软硬酸碱理论在有机化学中的应用

软硬酸碱理论在有机化学中的应用
软硬酸碱理论在有机化学中的应用

有机化学反应机理(整理版)

1.A rndt-Eister 反应 酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。 反应机理 重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。 反应实例

2.Baeyer----Villiger 反应 反应机理 过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。因此,这是一个重排反应 具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排: 不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为: 醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。 反应实例

酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高。 3.Beckmann 重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:

反应机理 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。 迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如: 反应实例

有机化学酸碱理论

有机化学酸碱理论 1、阿伦尼乌斯酸碱理论: 水中离解的局限性 2、J.N.Brфnsted酸碱理论: 定义:在反应中能提供质子的分子或离子为酸;接受质子的分子或离子为碱。 酸碱的相对性:同一种物质,在一个反应中是酸,在另一个反应中也可能是碱。 共轭酸碱对:酸给出质子成为碱(酸的共轭碱),碱得到质子成为酸(碱的共轭酸) 酸越强,则酸的共轭碱越弱;碱越强,碱的共轭酸越弱。反应的结果就是强酸与强碱反应生成弱酸和弱碱。 3、G.N.Lewis酸碱理论: 定义:能够接受电子的分子和离子即Lewis酸;能够提供电子的分子和离子即Lewis碱。 Lewis酸:具有空轨道和未充满外层笛子轨道,电子受体,亲电试剂; AlCl3 BF3 FeCl3 ZnCl2 Ag+ R+ NO2+ Lewis碱:具有孤对电子和π电子,电子供体,亲核试剂。

NH3 ROH X- OH- RO- 酸碱理论 酸碱理论(acid-base theory) 阐明酸、碱本身以及酸碱反应的本质的各种理论。在历史上曾有多种酸碱理论,其中重要的包括: 阿伦尼乌斯酸碱理论——酸碱电离理论布朗斯特-劳里酸碱理论——酸碱质子理论路易斯酸碱理论——酸碱电子理论酸碱溶剂理论软硬酸碱理论最早提出酸、碱概念的是英国R.玻意耳。法国A.L.拉瓦锡又提出氧是所有酸中普遍存在的和必不可少的元素,英国H.戴维以盐酸中不含氧的实验事实证明拉瓦锡的看法是错误的,戴维认为:“判断一种物质是不是酸,要看它是否含有氢。”这个概念带有片面性,因为很多有机化合物和氨都含有氢,但并不是酸。德国J.von李比希弥补了戴维的不足,为酸和碱下了更科学的定义:“所有的酸都是氢的化合物,但其中的氢必须是能够很容易地被金属所置换的。碱则是能够中和酸并产生盐的物质。”但他不能解释为什么有的酸强,有的酸弱。这一问题为瑞典S.A.阿伦尼乌斯解决。 阿伦尼乌斯酸碱理论[1]在阿伦尼乌斯电离理论的基础上提出的酸碱理论是:“酸、碱是一种电解质,它们在水溶液中会离解,能离解出氢离子的物质是酸;能离解出氢氧根离子的物质是碱。”由于水溶液中的氢离子和氢氧根离子的浓度是可以测量的,所以这一理论第一次从定量的角度来描写酸碱的性质和它们在化学反应中的行为,指出各种酸碱的电离度可以大不相同,有的达到90%以上,有的只有1%,于是就有强酸和弱酸;强碱和弱碱之分。强酸和强碱在水溶液中完全电离;弱酸和弱碱则部分电离。阿伦尼乌斯还指出,多元酸和多元碱在水溶液中分步离解,能电离出多个氢离子的酸是多元酸;能电离出多个氢氧根离子的碱是多元碱,它们在电离时都是分几步进行的。这一理论还认为酸碱中和反应乃是酸电离出来的氢离子和碱电离出来的氢氧根离子之间的反应:H++OH- ===H2O 阿伦尼乌斯酸碱理论也遇到一些难题,如:①在没有水存在时,也能发生酸碱反应,例如氯化氢气体和氨气发生反应生成氯化铵,但这些物质都未电离。②将氯化铵溶于液氨中,溶液即具有酸的特性,能与金属发生反应产生氢气,能使指示剂变色,但氯化铵在液氨这种非水溶剂中并未电离出氢离子。③碳酸钠在水溶液中并不电离出氢氧根离子,但它却是一种碱。要解决这些问题,必须使酸碱概念脱离溶剂(包括水和其他非水溶剂)而独立存在。其次酸碱概念不能脱离化学反应而孤立存在,酸和碱是相互依存的,而且都具有相对性。解决这些难题的是丹麦J.N.布仑斯惕和英国T. M.劳里,他们于1923年提出酸碱质子理论。

天津高考化学复习资料 有机化学基本概念

专题十八有机化学基本概念 挖命题 【考情探究】 考点内容解读 5年考情预测热 度 考题示例难度关联考点 有机化学基本概念1.掌握研究有机化合物的一般方法。 2.知道有机化合物中碳原子的成键 特点,认识有机化合物的同分异构现 象及其普遍存在的本质原因。 3.了解有机化合物的分类并能根据 有机化合物命名规则命名简单的有 机化合物。 2018天津理综,3、 8(1) 2014天津理综,4 中★★★ 同系物和同分异构体1.根据官能团、同系物、同分异构体 等概念,掌握有机化合物的组成和结 构。 2.判断和正确书写有机化合物的同 分异构体(不包括手性异构体)。 2018天津理 综,8(4) 2017天津理 综,8(2) 2016天津理 综,8(4) 2015天津理 综,8(4) 较难 有机合 成 ★☆☆ 分析解读高考对本专题知识的考查主要有有机物分子中官能团的种类判断、同分异构体的书写、简单有机化合物的命名等,其中限定条件下同分异构体的书写是本专题考查的重点。考查学生的证据推理与模型认知的化学学科核心素养。

