倍。另外,人们还发现,即使模糊不是由于光的漫反射造成的,对图像进行拉普拉斯变换也可以使图像更清晰。

MATLAB 实现数字图像锐化处理

MATLAB 实现数字图像锐化处理 摘要:讨论了数字图像增强技术中空域图像锐化的四种算法及其用MATLAB的实现;同时给出了利用四种算法进行图像锐化后的对照图像。比较实验结果,可知运用算法锐化处理后,图像比原来图像清晰。 关键词:MATLAB、线性锐化、非线性锐化、sobel算子、prewitt算子、log算子 1.引言 MATLAB全称是Matrix Laboratory(矩阵实验室),一开始它是一种专门用于矩阵数值计算的软件,从这一点上也可以看出,它在矩阵运算上有自己独特的特点。实际运用中MATLAB 中的绝大多数的运算都是通过矩阵这一形式进行的,这一特点决定了MATLAB 在处理数字图像上的独特优势。理论上讲,图像是一种二维的连续函数,然而计算机对图像进行数字处理时,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。 二维图像均匀采样,可得到一幅离散化成M ×N 样本的数字图像,该数字图像是一个整数阵列,因而用矩阵来描述该数字图像是最直观最简便的。而MATLAB 的长处就是处理矩阵运算,因此用MATLAB 处理数字图像非常的方便。MATLAB 支持五种图像类型,即索引图像、灰度图像、二值图像、RGB 图像和多帧图像阵列;支持BMP,GIF,HDF,JPEG,PCX,PNG,XWD,CUR,ICO等图像文件格式的读、写和显示。MATLAB 对图像的处理功能主要集中在它的图像处理工具箱(Image Processing Toolbox)中。图像处理工具箱是由一系列支持图像处理操作的函数组成,可以进行诸如几何操作、线性滤波和滤波器设计、图像变换、图像分析与图像增强、二值图像操作以及形态学处理等图像处理操作口。 数字图像处理中图像锐化的目的有两个:一是增强图像的边缘,使模糊的图像变得清晰起来;这种模糊不是由于错误操作,就是特殊图像获取方法的固有影响。二是提取目标物体的边界,对图像进行分割,便于目标区域的识别等。通过图像的锐化,使得图像的质量有所改变,产生更适合人观察和识别的图像。 2.数字图像的锐化 数字图像的锐化可分为线性锐化滤波和非线性锐化滤波。如果输出像素是输入像素领域像素的线性组合则称为线性滤波,否则称为非线性滤波。 2.1线性锐化滤波器 线性高通滤波器是最常用的线性锐化滤波器。这种滤波器必须满足滤波器的中心系数为正数,其他系数为负数。线性高通滤波器3 ×3 模板的典型系数如表1 所示: 表 1 用线性高通滤波实现图像锐化的程序和图像如下: F=imread('F:/text.png'); %读入图像 f=rgb2gray(F); h=double(f); %转化为double类型 g=[-1 -1 -1; -1 8 -1; -1 -1 -1];%线性高通滤波3×3 模板

图像平滑与锐化处理

图像平滑与锐化处理 1 图像平滑处理 打开Image Interpreter/Utilities/Layer Stack对话框,如图1-1 图1-1 打开Layer Stack对话框 在Input File中打开tm_striped.img,在Layer中选择1,在Output File中输入输出文件名band1.img,单击Add按钮。忽略零值,单击OK(如图1-2所示)。 图1-2 Layer Stack对话框设置

打开Interpreter>Spatial Enhancement>Convolution对话框。如图1-3 图1-3 打开Convolution对话框 在Input File中选择band1.img。在Output File中选择输出的处理图像,命名为lowpass.img。在Kernel中选择7*7Low Pass,忽略零值。单击OK完成图像的增强处理(如图1-4所示)。 图1-4 卷积增强对话框(Convolution) 平滑后的图像去掉噪音的同时造成了图像模糊,特别是对图像的边缘和细节消弱很多。而且随着邻域范围的扩大,在去噪能力增强的同时模糊程度越严重(如图1-5)。

图1-5 处理前后的对比 为了保留图像的边缘和细节信息,可对上述算法进行改进,引入阈值T,将原有图像灰度值f(i,j),和平均值g(i,j)之差的绝对值与选定的阈值进行比较,根据比较结果决定像元(i,j)的最后灰度值G(i,j)。当差小于阈值的时候取原值;差大于阈值的时候取平均值。这里通过查询得T取4,其表达式为下: g(i,j),当| f(i,j)-g(i,j)|>4 G(i,j)= f(i,j),当| f(i,j)-g(i,j)|<=4 具体操作步骤:在图标控制面板工具栏中点击空间建模Modeler>Model Maker选项。先放置对象图形,依次连接每个对象图形,然后定义对象,最后定义函数并运行模型(如图 1-6,1-7,1-8,1-9,1-10,1-11所示)。

