泰勒公式外文翻译

合集下载

外文翻译原文

外文翻译原文

(9-5-1) Among
rn ( x) f ( n 1) ( ) ( x x0 ) n 1 . That rn ( x) for the Lagrangian (n 1)!
remainder.We can call that formula for Taylor (Taylor) formula. If x0 0 ,getting
With more than Palin type of Taylor formula . Theorem 1:If the function f in the point xo until N derivative,there are
f x f x0 f x0 x x0 f x0 f n x0 2 n n x x0 x x0 o x x0 2! n!
of the simple power series with itemized derivative, or quadrature methods finding this function. This section will discuss another issue, for an arbitrary function f (x) , if can be expanded in a power series, and launched into.Whether the power series f (x) as and function? The following discussion will address this issue. McLaughlin formula Polynomial power series can be seen as an extension of reality, so considering the function f(x) whether can expand into power series, you can start to solve this problem from the function f (x) and polynomials .To this end, giving the following formula here without proof. Taylor (Taylor) formula, if the function

泰勒公式e的-x平方次方

泰勒公式e的-x平方次方

泰勒公式e的-x平方次方泰勒公式,又称泰勒级数,是数学上一种非常重要的公式。

它的表达式为:e^(-x^2)。

这个名字来源于数学家布鲁克·泰勒,他在18世纪初首次提出了这个公式。

泰勒公式在数学、物理、工程等领域具有广泛的应用,下面我们就来详细了解一下泰勒公式在各个领域的应用及其它相关内容。

一、泰勒公式简介泰勒公式是一种用幂级数展开方法表示函数的方法。

它的基本思想是将一个复杂的函数在某一点附近展开,使之成为一系列简单的多项式函数的和。

这样就可以通过求解这些简单多项式函数的极限来研究原函数的性质。

二、泰勒公式在数学中的应用泰勒公式在数学中的应用非常广泛,例如求解极限、求解泰勒级数、泰勒展开等。

下面我们来看一个求解极限的例子:lim(x->0) (e^x - 1) / x我们可以利用泰勒公式将e^x展开为:e^x = 1 + 0.5x + 0.25x^2 + ...将展开式代入原式,得到:lim(x->0) (1 + 0.5x + 0.25x^2 + ...- 1) / x利用泰勒公式求解极限,我们可以得到:lim(x->0) (0.5x + 0.25x^2 + ...) / x继续利用泰勒公式,我们可以得到:lim(x->0) (0.5 + 0.25x + 0.125x^2 + ...)此时,我们可以发现极限值为0.5,这就是泰勒公式在求解极限中的应用。

三、泰勒公式在实际问题中的例子泰勒公式不仅在数学领域具有广泛的应用,还在物理、工程等领域发挥着重要作用。

下面我们来看一个在物理学中的应用例子:在电磁学中,电荷在电场中的势能可以表示为:V(x) = k * q / x其中,k为静电力常数,q为电荷量,x为电荷到原点的距离。

我们可以利用泰勒公式将V(x)展开为:V(x) = k * q * (1 - x^2 / 2 + x^4 / 8 - x^6 / 16 + ...)通过泰勒展开,我们可以得到电荷在电场中的势能表达式,从而为研究电场提供了一种简便的方法。