【真题典例】 破考点 【考点集训】 考点一有机化学基本概念 1.下列有机化合物的分类正确的是( ) A.乙烯(CH2 CH2)、苯()、环己烷()都属于脂肪烃

B.苯()、环戊烷()、环己烷()同属于芳香烃 C.乙烯(CH2 CH2)、乙炔()同属于烯烃 D.同属于环烷烃 答案 D 2.下列物质的分类中,不符合“X包含Y、Y包含Z”关系的是( ) 选项X Y Z A 芳香族化合物芳香烃的衍生物(苯酚) B 脂肪族化合物链状烃的衍生物CH3COOH(乙酸) C 环状化合物芳香族化合物苯的同系物 D 不饱和烃芳香烃(苯甲醇) 答案 D 3.下列关于有机化合物的说法正确的是( ) A.乙酸和乙酸乙酯可用Na2CO3溶液加以区别 B.戊烷(C5H12)有两种同分异构体 C.乙烯、聚氯乙烯和苯分子中均含有碳碳双键 D.糖类、油脂和蛋白质均可发生水解反应 答案 A 考点二同系物和同分异构体 1.下列各组物质不互为同分异构体的是( ) A.2,2-二甲基丙醇和2-甲基丁醇 B.邻氯甲苯和对氯甲苯 C.2-甲基丁烷和戊烷 D.甲基丙烯酸和甲酸丙酯 答案 D 2.某只含有C、H、O、N的有机物的简易球棍模型如图所示,下列关于该有机物的说法不正确的是( )

(完整版)有机化学反应机理详解(共95个反应机理)

一、Arbuzow反应(重排) 亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷: 卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。 本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得: 如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则Arbuzow反应如下: 这是制备烷基膦酸酯的常用方法。 除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:

反应机理 一般认为是按 S N2 进行的分子内重排反应: 反应实例 二、Arndt-Eister 反应 酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。 反应机理

重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。 反应实例 三、Baeyer----Villiger 反应 反应机理 过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。因此,这是一个重排反应

具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排: 不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为: 醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。 反应实例

现代酸碱理论在有机化学中的应用

现代酸碱理论在有机化学中的应用 摘要简要介绍现代酸碱理论的建立及其基本概念。现代酸碱理论包括了 Br nsted Lowry酸碱理论、Lewis酸碱理论、HSAB理论和超酸理论。举例介 绍了与物理有机化学、有机合成、有机催化等领域相关的现代酸碱理论的广泛应用。 关键词现代酸碱理论有机化学超酸理论酸碱反应有机合成 现代酸碱理论是指20世纪以后产生的、从本质上认识酸碱的、具有普适意义的无机化学理论。从广义的角度看,除了协同反应和自由基反应外,有机化合物及其衍生物间的化学反应均可看成是酸碱反应。因此,现代酸碱理论被广泛地应用于有机化学的各个方面。现代酸碱理论成为了用无机化学经典理论来研究有机化学反应机理以及反应活性中间体、选择高效绿色催化剂和指导有机合成的重要依据和工具。 1 现代酸碱理论的建立及其基本概念 现代酸碱理论的建立是一个从现象到本质、从感性到理性、从片面到全面的过程。其反映了化学家探索未知世界、从事科学研究的方法和态度。对各种现代酸碱概念的理解是进一步了解其在有机化学中应用的基础。 1.1 Br nsted Lowry酸碱理论 1923年丹麦化学家J.N.Br nsted和英国化学家T.M.Lowry在近代酸碱理论的基础上,几乎同时并独立地提出了酸碱质子理论,该理论因此又称为Br nsted Lowry酸碱理论。 Br nsted Lowry酸碱定义为:酸是质子的给予体(即任何能释放出质子的 含有氢原子的分子或离子都是酸);碱是质子的接受体(即任何能与质子相结合的分子或离子都是碱)。酸给出质子后生成的碱是这种酸的共轭碱;碱接受质子后生成的酸是这种碱的共轭酸。例如:

高中化学选修五——有机化学基础入门(知识点总结)

有机化学基础入门 一、有机物概述 1.概念:有机化合物简称有机物,是指含碳的化合物,除CO、CO2、碳酸盐等之外。 2.特点:①一般不溶于水,易溶于有机物; ②熔沸点较低,易气化; ③一般可燃; ④一般为非电解质,故其水溶液一般不导电; ⑤有机反应速率小,副反应多,故化学反应方程式一般用“→”。 3.成键方式:有机化合物中的原子的化学键数必须满足: 原子 C H O/S N/P 卤素原子 键数 4 1 2 3 1 形成物质时,可以是单键,双键,三键,也可以是链状或者环状,如: 4.表达方式:同一有机物有多种不同的表示方法,其中最常用的为结构简式。 表达方式特点实例注意事项 分子式/化学 式C x H y O z N w C3H8、C10H16O3N2等 ①由分子组成的物质才有分子 式,有机物一般都有。②其中O、 N的次序不限。 最简式/实验 式所有原子最简 整数比 C4H8的最简式为CH2; C6H12O6的最简式为 CH2O C3H8的最简式和分子式相同 结构式画出所有的键