数字图像处理-图像平滑和锐化变换处理

图像平滑和锐化变换处理 一、实验内容和要求 1、灰度变换:灰度拉伸、直方图均衡、伽马校正、log变换等。 2、空域平滑:box、gauss模板卷积。 3、频域平滑:低通滤波器平滑。 4、空域锐化:锐化模板锐化。 5、频域锐化:高通滤波器锐化。 二、实验软硬件环境 PC机一台、MATLAB软件 三实验编程及调试 1、灰度变换:灰度拉伸、直方图均衡、伽马校正、log变换等。 ①灰度拉伸程序如下: I=imread(''); J=imadjust(I,[,],[]); subplot(2,2,1),imshow(I); subplot(2,2,2),imshow(J); subplot(2,2,3),imhist(I); subplot(2,2,4),imhist(J); ②直方图均衡程序如下: I=imread(''); J=histeq(I); Subplot(2,2,1); Imshow(I); Title('原图像'); Subplot(2,2,2);

Imshow(J); Title('直方图均衡化后的图像') ; Subplot(2,2,3) ; Imhist(I,64); Title('原图像直方图') ; Subplot(2,2,4); Imhist(J,64) ; Title('均衡变换后的直方图') ; ③伽马校正程序如下: A=imread(''); x=0:255; a=80,b=,c=; B=b.^(c.*(double(A)-a))-1; y=b.^(c.*(x-a))-1; subplot(3,2,1); imshow(A); subplot(3,2,2); imhist(A); subplot(3,2,3); imshow(B); subplot(3,2,4); imhist(B); subplot(3,2,6); plot(x,y); ④log变换程序如下: Image=imread('');

基于各向异性扩散的弱小目标增强算法

第35卷第6期 光电工程V ol.35, No.6 2008年6月Opto-Electronic Engineering June, 2008文章编号:1003-501X(2008)06-0015-05 Dim Target Enhancement Algorithm for Low-contrast Image based on Anisotropic Diffusion WANG Yan-hua1, 2,LIU Wei-ning1 ( 1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; 2. Graduate School of Chinese Academy of Sciences, Beijing 100039, China ) Abstract:In a sensed image of long distance, the gray levels of target and background are hardly distinguishable, which results in a low-contrast image. Dim-target detection is always a difficult problem. The aim of this paper is to propose an anisotropic diffusion filtering algorithm based on partial differential equation to enhance the dim targets. The algorithm establishes a new filter model by improving the traditional P-M model based on the anisotropic diffusion theory. The proposed method adaptively performs the smoothing process in the faultless areas to make the background uniform, and performs the sharpening process in the variational areas to enhance dim targets. Simultaneously, we can select the smoothing and sharpening degree by adjusting the parameter K and w to satisfy different environments. Experimental results show the efficiency of the proposed diffusion scheme in dim-target enhancement with low-contrast. Key words: partial differential equation; anisotropic diffusion; low-contrast image; image enhancement; adaptive filter CLC number: TP391.41 Document code: A 基于各向异性扩散的弱小目标增强算法 王艳华1, 2,刘伟宁1 ( 1. 中国科学院长春光学精密机械与物理研究所,长春 130033; 2. 中国科学院研究生院,北京 100039 ) 摘要:针对弱小目标对比度较低、边缘模糊、难以准确探测的问题,本文提出一种基于PDE的改进的各向异性扩 散滤波算法增强弱小目标。该方法根据各向异性扩散原理,通过改进传统的P-M方程建立新的滤波模型,采用自 适应滤波的方法在非目标区进行背景平滑,在局部变化的区域进行锐化处理增强弱小目标,从而达到背景平滑的 同时增强边缘的效果。同时可以通过调节参数k和w选择平滑和锐化的程度,以适应不同的环境变化。实验结果 表明,该方法能够有效的增强低对比度图像中的弱小目标。 关键词:PDE;各向异性扩散;低对比度图像;图像增强;自适应滤波器 中图分类号:TP391 文献标志码:A 1 Introduction In low-contrast images, a local dim-target has a smooth change of brightness from its neighboring region, therefore provides no clear edges to apply the gradient-based methods for target detection. The non-uniform intensity of the background area and the low-contrast intensity of the target region all deter the use of the simple threshold method. It is extremely difficult to reliably identify small target in low-contrast images without false detection of noise. Much research has been done on dim-target detection in low-contrast images. Some adopted a spatial-temporal detection method derived from a model of temporally stationary and spatially non-stationary 收稿日期:2007-05-20;收到修改稿日期:2008-01-10 作者简介:王艳华(1982-),女(汉族),河南许昌人,博士研究生,主要从事基于DSP弱小目标捕获、跟踪算法研究。 E-mail: wangyanhua919@https://www.360docs.net/doc/c013595243.html, 万方数据