第三节 泰勒公式

第三节 泰勒公式

f(
k
)
(x) n(n 1)(n k
f (k)(0) n(n 1)(n
1)(1 x)n牛k顿二项展开式是
k 1). 泰勒公式的特例!
ff(1((x x)x))n f(a )
f
1(f
0(a))
( x
f
a
)n(0f )(ax)
(x naf()n2(01))
x2
1!
1! 2!
2!
n(nf
1()k()n(0k )1) xn k!
1!
2!
f (n)(a) (x a)n
多项式 f (x) 的泰勒公式
n!
例1. 按x 1的方幂展开f ( x) x3 3x2 2x 4.
解: f ( x) x3 3x2 2x 4 f (1) 6;
f (x) 3x2 6x 2
f (1) 7;
f ( x) 6x 6
f (x) f (x0) x x0
f ( x0 )
f ( x) f ( x0 ) f ( x0 )( x x0 ) o( x x0 ),
f ( x) f ( x0 ) f ( x0 )( x x0 ). (3.1)
一次多项式 p1( x) f ( x0 ) f ( x0 )( x x0 )
f
(
x0
)
lim
x x0
f
(
x) x
f( x0
x0
)
a1
.
f (x) f (x0 ) f (x0 )(x x0 ) a2(x x0 )2 o[(x x0 )2].
f
( x)
f
( x0 ) f ( x0 )( x ( x x0 )2
x0 )

高等数学 泰勒公式

高等数学 泰勒公式

高等数学泰勒公式1 泰勒公式介绍泰勒公式是一种重要的数学计算方法,它可以用来求解函数的数值解。

泰勒公式不像常用的无穷级数展开,而是用数值解的方式给出函数的近似值,从而使其在计算中更接近真实解。

泰勒公式最初是以JohnathanTaylor的名字命名的,但实际上,它可以追溯到叙利亚数学家艾哈迈德·泰勒,他是在1800年代末定义函数的隐函数形式的先驱者。

2 泰勒公式的定义泰勒公式可以被定义为:当f(x)是在点x0内可从某处n次可连续微分的函数时,令微分次数增加到n+1,则有:f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)(x-x_0)^2}{2!}+\frac{f'''(x_0)(x-x_0)^3}{3!}+\cdots+\frac{f^{(n+1)}(x_0)(x-x_0)^{n+1}}{(n+1)!} 3 泰勒公式的应用由于泰勒公式的本质是利用函数的多项式区间进行逼近,因此它可以用来求解根问题、最小值、积分以及其他的数学问题。

比如,用泰勒公式求根问题:假设存在一个函数f(x),当x_0处f(x)可导数且f(x_0)=0时,f(x) = 0可以用泰勒公式写作:f(x) =f'(x_0) (x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \cdots = 0。

这样,x_0就是f(x) = 0的一个根,而当f''(x) > 0时,x_0是其唯一解。

泰勒公式也可以用来求函数的最大值或最小值,最大值或最小值的函数在泰勒公式处可导数并且函数值为零。

由于泰勒公式可以对函数值的近似表达作出估算,因此也可以用来做积分,将函数分段展开,然后用此泰勒展开式加以求和便可以求出积分值了。

4 泰勒公式的缺点虽然泰勒公式在多个应用中都表现出了优良的数值结果,但泰勒公式也有一定的缺点,比如函数值的计算方式比较复杂、计算量也太大,也有的函数集合不能只靠泰勒公式求解,甚至得到的数值可能不是最精确的值,所以使用时必须谨慎。

泰勒公式 麦克劳林公式

泰勒公式 麦克劳林公式

泰勒公式麦克劳林公式泰勒公式和麦克劳林公式是数学中非常重要且实用的工具。

它们在近似计算以及函数展开方面具有极大的指导意义。

本文将为大家详细介绍这两个公式的原理和应用领域。

首先,让我们来了解一下泰勒公式。

泰勒公式是由17世纪英国数学家布鲁诺·泰勒(Brook Taylor)提出的。

它的作用是将一个函数在某一点附近展开成一个无穷级数的形式。

具体而言,对于一个处处可微的函数f(x),泰勒公式可以将其表示为一个以x为变量的无穷级数:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ... + f^n(a)(x-a)^n/n! + Rn(x)其中,f'(x)表示f(x)的导数,f''(x)表示二阶导数,依此类推,n为一个自然数,Rn(x)为余项。