结构简式能体现结构,但 省略了一些键 ①仅.能省略单键,双键、三键均 不可省略;②单键中仅横着的键 可省略,竖着的键不能省略;③ 碳氢键均可省略;④支链(即竖 直方向的键)写在上下左右均 可,且无区别 键线式用线表示键,省 略碳氢原子 ①仅.碳和氢可以省略;②每个转 角和端点均表示碳原子,但若 端点写出了其它原子,则表示碳 原子被取代 球棍模型球表示原子,键 表示化学键 ①必须符合每种原子的键数;② 球的大小必须与原子半径对应 一致 比例模型化学键被省略球的大小表示原子的相对大小 绝大多数情况下,有机化学方程式中除燃烧用分子式外,其它方程式有机物一律写结构简式。5.同分异构现象:即相同分子式,不同结构的现象。相互间互称为同分异构体。如: 6.取代基与官能团 (1)取代基:指有机物去氢后剩余的原子或原子团,它们均是一个有机片段,可以相互连接成有机物。如:

有机化学中用来研究反应机理的方法

有机反应机制的研究方法 有机化学中用来解释反应机理的传统方法主要集中在Kinetics和Dynamics两方面,即理解势能面、深入研究分子运动和碰撞、测定活化参数、测定速率常数、确定某个反应机理中一系列化学步骤的顺序、确定反应限速步骤和决速步骤。 研究机理的关键目的是反应机理知识可以对如何在原子或分子水平上操纵物质给出最快速的洞察,而不是依靠运气来获得偶然性的变化从而获得想要的结果。由于动力学在辨别机理方面起着关键作用,所以动力学是整个有机反应机理研究领域中最重要的分支之一。 传统的反应机理研究方法除了动力学分析之外,还有同位素效应、结构-功能分析等。这些都是研究有机反应机理的标准实验工具,然后实验化学家可以根据其想象力和化学创造性,设计出一些完全不同于之前出现过的研究方法。因此,本文总结了一些最为常见的方法。首先分析最简单的实验,例如产物和中间体的鉴定。但也会分析一些更为微妙、精细的实验,如交叉和同位素置乱(cross-over and isotope scrambling)实验。 1.改变反应物结构以转变或捕获预想的中间体 有时可以通过合成一种类似于所研究的反应物的新反应物来破译中间体的性质,但是这需要所预测的中间体能以一种可预想的方式进行反应。没有标准的方式来处理这一类实验,所以实验者必须根据具体实验情况来设计实验。下面以酶反应作为此方法的应用实例。 Lin[1]等人设计了一种转变中间体的方法。扁桃酸消旋化酶可使扁

桃酸根离子的对映体(2-羟基苯甲酸)互换。位于羧酸跟α位的碳负离子被认为是中间体。为了测试此中间体是否存在,作者合成设计了扁桃酸跟离子的类似物i,并用酶对其进行了外消旋化。其过程是首先形成碳负离子,然后经过溴化物的1,6-消除,最后经过互变异构化,分离得到产物ii。此结果支持了在扁桃酸根离子路径中碳负离子中间体iii的存在。 2.捕获实验和竞争实验 鉴定中间体的一种常见方法是通过加入额外的试剂来捕获中间体。目前存在着几种自由基不伙计,许多好的亲核试剂是半衰期很短的亲电试剂(如碳正离子)的可行的捕获剂。必须以自己的化学知识来设计捕获中间体(如碳正离子、卡宾等)的捕获剂。但是活泼中间体的半衰期很短,所以捕获剂必须是具有很高的活性,并能与活泼中间体的标准反应路径进行竞争。同样,因为捕获反应是典型的双分子反应,所以要求捕获剂具有高的浓度。另外,还可以将捕获剂与反应物共价结合,以便更容易地捕获活泼中间体。

13 有机化学的基本概念

高 三 化 学 等 级 考 专 题 复 习 4.1 有机化学的基本概念 一、选择题 1.“垃圾是放错了位置的资源”,应该分类回收利用。废弃的塑料袋、废旧轮胎等可以做为同类物质加以回收利用。它们属于() A.无机物B.有机物C.糖类D.蛋白质

2.液化石油气的主要成分是烷烃和烯烃的混合物。在液化石油气用完后,有人将残留在钢瓶内的液体倒出来擦洗油污。关于这种做法理解正确的是() 几种烃的沸点 A B.不可行,由于气温高时会变为气体 C.可行与否需要看气温的高低 D.无论在什么情况下都不可行 3.城市禁止汽车使用含铅汽油,其主要原因是() A.提高汽油的燃烧效率B.降低汽油成本 C.避免铅污染大气D.铅资源短缺 4.1992年海湾战争期间,科威特大批油井被炸起火燃烧,我国救援人员在灭火工作中作出了贡献。下列措施不可能用于油井灭火的是() A.设法降低石油的着火点B.设法使火焰隔绝空气 C.设法阻止石油喷射D.设法降低油井井口的温度 5.可以用分液漏斗分离的一组液体混合物是() A.溴和四氯化碳B.苯和溴苯 C.水和硝基苯D.苯和汽油 6.通常用来衡量一个国家的石油化学工业发展水平的标志是() A. 石油的产量 B. 硫酸的产量 C. 合成纤维的产量 D. 乙烯的产量 7.有A、B两种烃,含碳元素的质量分数相等,下列关于A和B的叙述正确的是()A.A和B一定是同分异构体B.A和B不可能是同系物 C.A和B最简式一定相同 D.A和B各1 mol完全燃烧后生成的CO2的质量一定相等 8.下列化学式中只能表示一种物质的是() A.C3H7Cl B.CH2Cl2C.C2H6O D.C2H4O2 9.一种新型的灭火剂叫“1211”,其分子式是CF2ClBr。命名方法是按碳、氟、氯、溴的顺序分别以阿拉伯数字表示相应元素的原子数目(末尾的“0”可略去)。按此原则,对下列几种新 型灭火剂的命名不正确 ...的是() A.CF3Br ─ 1301 B.CF2Br2─ 122 C.C2F4Cl2─ 242D.C2ClBr2─ 2012 10.关于同分异构体的下列说法中正确的是()