基于MATLAB的图像锐化算法研究

中北大学 课程设计说明书 学院:信息商务学院 专业:电子信息工程 题目:信息处理综合实践: 基于MATLAB的图像锐化算法研究 指导教师:陈平职称: 副教授 2013 年 12 月 15 日 中北大学 课程设计任务书

13/14 学年第一学期 学院:信息商务学院 专业:电子信息工程 课程设计题目:信息处理综合实践: 基于MATLAB的图像锐化算法研究起迄日期:2013年12月16日~2013年12月27日课程设计地点:电子信息科学与技术专业实验室指导教师:陈平 系主任:王浩全 下达任务书日期: 2013 年12月15 日 课程设计任务书

课程设计任务书

目录 1 绪论 (1)

1.1 MATLAB简介 (1) 1.2 MATLAB对图像处理的特点 (1) 1.3 图像锐化概述 (2) 1.4 图像锐化处理的现状和研究方法 (2) 2 设计目的 (2) 3 设计内容和要求 (2) 4 总体设计方案分析 (2) 5 主要算法及程序 (4) 5.1 理想高通滤波器锐化程序 (4) 5.2 高斯高通滤波器锐化程序 (5) 5.3 高提升滤波器锐化程序 (6) 6 算法结果及比较分析 (8) 6.1 理想高通滤波器锐化结果 (8) 6.2 高斯高通滤波器锐化结果 (9) 6.3 高提升滤波器锐化结果 (10) 6.4 算法结果比较分析 (11) 7 设计评述 (11) 参考文献 (12)

1 绪论 数字图像处理(Digital Image Processing)又称为计算机图像处理,它最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。图像处理的基本目的是改善图像的质量。它以人为对象,改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常见的图像处理方法有图像增强、复原、编码、压缩等。图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天。生物医学工程、工业检测、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注意、前景远大的新型科学。随着图像处理技术的深入发展,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理更高、更深层次发展。 1.1 MATLAB简介 MATLAB全称Matrix Laboratory(矩阵实验室),最早初由美国Cleve Moler 博士在20世纪70年代末讲授矩阵理论和数据分析等课程时编写的软件包Linpack和Eispack组成。它用于数学、信息工程、摇感、机械工程、计算机等专业。它的推广得到各个领域专家的关注,其强大的扩展功能为各个领域应用提供了基础,各个领域的专家相继推出MATLAB工具箱,而且工具箱还在不断发展,借助于这些工具箱,各个层次的研究人员可直接、直观、方便地进行工作,从而节省大量的时间。目前,MATLAB语言已经成为科学计算、系统仿真、信号与图像处理的主流软件。本文主要从MATLAB图像处理方面做应用。 1.2MATLAB对图像处理的特点 MATLAB全称Matrix Laboratory(矩阵实验室),是一种主要用于矩阵数据值计算的软件,因其在矩阵运算上的特点,使得MATLAB在处理图像上具有独特优势,理论上讲,图像是一种二维的连续函数,而计算机在处理图像数字时,首先必须对其在空间和亮度上进行数字化,这就是图像的采样个量化的过程。二维图像均匀采样,课得到一副离散化成N×N样本的数字图像,该数字图像是一个整数列阵,因而用矩阵来描述该数字图像是最直观最简便的。