泰勒公式的意义在于,它将一个复杂的函数近似地展开成了一组简单的项,使得我们可以更容易地对函数进行近似计算。

这在科学计算、工程应用以及物理问题求解中非常有用。

接下来,我们来介绍麦克劳林公式。

麦克劳林公式是泰勒公式的一个特殊情况,即当a=0时的情况。

在这种情况下,泰勒公式可以简化成麦克劳林公式:f(x) = f(0) + f'(0)x + f''(0)x^2/2! + f'''(0)x^3/3! + ... + f^n(0)x^n/n! + Rn(x)这样,麦克劳林公式中的每一项都只包含了函数在原点的值及其导数。

对于一些特定的函数,我们可以通过麦克劳林公式将其近似地表示为一个多项式,从而更方便地进行计算。

泰勒公式和麦克劳林公式的应用范围非常广泛。

在数值计算中,它们被用来进行函数近似计算,特别是在高级数学问题的求解中。

例如,在物理学中,我们常常需要近似计算一些复杂的物理现象,如弹性力学问题中的应力分布、流体力学问题中的速度分布等。

数学外文翻译

数学外文翻译

Power Series Expansion and Its ApplicationsIn the previous section, we discuss the convergence of power series, in its convergence region, the power series always converges to a function. For the simple power series, but also with itemized derivative, or quadrature methods, find this and function. This section will discuss another issue, for an arbitrary function ()f x , can be expanded in a power series, and launched into.Whether the power series ()f x as and function? The following discussion will address this issue. 1 Maclaurin (Maclaurin) formulaPolynomial power series can be seen as an extension of reality, so consider the function ()f x can expand into power series, you can from the function ()f x and polynomials start to solve this problem. To this end, to give here without proof the following formula.Taylor (Taylor) formula, if the function ()f x at 0x x = in a neighborhood that until the derivative of order 1n +, then in the neighborhood of the following formula :20000()()()()()()n n f x f x x x x x x x r x =+-+-++-+… (9-5-1)Among10()()n n r x x x +=-That ()n r x for the Lagrangian remainder. That (9-5-1)-type formula for the Taylor.If so 00x =, get2()(0)()n n f x f x x x r x=+++++…, (9-5-2) At this point,(1)(1)111()()()(1)!(1)!n n n n n f f x r x x x n n ξθ+++++==++ (01θ<<).That (9-5-2) type formula for the Maclaurin.Formula shows that any function ()f x as long as until the 1n +derivative, n can be equal to a polynomial and a remainder.We call the following power series()2(0)(0)()(0)(0)2!!n nf f f x f f x x x n '''=+++++…… (9-5-3) For the Maclaurin series.So, is it to ()f x for the Sum functions? If the order Maclaurin series (9-5-3) the first 1n + itemsand for 1()n S x +, which()21(0)(0)()(0)(0)2!!n nn f f S x f f x x x n +'''=++++…Then, the series (9-5-3) converges to the function ()f x the conditions1lim ()()n n s x f x +→∞=.Noting Maclaurin formula (9-5-2) and the Maclaurin series (9-5-3) the relationship between theknown1()()()n n f x S x r x +=+Thus, when()0n r x =There,1()()n f x S x +=Vice versa. That if1lim ()()n n s x f x +→∞=,Units must()0n r x =.This indicates that the Maclaurin series (9-5-3) to ()f x and function as the Maclaurin formula (9-5-2) of the remainder term ()0n r x → (when n →∞).In this way, we get a function ()f x the power series expansion:()()0(0)(0)()(0)(0)!!n n n nn f f f x x f f x x n n ∞='==++++∑……. (9-5-4) It is the function ()f x the power series expression, if, the function of the power series expansion is unique. In fact, assuming the function f (x ) can be expressed as power series20120()n n n n n f x a x a a x a x a x ∞===+++++∑……, (9-5-5)Well, according to the convergence of power series can be itemized within the nature of derivation,and then make 0x = (power series apparently converges in the 0x = point), it is easy to get()2012(0)(0)(0),(0),,,,,2!!n nn f f a f a f x a x a x n '''====…….Substituting them into (9-5-5) type, income and ()f x the Maclaurin expansion of (9-5-4) identical. In summary, if the function f (x ) contains zero in a range of arbitrary order derivative, and in this range of Maclaurin formula in the remain der to zero as the limit (when n → ∞,), then , the function f (x ) can start forming as (9-5-4) type of power series.Power Series()20000000()()()()()()()()1!2!!n n f x f x f x f x f x x x x x x x n '''=+-+-++-……,Known as the Taylor series.Second, primary function of power series expansionMaclaurin formula using the function ()f x expanded in power series method, called the direct expansion method.Example 1Test the function ()x f x e =expanded in power series of x . Solution because()()n x f x e =,(1,2,3,)n =…Therefore()(0)(0)(0)(0)1n f f f f '''====…,So we get the power series21112!!n x x x n +++++……, (9-5-6) Obviously, (9-5-6)type convergence interval (,)-∞+∞, As (9-5-6)whether type ()x f x e = is Sum function, that is, whether it converges to ()xf x e = , but also examine remainder ()n r x . Because1e ()(1)!xn n r x x n θ+=+ (01θ<<),且x x x θθ≤≤,Therefore11e e ()(1)!(1)!xx n n n r x x x n n θ++=<++,Noting the value of any set x ,xe is a fixed constant, while the series (9-5-6) is absolutely convergent, sothe general when the item when n →∞, 10(1)!n xn +→+ , so when n → ∞,there10(1)!n xx e n +→+, From thislim ()0n n r x →∞=This indicates that the series (9-5-6) does converge to ()x f x e =, therefore21112!!x n e x x x n =+++++…… (x -∞<<+∞). Such use of Maclaurin formula are expanded in power series method, although the procedure is clear,but operators are often too Cumbersome, so it is generally more convenient to use the following power series expansion method.Prior to this, we have been a functionx-11, xe and sin x power series expansion, the use of these known expansion by power series of operations, we can achieve many functions of power series expansion. This demand function of power series expansion method is called indirect expansion .Example 2Find the function ()cos f x x =,0x =,Department in the power series expansion. Solution because(sin )cos x x '=,And3521111sin (1)3!5!(21)!n n x x x x x n +=-+-+-++……,(x -∞<<+∞)Therefore, the power series can be itemized according to the rules of derivation can be342111cos 1(1)2!4!(2)!n nx x x x n =-+-+-+……,(x -∞<<+∞) Third, the function power series expansion of the application exampleThe application of power series expansion is extensive, for example, can use it to set some numerical or other approximate calculation of integral value.Example 3 Using the expansion to estimate arctan x the value of π.Solution because πarctan14= Because of357arctan 357x x x x x =-+-+…, (11x -≤≤),So there1114arctan14(1)357π==-+-+…Available right end of the first n items of the series and as an approximation of π. However, the convergence is very slow progression to get enough items to get more accurate estimates of πvalue.