酸碱理论及其应用★

酸碱理论及其应用 摘要:酸碱理论是无机化学研究的重要内容,它在科学实验和生产实际中有着广泛的应用。简要介绍现代酸碱理论的建立及其基本概念。现代酸碱理论包括了Brnsted Lowry酸碱理论、Lewis酸碱理论、HSAB 理论和超酸理论。举例介绍了与物理有机化学、有机合成、有机催化等领域相关的现代酸碱理论的广泛应用。 关键词:产生发展局限应用 1.早期人们对酸碱的认识 1.1 早期酸碱概念的产生 最初,人们对酸碱的认识是从观察事物的现象开始的。在我国古代典籍中,对酸的记载比碱要早得多。《周礼·疡医》中有“以酸养骨”的说法。在五行学说出现以后,人们开始用五行来解释五味,其对应的关系为: 木火金水土 | | | | | 酸苦辛咸甘 按照这种关系,古代人们便把“酸”定义为“木味”,这可能是由于古代人在选择食性植物时,发现许多植物具有酸性的缘故。在发酵现象被人们认识以后,“酸”便成为“醋”的同义词。至于“碱”字,原繁体字形为“卤咸”、“卤佥”,初指土碱,与人们的味觉没有多大的关系,在古代的五味中也没有碱的地位。在国外,情况与我国类似。在古代的埃及、希腊、罗马,人们知道果汁(酒)再进一步发酵便得到了酸的英文(acid)来自阿拉伯文(acetum),这个字就意味着 “变酸”(sour);而碱则指灰碱(碳酸钾),碱的英语(alka-li)这个词就是指plant askes(植物的灰分)两个词的意思。以后人们认识了除alkali以外的更多的碱类物质,于是人们便把它们统称为base。在我国近代化学史中,对alkali和base这两个词,在翻译时往往不加区别,都叫做“碱”。1663年,英国化学家波义耳(R.Boyle 1627—1691)对酸的通性作了如此的描述:①有酸味;②有一种特殊的溶剂能力,能溶解许多物质;③能使许多含有蓝色的植物染料(如石蕊)变红;④能与硫化物(多硫化钾)作用生成硫的沉淀;⑤与碱作用,酸性消失,生成中性的盐。到了1776年,英国化学家卡文迪什(H.Cavendish1731—1810)又补充了一条酸的性质;⑥很多酸(如硫酸、盐酸等)和锌、铁、锡等金属作用生成氢气。波义耳对碱的通性描述为①令人具有滑溜的感觉和去污的能力;②有溶解油和硫磺的作用;③有苦涩味;④有能够对抗酸的能力,并能销毁酸;⑤能使因酸的作用变成红色的石蕊溶液变为蓝色。以上这些是古代人们在生产和生活实践中对酸碱现象的初步认识,是酸碱理论产生和发展的启蒙阶段,真正的近代酸碱理论是从拉瓦锡开始的。 1.2拉瓦锡酸的氧理论 1770—1780年间,法国化学家拉瓦锡(https://www.360docs.net/doc/c015609477.html,voisi-er 1743—1794)企图从酸的组成来解释酸性现象,提出了氧是酸的组成成分和“酸化要素”即“酸化的基”理论,他认为凡是酸都应该含氧元素。这个酸的氧理论,持续了七十年,一直影响到十九世纪,普遍地为人们所接受,他明确指出,非金属元素在氧中燃烧生成酸;金属元素在氧中燃烧生成碱。 1.3李比希酸的氢理论 正当人们崇奉拉瓦锡酸的氧理论时,1789年法国化学家贝托雷(C.L.Bertholt 1748—1822)首先揭示了这个理论的缺陷,他发现氢氰酸(HCN)并不含有氧,但其水溶液却有较弱的酸性。但是,由于氢氰酸的酸性比较弱,以致有人认为它根本够不上称为酸的资格,所以拉瓦锡关于酸的氧理论并没有因此而动摇。后来,英国化学家戴维(H.Davy 1778—1829)用普通的盐酸(HCl)来验证,也同样证实了拉瓦锡的错误。在1838年,德国化学家李比希(J.F.V onliebi1803—1873)吸取了戴维等科学家研究的成果,并结合自己的研究,他重申并肯定认为:氢是酸的基本要素, 所有的酸都是“含有容易被金属取代的氢的化合物”,这个酸概念的氢理论连续了近五十年。 由此我们可以看出,早期人们对酸碱的认识基本上还是经验性的,虽有一定的事实基础,但夹杂着人们的一些猜想,缺乏从分子本身严密的论证和论据。

详细有机化学常见反应机理分析

常见的有机反应机理 Arbuzov 反应 亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷: 卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。 本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得: 如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则 Arbuzov 反应如下: 这是制备烷基膦酸酯的常用方法。 除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如: 反应机理 一般认为是按 S N2 进行的分子内重排反应: 反应实例

Arndt-Eister 反应 酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。 反应机理 重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。 反应实例 Baeyer----Villiger 反应 反应机理 过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。因此,这是一个重排反应 具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:

不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为: 醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。 反应实例 酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。这类氧化剂的特点是反应速率快,反应温度一般在 10~40℃之间,产率高。 Beckmann 重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺: 反应机理 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

硬软酸碱理论(HSAB理论)