图像锐化的目的和意义

图像锐化的目的和意义 图像模糊的主要原因是图像中的高频成分低于低频成分,它对图像质量的影响体现在两个不同均匀灰度区域的边界部分。 当成像参数正确,图像的亮度变化传递正常时,在图像中对象边缘与背景之间的理想边缘面应该时阶梯形的,这样的图像看上去边缘清晰,反之,则会边缘模糊,其特征时对象与背景间的灰度改变有一个过渡带,这将损害图像的视觉效果。要消除图像中不应又的模糊边缘,需要增强图像中的高频成分,使边缘锐化。 图像锐化是一种使图像原有的信息变换到有利于人们观看的质量,其目的是为了改善图像的视觉效果,消除图像质量劣化的原因(模糊),使图像中应又的对象边缘变得轮廓分明。 图像的锐化,需要利用积分的反运算(微分),因为微分运算是求信号的变化率,又加强图像中高频分量的作用,从而要锐化图像需要采用各向同性的,具有旋转不变特征的线性微分算子。 图像锐化是一种补偿轮廓、突出边缘信息以使图像更为清晰的处理方法.锐化的目标实质上是要增强原始图像的高频成分.常规的锐化算法对整幅图像进行高频增强,结果呈现明显噪声.为此,在对锐化原理进行深入研究的基础上,提出了先用边缘检测算法检出边缘,然后根据检出的边缘对图像进行高频增强的方法.实验结果表明,该方法有效地解决了图像锐化后的噪声问题 图像的锐化可以在空间域中进行,也可以在频率域中实现。 一. 图像信号的锐化过程 1.空间域中锐化图像的目的 在空间域中进行图像的锐化也成为空间滤波处理,目的又 (1)一是提取图像中用于认识和识别图像特征的参量,为 图像识别准备数据 (2)消除噪声。图像数字化时产生的噪声主要是造成对图像 内容的干扰,这用图像的平滑处理。图像数字化时在信号 高频区域产生的误差以及设备自身噪声对图像的高频(轮 廓特征)干扰同样也是一种噪声,可以用空间滤波的方法 去除。

三图像的平滑与锐化

实验三 图像的平滑与锐化 一.实验目的 1.掌握图像滤波的基本定义及目的; 2.理解空域滤波的基本原理及方法; 3.掌握进行图像的空域滤波的方法。 二.实验基本原理 图像噪声从统计特性可分为平稳噪声和非平稳噪声两种。统计特性不随时间变化的噪声称为平稳噪声;统计特性随时间变化的噪声称为非平稳噪声。 另外,按噪声和信号之间的关系可分为加性噪声和乘性噪声。假定信号为S (t ),噪声为n (t ),如果混合叠加波形是S (t )+n (t )形式,则称其为加性噪声;如果叠加波形为S (t )[1+n (t )]形式, 则称其为乘性噪声。为了分析处理方便,往往将乘性噪声近似认为加性噪声,而且总是假定信号和噪声是互相独立的。 1.均值滤波 均值滤波是在空间域对图像进行平滑处理的一种方法,易于实现,效果也挺好。 设噪声η(m,n)是加性噪声,其均值为0,方差(噪声功率)为2σ,而且噪声与图像f(m,n)不相关。 除了对噪声有上述假定之外,该算法还基于这样一种假设:图像是由许多灰度值相近的小块组成。这个假设大体上反映了许多图像的结构特征。 ∑∈=s j i j i f M y x g ),(),(1 ),( (3-1) 式(2-1)表达的算法是由某像素领域内各点灰度值的平均值来代替该像素原来的灰度值。 可用模块反映领域平均算法的特征。对模板沿水平和垂直两个方向逐点移动,相当于用这样一个模块与图像进行卷积运算,从而平滑了整幅图像。模版内各系数和为1,用这样的模板处理常数图像时,图像没有变化;对一般图像处理后,整幅图像灰度的平均值可不变。

(a) 原始图像 (b) 邻域平均后的结果 图3-1 图像的领域平均法 2.中值滤波 中值滤波是一种非线性处理技术,能抑制图像中的噪声。它是基于图像的这样一种特性:噪声往往以孤立的点的形式出现,这些点对应的象素很少,而图像则是由像素数较多、面积较大的小块构成。 在一维的情况下,中值滤波器是一个含有奇数个像素的窗口。在处理之后,位于窗口正中的像素的灰度值,用窗口内各像素灰度值的中值代替。例如若窗口长度为5,窗口中像素的灰度值为80、90、200、110、120,则中值为110,因为按小到大(或大到小)排序后,第三位的值是110。于是原理的窗口正中的灰度值200就由110取代。如果200是一个噪声的尖峰,则将被滤除。然而,如果它是一个信号,则滤波后就被消除,降低了分辨率。因此中值滤波在某些情况下抑制噪声,而在另一些情况下却会抑制信号。 中值滤波很容易推广到二维的情况。二维窗口的形式可以是正方形、近似圆形的或十字形的。在图像增强的具体应用中,中值滤波只能是一种抑制噪声的特殊工具,在处理中应监视其效果,以决定最终是福才有这种方案。实施过程中的关键问题是探讨一些快速算法。 3.空域低通滤波: 从信号频谱角度来看,信号的缓慢变化部分在频率域属于低频部分,而信号的迅速变化部分在频率域是高频部分。对图像来说,它的边缘以及噪声干扰的频率分量都处于频率域较高的部分,因此,可以采用低通滤波的方法来去除噪声。而频域的滤波又很容易从空间域的卷积来实现,为此只要适当设计空间域的单位冲激响应矩阵,就可以达到滤除噪声的效果。下面是几种用于噪声平滑低通卷积模板。