此外文文献选自于:Walter.Rudin.数学分析原理(英文版)[M].北京:机械工业出版社.幂级数的展开及其应用在上一节中,我们讨论了幂级数的收敛性,在其收敛域内,幂级数总是收敛于一个和函数.对于一些简单的幂级数,还可以借助逐项求导或求积分的方法,求出这个和函数.本节将要讨论另外一个问题,对于任意一个函数()f x ,能否将其展开成一个幂级数,以及展开成的幂级数是否以()f x 为和函数?下面的讨论将解决这一问题.一、 马克劳林(Maclaurin)公式幂级数实际上可以视为多项式的延伸,因此在考虑函数()f x 能否展开成幂级数时,可以从函数()f x 与多项式的关系入手来解决这个问题.为此,这里不加证明地给出如下的公式.泰勒(Taylor)公式 如果函数()f x 在0x x =的某一邻域内,有直到1n +阶的导数,则在这个邻域内有如下公式:()20000000()()()()()()()()()2!!n n n f x f x f x f x f x x x x x x x r x n '''=+-+-++-+…,(9-5-1)其中(1)10()()()(1)!n n n f r x x x n ξ++=-+.称()n r x 为拉格朗日型余项.称(9-5-1)式为泰勒公式. 如果令00x =,就得到2()(0)()n n f x f x x x r x =+++++…, (9-5-2)此时,(1)(1)111()()()(1)!(1)!n n n n n f f x r x x x n n ξθ+++++==++, (01θ<<).称(9-5-2)式为马克劳林公式.公式说明,任一函数()f x 只要有直到1n +阶导数,就可等于某个n 次多项式与一个余项的和. 我们称下列幂级数()2(0)(0)()(0)(0)2!!n nf f f x f f x x x n '''=+++++…… (9-5-3)为马克劳林级数.那么,它是否以()f x 为和函数呢?若令马克劳林级数(9-5-3)的前1n +项和为1()n S x +,即()21(0)(0)()(0)(0)2!!n nn f f S x f f x x x n +'''=++++…,那么,级数(9-5-3)收敛于函数()f x 的条件为1lim ()()n n s x f x +→∞=.注意到马克劳林公式(9-5-2)与马克劳林级数(9-5-3)的关系,可知1()()()n n f x S x r x +=+.于是,当()0n r x =时,有1()()n f x S x +=.反之亦然.即若1lim ()()n n s x f x +→∞=则必有()0n r x =.这表明,马克劳林级数(9-5-3)以()f x 为和函数⇔马克劳林公式(9-5-2)中的余项()0n r x → (当n →∞时).这样,我们就得到了函数()f x 的幂级数展开式:()()20(0)(0)(0)()(0)(0)!2!!n n n nn f f f f x x f f x x x n n ∞='''==+++++∑……(9-5-4) 它就是函数()f x 的幂级数表达式,也就是说,函数的幂级数展开式是唯一的.事实上,假设函数()f x 可以表示为幂级数20120()n n n n n f x a x a a x a x a x ∞===+++++∑……, (9-5-5)那么,根据幂级数在收敛域内可逐项求导的性质,再令0x =(幂级数显然在0x =点收敛),就容易得到()2012(0)(0)(0),(0),,,,,2!!n nn f f a f a f x a x a x n '''====…….将它们代入(9-5-5)式,所得与()f x 的马克劳林展开式(9-5-4)完全相同.综上所述,如果函数()f x 在包含零的某区间内有任意阶导数,且在此区间内的马克劳林公式中的余项以零为极限(当n →∞时),那么,函数()f x 就可展开成形如(9-5-4)式的幂级数.幂级数()00000()()()()()()1!!n n f x f x f x f x x x x x n '=+-++-……,称为泰勒级数.二、 初等函数的幂级数展开式利用马克劳林公式将函数()f x 展开成幂级数的方法,称为直接展开法. 例1 试将函数()x f x e =展开成x 的幂级数. 解 因为()()n x f x e =, (1,2,3,)n =…所以()(0)(0)(0)(0)1n f f f f '''====…,于是我们得到幂级数21112!!n x x x n +++++……, (9-5-6) 显然,(9-5-6)式的收敛区间为(,)-∞+∞,至于(9-5-6)式是否以()x f x e =为和函数,即它是否收敛于()xf x e =,还要考察余项()n r x .因为1e ()(1)!xn n r x x n θ+=+ (01θ<<), 且x x x θθ≤≤,所以11e e ()(1)!(1)!xx n n n r x x x n n θ++=<++.注意到对任一确定的x 值,xe 是一个确定的常数,而级数(9-5-6)是绝对收敛的,因此其一般项当n →∞时,10(1)!n xn +→+,所以当n →∞时,有10(1)!n xx e n +→+, 由此可知lim ()0n n r x →∞=.这表明级数(9-5-6)确实收敛于()x f x e =,因此有21112!!x n e x x x n =+++++…… (x -∞<<+∞). 这种运用马克劳林公式将函数展开成幂级数的方法,虽然程序明确,但是运算往往过于繁琐,因此人们普遍采用下面的比较简便的幂级数展开法.在此之前,我们已经得到了函数x-11,xe 及sin x 的幂级数展开式,运用这几个已知的展开式,通过幂级数的运算,可以求得许多函数的幂级数展开式.这种求函数的幂级数展开式的方法称为间接展开法.例2 试求函数()cos f x x =在0x =处的幂级数展开式. 解 因为(sin )cos x x '=,而3521111sin (1)3!5!(21)!n n x x x x x n +=-+-+-++……,(x -∞<<+∞), 所以根据幂级数可逐项求导的法则,可得342111cos 1(1)2!4!(2)!n nx x x x n =-+-+-+……,(x -∞<<+∞). 三、 函数幂级数展开的应用举例幂级数展开式的应用很广泛,例如可利用它来对某些数值或定积分值等进行近似计算. 例3 利用arctan x 的展开式估计π的值. 解 由于πarctan14=,又因357arctan 357x x x x x =-+-+…, (11x -≤≤),所以有1114arctan14(1)357π==-+-+….可用右端级数的前n 项之和作为π的近似值.但由于级数收敛的速度非常慢,要取足够多的项才能得到π的较精确的估计值.此外文文献选自于:Walter.Rudin.数学分析原理(英文版)[M].北京:机械工业出版社.。