硬软酸碱理论(HSAB理论) 对于质子酸碱,我们可用pK来描述酸碱的强度,用pH或HO来表示溶液的酸度。但是对于不涉及质子转移的路易斯酸碱,我们只能通过比较它们形成的配合物的热力学稳定性来估计它们的强度。 根据路易斯酸碱电子论的定义,认为在反应中能给出电子对的物质是碱,能接受电子对的物质是酸。在配合物中,中心离子是电子对的接受体,是路易斯酸;配位体是电子对给予体,是路易斯碱。1963年皮尔逊(Peauson)提出了软硬酸碱(Soft and Hard acids and bases,简称SHAB)概念,即根据酸、碱对外层电子控制的程度,应用了“软”和“硬”两字进行分类,把接受孤对电子能力强、对外层电子吸引得紧、没有易极化的电子轨道、电荷半径比较大的金属离子叫“硬酸”;把接受电子能力弱、对外层电子抓得松、易极化、电荷半径比较小的叫“软酸”,介乎二者之间的金属离子叫“交界酸”。按同样道理也把配体分为软、硬和交界三类。给出电子对的原子电负性大、对外层电子吸引力强、不易失去电子、变形性小的叫做“硬碱”;给出电子对的原子电负性小、对外层电子吸引力弱、易给出电子、变形性大的叫做“软碱”;介乎二者之间的为“交界碱”。 硬酸和硬碱之所以称为“硬”是形象化地表明它们的不易变形;软酸和软碱之所以称为“软”是表明它们较易变形. 由于路易斯酸碱多种多样,分类比较粗糙,反应也较复杂,还没有大家公认的定量理论,目前只有一个软硬酸碱规则,其内容是:硬酸倾向于与硬碱相结合,而软酸倾向于与软碱结合。用通俗的话来说,是“硬亲硬,软亲软,软硬交界就不管”。所谓软硬交界就不管的意思是指中间酸(交界酸)与软、硬碱也能结合,中间碱与软、硬酸也能结合,但稳定性较前者差。显然这一规则既不定量,而且有不少例外,但它仍是一个很有用的简单规则,能用它说明大量的事实,并能作一定的预测。例如能对化合物相对稳定性给予较好的解释,如HF 和HCl很稳定,但HI不稳定。从表7-11可知H是硬酸,F、Cl是硬碱,而I是软碱,前者硬-硬结合稳定,而后者硬-软结合不稳定。又如F为何可以从[Fe(SCN)]中将SCN取代出来,因为Fe是硬酸,SCN是软碱,取代前是硬-软结合不太稳定,取代后是硬-硬结合更稳定。 1.硬酸与软酸 硬酸金属离子包括IA, ⅡA,ⅢA,ⅢB, Ln3+ ,An3+ [lanthanide (Ln3+)and actinide (An3+)cations] 以及处于高氧化态的d区过渡金属离子,如Ti4+,Cr3+,Fe3+,Co3+等。硬酸离子的特点是:电荷量高、半径小,也即离子势Zeff /r高,不易被极化。它们跟不同类型配位原子形成的配合物的稳定性变化规律是: R3N>>R3P>>R3As>>R3Sb R2O>>R2S>R2Se>R2Te F->Cl->Br->I- 软酸金属离子包括较低氧化态的过渡金属离子如Cu+、Ag+、Cd2+和重过渡金属离子如Pd2+、Pt2+、Hg2+ 、Hg22+等。这些软酸离子的特点是:半径大、氧化态低,Zeff/r值小,易被极化变形。它们跟不同类型配位原子形成的配合物的稳定性变化顺序是: R3N<<R3P<R3As<R3Sb R2O<<R2S<R2Se<R2Te F-<Cl-<Br-<I- 介于上述两类酸之间的物种称为交界酸,如Fe2+、Co2+、Cu2+、Zn2+、Ni2+等。 2.硬碱和软碱 跟硬酸能形成稳定配合物的碱称为硬碱;跟软酸能形成稳定配合物的碱称为软碱。介于硬碱与软碱之间的配位体称为交界碱。硬碱配位原子的特点是:电负性高,把持价电子能力强,

有机化学反应机理(整理版)

1.Arndt-Eister 反应 酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。 重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。 2.Baeyer----Villiger 反应 过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。因此,这是一个重排反应

具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排: 不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为: 醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。

酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高。 重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺: 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如: 例 还原 芳香化合物用碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或仲丁醇)的混合液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物。

有机化学基本概念

同系物 1. 同系物 (1)定义:________相似,在分子组成上相差一个或若干个________原子团的物质互称为同系物。 (2)注意: ①结构相似,并不是完全相同,如CH3CH2CH3(无支链)与(有支链)是 同系物。 ②通式相同,但符合同一通式的不一定是同系物,如羧酸和酯。 2.有机物CH3CH3、CH3CH===CH2、CH3CH2C≡CH、CH3C≡CH、C6H6、 中,与乙烯互为同系物的是____________和_______。 同分异构体 一、定义 1. 同分异构现象 化合物具有相同的__________,但具有不同__________的现象。 2. 同分异构体 具有____________现象的化合物互称为同分异构体。 异构类型异构方式示例 碳链异构碳链骨架不同 CH3CH2CH2CH3和 位置异构官能团位置不同CH2===CHCH2CH3和CH3CH===CHCH3 官能团异 构 官能团种类不同CH3CH2OH和CH3OCH3 写出C4H8同分异构体: 特别提醒: (1)同分异构体分子式相同,相对分子质量相同,但相对分子质量相同的化合物不一定是同分异构体,如CH3CH2OH与HCOOH不属于同分异构体。