基于各向异性扩散的数字图像处理 作业

基于各向异性扩散的数字图像处理 1 Perona-Malik 算法概述 各向异性扩散作为现行的一种非常流行的偏微分方程数字图像处理技术,是由传统的 Gaussian 滤波发展而来的,有着强大的理论基础,并有着传统的数字图像方法无法企及的良好特性,其特点是可以在平滑的同时保持边缘特征。由于这种优良的特性,使其在图像的平滑、去噪、恢复、增强和分割等方面得到了广泛的应用。 Koenderink 和 Witkin 两位学者把尺度空间的严格理论引入到了数字图像处理之中,而尺度空间理论正是现代偏微分方程数字图像处理的理论基础,他们的工作主要是将多尺度图像表示为 Gaussian 滤波器处理的结果,相当于将原图像输入热传导方程进而得到的序列时间图像。多尺度滤波得到的图像序列,可以看作各向同性热扩散方程的解,这就是用扩散方程的观点来看待高斯滤波: ()yy xx u u c t u -=?? (1.1) 不仅是热扩散方程可以产生尺度空间,其他的抛物线方程也可以产生尺度空间,进而满足极大值原理的演化方程也能定义一类尺度空间。各向异性扩散方程的提出是这个领域中一个里程碑式的标志,它开辟了数字图像处理中偏微分方程理论和应用的一个新领域,提出了各向异性扩散(Anisotropic Diffusion )方程,一般称为 Perona-Malik (简称 P-M )扩散模型。 ))((u u g div t u ??=?? (1.2) 其中div 是散度算子,u ?是图像的梯度,)(u g ?是扩散系数。各向异性扩散是一个能量散发的过程,这个过程与能量曲面的形状有关,从数学上来看,其等价于一个能量最小化问题的求解。 从数学意义上讲Perona-Malik 模型是改进的热传导偏微分方程。它是通过函数(,,)c x y t 自适应地控制扩散速度。理论上希望边缘内部的区域,c 远离0,图像可以平滑,而在边缘附近,0c ≈,图像不再平滑。铃铛形的径向函数g(w)可取 21()exp[( )]u g u ??=- (1.3) 或者

基于matlab图像锐化算法的研究与实现 开题报告

x学院毕业论文(设计) 开题报告 题目:图像锐化算法的研究与实现 姓名: x 学号: 080502221 系别: 物理与电子信息工程系 专业: 电子信息科学与技术 年级: 200x级 指导老师: x 2011年11月5日

一、选题依据(含研究的目的和意义等) 目前,图像锐化是数字图像处理的最基本的方法之一,它是为了突出图像总的细节或者增强被模糊地细节,这种模糊不是由于错误操作,就是特殊获取方法的固有影响。图像锐化处理的方法多种多样,其也包括多种应用,从电子印象和医学成像到工业检测和军事系统的的制导,等等. 从图像平滑处理图像,我们可以看到在空间域用像素领域平均法可以使图像变模糊.因为均值处理与积分相似,从逻辑的角度,我们可以断定锐化处理可以用空间微分来完成。在这次设计中将实现数字微分锐化的各中定义及其实现算子。微分算子的响应程度与图像在该点(应用了算子)的突变程度有关。这样一来,图像微分增强了边缘轮廓的高频分量,在这次我们将用Matlab实现图像锐化算法(即微分算子),并对其不同的微分锐化算子比较看其优缺点和应用场合,以及改变算法参数对锐化结果的影响。它的实现将改善人的视觉效果或便于人或机器对图像的分析理解,根据图像的特点或存在的问题,以及应用目的所采取的不同算子改善图像质量或增强图像的某些特征的措施。 二、研究的内容及目标 1、研究内容 ①应用Matlab实现传统的图像锐化算法; ②分析不同算子的优缺点和应用场合; ③改变算法的一些参数后对锐化效果的影响。 2、研究目标 合理的运用不同的算子锐化各类不同的图像,得到目标图像。加深对算子的理解,学会用矩阵实验室(Matlab)对图像进行锐化处理。

相关文档
最新文档