3.3泰勒公式


R(x)
R(n1) (x)
lim
x x0
(x
x0
)n
lim xx0 n!(x x0 )
用定义求导
0
1 lim
n! xx0
R(n1) (x) x
R(n1) (x0 ) x0
设想两个运动的质点的运动方程在某一时刻有 相同的 0∼2 阶导数:
s1(t0) = s2(t0): 它们在时刻 t0 有相同的位置
s1’(t0) = s2’(t0): 它们在时刻 t0 有相同的速度
s1’’(t0) = s2’’(t0): 它们在时刻 t0 有相同的加速度
November, 2004
1.5
ln(1 x) x 1
0.5
yx y ln(1 x)
0.5
0
0.5
1
1.5
2
0.5
November, 2004
f (x) f (x0 ) f (x0 )(x x0 )
令 p(x) f (x0 ) f (x0 )(x x0 )
这是 y = f(x) 在 (x0, y0) 处的切线
在 x = x0 处,y = f(x) 与 y = p(x) 有: (1)相同的函数值:f(x0) = p(x0) ( y = f(x) 与 y = p(x) 相交于点 (x0, y0) ) (2)相同的导数值: f ’(x0) = p’(x0) ( y = f(x) 与 y = p(x) 相切于点 (x0, y0) )
洛必达法则
lim
x x0
n(n
R( x) 1)(x x0 )n2
...... lim R(n1) (x) xx0 n!(x x0 )
洛必达法则
November, 2004

一些常用的泰勒公式

一些常用的泰勒公式泰勒公式是一种用来近似函数值的数学工具,利用函数在其中一点的导数信息来估计该点附近函数的取值。

它由英国数学家布鲁克·泰勒(Brook Taylor)在18世纪初提出,被广泛应用于数学、物理和工程等领域。

泰勒公式的基本形式是:$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 +\frac{f'''(a)}{3!}(x-a)^3 + \cdots$$上述公式展示了一个函数$f(x)$在点$a$附近的近似值,其中$f^{(n)}(a)$表示$f(x)$在点$a$处的$n$阶导数。

为了简化计算,通常我们只考虑泰勒公式的前几项,这些常用的泰勒公式包括:1.一阶泰勒公式:$$f(x)≈f(a)+f'(a)(x-a)$$这是泰勒公式的最简单形式,只考虑一阶导数$f'(a)$的影响。