(2)同分异构体的最简式相同,但最简式相同的化合物不一定是同分异构体,如C2H2与C6H6,HCHO与 CH3COOH不是同分异构体。 (3)同分异构体不仅存在于有机物和有机物之间,也存在于有机物和无机物之间,如尿素[CO(NH2)2, 有机物]和氰酸铵(NH4CNO,无机物)互为同分异构体。 常见的类别异构 组成通式可能的类别典型实例 C n H2n烯烃、环烷烃 CH2=CHCH3与 C n H2n-2炔烃、二烯烃CH≡C—CH2CH3与CH2=CHCH=CH2 C n H2n+2O 饱和一元醇、醚C2H5OH与CH3OCH3 C n H2n O 醛、酮、烯醇、环醚、环 醇 CH3CH2CHO、CH3COCH3、CH=CHCH2OH与 C n H2n O2羧酸、酯、羟基醛CH3COOH、HCOOCH3与HO—CH3—CHO C n H2n-6O 酚、芳香醇、芳香醚与 C n H2n+1NO2硝基烷、氨基酸CH3CH2—NO2与H2NCH2—COOH C n(H2O)m单糖或二糖葡萄糖与果糖(C6H12O6)、蔗糖与麦芽糖(C12H22O11) 三、寻找同分异构体的数目 1.记忆法 记住已掌握的常见的异构体数目,例如:①凡只含一个碳原子的分子均无异构体。甲烷、乙烷、新戊烷(看作CH4的四甲基取代物)、2,2,3,3-四甲基丁烷(看作C2H6的六甲基取代物)、苯、环己烷、C2H2、C2H4等分子的一卤代物只有1种;②丁烷、丁炔、丙基、丙醇有2种;③戊烷、丁烯、戊炔有3种;④丁基、C8H10(芳香烃)有4种。 2.基元法 如丁基有4种,则丁醇、戊醛、戊酸都有4种。 3.换元法 即有机物A的n溴代物和m溴代物,当m+n等于A(不含支链)中的氢原子数时,则n溴代物和m 溴代物的同分异构体数目相等。例如二氯苯C6H4Cl2有3种,当二氯苯中的H和Cl互换后,每种二氯苯对应一种四氯苯,故四氯苯也有3种。 4.等效氢法

有机化学:大学基础有机化学的基本概念

有机化学的基本概念 一、化合物类名 2双烯烃:碳碳双键数目最少的多烯烃是二烯烃或称双烯烃。可分为三类:两个双键连在同一个碳原子上的二烯烃称为累积二烯烃,两个双键被两个或两个以上单键隔开的二烯烃称为孤立二烯烃,两个双键被一个单键隔开的二烯烃称为共轭二烯烃。 3内酯:分子内的羧基和羟基失水形成的产物称为内酯。 7半缩醛或半缩酮:醇具有亲核性,在无水和酸性催化剂如对甲苯磺酸、氯化氢的作用下,很容易和醛酮发生亲核加成,一分子醛或酮和一分子醇加成的生成物称为半缩醛或半缩酮。 8有机化合物:除一氧化碳、二氧化碳、碳酸盐等少数简单含碳化合物以外的含碳化合物。 9多肽:一个氨基酸的羧基与另一分子氨基酸的氨基通过失水反应,形成一个酰氨键,新生成的化合物称为肽,肽分子中的酰氨键叫做肽键。二分子氨基酸失水形成的肽叫二肽,多个氨基酸失水形成的肽叫多肽。 10杂环化合物:在有机化学中,将非碳原子统称为杂原子,最常见的杂原子是氮原子、硫原子和氧原子。环上含有杂原子的有机物称为杂环化合物。分为两类,具有脂肪族性质特征的称为脂杂环化合物,具有芳香特性的称为芳杂环化合物。因为前者常常与脂肪族化合物合在一起学习,所以平时说的杂环化合物实际指的是芳杂环化合物。杂环化合物是数目最庞大的一类有机物。 11多环烷烃:含有两个或多个环的环烷烃称为多环烷烃。 12共轭烯烃:单双键交替出现的体系称为共轭体系,含共轭体系的多烯烃称为共轭烯烃。 13纤维二糖是由两分子葡萄糖通过1,4两位上的羟基失水而来的,纤维二糖是β-糖苷。 14纤维素:由多个纤维二糖聚合而成的大分子。 15多稀烃:含有多于一个碳碳双键的烯烃称为多稀烃。 16亚硫酸氢钠加成物:亚硫酸氢钠可以和醛或某些活泼的酮的羰基发生加成反应,生成稳定的加成产物,该产物称为亚硫酸氢钠加成物。 17交酯:二分子α羟基酸受热失水形成的双内酯称为交酯。 18肟:醛或酮与羟胺反应形成的产物称为肟。 19卤代烃:烃分子中的氢被卤素取代后的化合物称为卤代烃。一般用RX表示。X表示卤素(F、Cl、Br、I)。 20麦芽糖是由两分子葡萄糖通过1,4两位上的羟基失水而来的,麦芽糖是α-糖苷,21芳香族化合物:具有一种特殊的性质——芳香性的碳环化合物称为芳香族化合物。

软硬酸碱理论

软硬酸碱理论 软硬酸碱理论:将酸和碱根据性质的不同各分为软硬两类的理论。 the theory of hard and soft acids and bases 概念:体积小,正电荷数高,可极化性低的中心原子称作硬酸,体积大,正电荷数低,可极化性高的中心原子称作软酸。将电负性高,极化性低难被氧化的配位原子称为硬碱,反之为软碱[1]。 将酸和碱根据性质不同分为软硬两类的理论。1963年由R.G. 皮尔孙提出。1958 年S.阿尔兰德、J.查特和N.R.戴维斯根据某些配位原子易与Ag+、Hg2+、Pt2+ 配位;另一些则易与Al3+、Ti4+配位,将金属离子分为两类。a类金属离子包括碱金属、碱土金属Ti4+、Fe3+、Cr3+、H+;b 类金属离子包括Cu+、Ag+、Hg2+、Pt2+。皮尔孙在前人工作的基础上提出以软硬酸碱来区分金属离子和配位原子,硬酸包括a 类金属离子,硬碱包括 H2O、F-等;软酸包括b类金属离子,软碱包括H-、I-等;交界酸包括Fe2+、Cu2+等,交界碱包括NO2-,SO3 2-等。 皮尔孙提出的酸碱反应规律为:“硬酸优先与硬碱结合,软酸优先与软碱结合。”这虽然是一条经验规律,但应用颇广:①取代反应都倾向于形成硬 - 硬、软 - 软的化合物。②软-软、硬-硬化合物较为稳定,软 - 硬化合物不够稳定。③硬溶剂优先溶解硬溶质,软溶剂优先溶解软溶质,许多有机化合物不易溶于水,就是因为水是硬碱。④ 解释催化作用。有机反应中的弗里德-克雷夫茨反应以无水氯化铝(AlCl3)做催化剂,AlCl3是硬酸,与RCl中的硬碱Cl-结合而活化R+和AlCl4-都可起催化作用。 1 软硬酸碱理论简介 一、比较重要的几种酸碱理论概念: 1、电离论(水—离子论):亦称阿仑尼乌斯酸碱理论。在水溶液中离解出的正离子全部三 H+的化合物为酸;在水溶液中离解出的负离子全部是OH-的化合物是碱。 2、酸碱质子论:凡能给出H+的分子或离子为酸,凡能接受H+的分子或离子为碱。酸碱关系式为:酸碱+H+ 3、酸碱电子论:由路易斯(Lewis G N)提出:凡能接受电子对的物质为酸批;凡能给出电子对的物质为碱。酸碱反应的实质是形成了配位键。 4、软硬酸碱理论是在Lewis酸碱电子对理论基础上提出的。该理论是根据金属离子对多种配体的亲和性不同,把金属离子分为两类。一类是“硬”的金属离子,称为硬酸;另一类是软的金属离子,称为软酸。硬的金属离子一般是半径小,电荷高。在与半径小,变形性小的阴离子(硬碱)相互作用时,又较大的亲和力,这是以库仑力为主的作用力。软的金属离子由于半径达,本身又较大的变形性,在与半径大,变形性大的阴离子(软碱)相互作用时,发生相互间的极化作用(*软酸软碱作用),这是一种以共价键力为主的相互作用力。 二、软硬酸碱的特征 1、硬酸:金属离子和其他Lewis酸的受体原子体积小,正电荷高,极化性低,对外层电子抓得紧。如:H+;Li+;Na+;K+;Be2+;Fe3+;Ti4+;Cr3+ 2、

有机化学反应机理画法剖析

有机化学反应机理 弯箭头代表一对电子的转移,弯钩意味着一个电子的转移,后者适用于自由基反应

1 有机反应机理入门 1.1 画路易斯结构式 先画出分子的骨架,环和pi键应准确无误,然后用氢原子完成其余的化学键。对于有机分子,骨架有时以简化形式给出。 画出孤对电子,使每个原子核外满足充满电子的结构:氢2个;硼、铝和镓6个;其它原子8个。最后结构式中的每个原子总的成键电子数可以通过数其核外的成键电子获得(包括共享电子)。 提示:画路易斯结构式可参考以下结构特征:?(1) 氢原子永远在构的外围,因为它只能成一个共价键; (2) 碳、氮和氧有特定的键合模式。?在以下的示例中R代表氢、烷基、芳基或它们的组合,这种变化并不影响成键模式。 ①中性的碳原子为4键。这4个键可以都是sigma键,也可以是sigma键与pi键的组合(如双键和三键)。?②带有单个正电荷或负电荷的碳有3个键。 ③中性的氮原子(氮烯除外)有3个键和一对未成对电子。?④正电荷的氮成4键,带有一个正电荷。 ⑤负电荷的氮成2键,带有一个负电荷和2对未成键电子。

⑥中性的氧原子成2键,带有2对孤对电子。 ⑦带正电荷的氧成3键,带有1对孤对电子。 (3) 有时磷原子和硫原子可有10个成键电子,这是因为磷和硫具有d轨道,可以扩展而容纳10个电子。 Lewis结构式是价键理论的重要内容,也是学习反应机理的基础。 1.2 电负性 多数有机反应依赖于带有正电荷(或部分正电荷)的分子与带有负电荷(或部分负电荷)的分子的相互作用而发生。在中性有机分子中,部分电荷的产生依赖于电负性的差异。?电负性的数值最初由LinusPauling在1960年确定。其数值越大,表明其吸电子能力越强,所以氟是吸电子能力最强的元素,见表: 成键后,电负性大的元素的原子拥有部分负电荷,而且,双键结构的部分电荷比单键结构的部分电荷密度更大,这是因为双键上的pi电子受原子核的束缚小,更易于流动。 电负性是很基础的知识,但很有用,很重要。通过电负性,可以解释为什么硼烷加成到烷基取代的不对称烯烃上不服从Markovnikov规则,为什么含活泼氢的羰基化合物去质子后主要以烯醇式存在... 1.3共振结构?当分子中成键电子的分布不能用一个路易斯结构充分表达时,可由若干个仅仅在电子的位置上有差别的路易斯结构的组合来表达。 这种仅仅在电子的位置上有差别的路易斯结构称为共振结构。共振结构表达了分子中电子的离域。 画共振结构?对于给定的分子或中间体,画共振结构的简单方法是先画出一个 路易斯结构,然后用箭头表示电子的流动,画出一个仅仅是电子分布不同的结构。

酸碱理论概述

酸碱理论 引言: 在中学化学阶段,我们对酸和碱有了初步的了解,但是,碳酸钠水溶液是显碱性的,它为什么不是碱呢,经过现在的深入的学习,我对酸碱理论有了初步的了解,对于酸碱定义的理论是在不断拓展中前进的,酸碱的形式也在不断的拓展延伸着。 关键词: 酸碱、离子、质子、电子对 正文: 1.阿伦尼乌斯酸碱理论——酸碱电离理论 “酸、碱是一种电解质,它们在水溶液中会离解,能离解出的阳离子全部是氢离子的物质是酸;能离解出的阴离子全部是氢氧根离子的物质是碱。”这便是我们在中学化学阶段所使用的酸碱理论。该理论由阿伦尼乌斯在1884年提出。通过对单质的水溶电离特性定义出酸碱,理论的核心落在了单质在水溶液中电离出的离子是否为氢离子和氢氧根上。并很好的解决了水溶液中酸碱反应的问题。由于酸碱与氢离子及氢氧根相关,中和反应的实质也就定义为了氢离子和氢氧根结合为水的反应,并且由于离子浓度是一个实际可测得的量,酸碱的相对强弱便可根据氢离子与氢氧根的离子浓度大小来衡量,使一些定量计算成为了可能。 这种定义是我们所最为熟知的了,如HCl为酸,NaOH为碱,HCl与NaOH的反应便是这种定义下的一种极为常见的中和反应。 但是,这套最广为大众所熟知的酸碱理论有着很大的局限性,他只适用于水溶液中的情况,而不能解释水溶液中不含氢氧根的物质显碱性及非水溶液中,不含氢离子和氢氧根离子的物质也会表现出酸性或碱性的现象(如乙醇钠在乙醇溶液中显强碱性)。虽然如此,这套理论由于它的基础性和对于简单现象的普适性,如今仍被广泛大众所接受和使用。 2.布朗斯特-劳里酸碱理论——酸碱质子理论 “凡是能够释放出质子(H+)的物质,无论它是分子、原子或离子,都是酸;凡是能够接受质子的物质,无论它是分子、原子或离子,都是碱。”这种由丹麦的布朗斯特和英国的劳瑞于1923年各自独立提出的理论打破了酸碱离子理论的局限性,以质子为新的核心,酸和碱的定义围绕质子展开,使酸与碱不在拘泥于必须是一种单质,而把理论的范围扩充到了离子与原子上。在此种理论下H2O成为了一种酸,而NH2-成为了一种碱。不仅如此,这种新的理论还把看似对立的酸碱联系了起来,酸成为了质子给出体,

有机化学习题答案

第7章芳烃及非苯芳烃 思考题答案 思考题7-1苯具有什么结构特征? 它与早期的有机化学理论有什么矛盾? 答案:苯分子具有高度的不饱和性,其碳氢比相当于同分子量的炔烃,根据早期的有机化学理论,它应具有容易发生加成反应、氧化反应等特性。但事实上,苯是一种高度不饱和却具异常稳定性的化合物。因此,要能够很好地解释这一矛盾是当时有机化学家所面临的重大挑战。[知识点:苯的结构特征]思考题7-2早期的有机化学家对苯的芳香性认识与现代有机化学家对苯的芳香性认识有什么不同? 答案:早期的有机化学把那些高度不饱和的苯环类结构并具有芳香气味的化合物称为芳香化合物,这些化合物所具有的特性具称为芳香性。随着对事物认识的 不断深入,人们已经意识到,除了苯环以外还有一些其他类型的分子结构也 具有如苯一样的特别性质。现在仍然迫用芳香性概念,但其内涵已超出了原 来的定义范围。现在对芳香性的定义为:化学结构上环状封闭的共轭大π键,不易被氧化,也不易发生加成反应,但是容易起亲电反应的性质。[知识点:苯的芳香性] 思考题7-3 关于苯分子的近代结构理论有哪些?其中,由Pauling提出的共振结构理论是如何解释苯分子结构? 答案:现代价键理论:苯分子中的六个碳原子都以sp2杂化轨道和相邻的碳和氢原子形成σ键,此sp2杂化轨道为平面其对称轴夹角为120°,此外每个碳原子还

有一个和平面垂直的p轨道,六个p轨道相互平行重叠形成了一个闭合共轭体系。 分子轨道理论:基态时,苯分子的六个π电子都处在成建轨道上,具有闭壳 层电子结构。离域的π电子使得所有的C-C键都相同,具有大π键的特殊性 质因此相比孤立π键要稳定得多。 Pauling提出的共振结构理论:苯的每个1,3,5-环己三烯都是一种共振结构体,苯的真实结构是由这些共振结构式叠加而成的共振杂化体。【知识点:苯近代结构理论】 思考题7-4什么是休克尔规则? 如何利用休克尔规则判别有机分子的芳香性? 答案:休克尔规则:单环化合物具有同平面的连续离域体系,且其π电子数为4n+2,n 为大于等于0的整数,就具有芳香性; 如果π电子数为芳香性,符合4n,为反芳香性,非平面的环状共轭烯烃则为 非芳香性。【知识点:休克尔规则】 思考题7-5为什么有些有机分子的π电子数符合4n+2规则但却不具备芳香性? 答案:有些有机分子如[10]轮烯,其π电子为10,满足4n+2规则,但无芳香性。 其原因在该分子内由于空间拥挤,整个分子不共平面影响共轭,故无芳香性。 具有芳香性必须是共轭的平面分子。【知识点:休克尔规则应用条件】 思考题7-6什么是亲电取代反应? 为什么苯环上容易发生亲电取代反应而不是亲核取代反应?

相关文档
最新文档