它适用于函数在点$a$附近线性变化较小的情况。

2.二阶泰勒公式:$$f(x) ≈ f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2$$在一阶泰勒公式的基础上,考虑到二阶导数$f''(a)$的影响。

这个公式可以更好地近似函数在点$a$附近的曲线形状,适用于函数变化较为平滑的情况。

3.三阶泰勒公式:$$f(x) ≈ f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 +\frac{f'''(a)}{3!}(x-a)^3$$在二阶泰勒公式的基础上,考虑到三阶导数$f'''(a)$的影响。

这个公式可以更准确地近似函数的曲线形状,适用于函数变化较为复杂的情况。

4.麦克劳林级数:麦克劳林级数是泰勒级数在$a=0$的特殊情况,可以将函数$f(x)$在$x=0$附近展开成幂级数。

泰勒公式及其应用

泰勒公式及其应用
泰勒公式是一种用于表示函数极限和求积分的数学工具,被称为“微积分中最重要的公式”。

泰勒公式由英国数学家自由格尔·泰勒发现,其内容是可以用无限多项式表示连续函数的局部行为。

其定义如下:设函数f (x)在x=a处可导,其阶为n,则当x→a时f (x)的Maclaurin(或者 Taylor)展开式为:
f(x) = f (a) + f'(a)(x-a) + 1/2!f''(a)(x-a)^2 + …+
n!/n!f^(n)(a)(x-a)^n +Rn(x)
其中,Rn(x)是泰勒公式的残余项,它的估计值为:
Rn(x)=(n+1)!/[(x-a)^(n+1)]*[f^(n+1)(x)(c)]
其中,c是限定在区间[a,x]上的某个数。

泰勒公式有多种应用,例如:在数学中它可以用来引入和解决方程、实现长数列求和运算以及实现集合位置和加速极限。

在数值分析中,它可以用来定义行列式、计算迭代函数的极限以及实现积分近似计算。

再者,在几何学方面,它可以用来实现三角函数、泰勒线运算以及多项式拟合。

在力学方面,它可用来进行机械运动分析和描述弹性摆的特性以及准确表示力学系统的行为。

3-3 泰勒公式


(0 1)
麦克劳林
f (k)( x) ( 1) ( k 1)(1 x)k (k 1, 2 , )
f (k)(0) ( 1) ( k 1)
(1 x) 1 x ( 1) x2
2!
( 1)( n 1)
f (k)(0) sin(k

2)
0,

(1)m
1
,
k 2m
(m 1,2,
k 2m 1
)

sin
x

x
x3 3!

x5 5!

(1)m1 x2m1 (2m 1) !
R2m (x)
其中 R2m ( x)
sin((1)xm co2sm(21x))
n!
xn Rn (x)
其中
Rn( x)
( 1) ( n) (1
(n 1) !
x) n1 xn1
(0 1)
例1 求 ex2 的麦克劳林展式。
间接展开法
解 e x 1 x x2 xn o( xn )
2!
n!
e x2 1 x2 x4 ( x2 )n o( x2n )
其中 Rn( x)
f (n1) ( )
(n 1) !
(
x

x0
)n1
( 在 x0 与x 之间)

公式 ① 称为
的带有 拉格朗日型余项 的 n 阶泰勒公式 .
公式 ② 称为n 阶泰勒公式的 拉格朗日型余项 返回
注: (1) 当 n = 0 时, 泰勒公式 变为
拉格朗日中值公式
ቤተ መጻሕፍቲ ባይዱ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Taylor's Formula and the Study of Extrema1. Taylor's Formula for MappingsTheorem 1. If a mapping Y U f →: from a neighborhood ()x U U = of a point x in a normed space X into a normed space Y has derivatives up to order n -1 inclusive in U and has an n-th order derivative()()x f nat the point x, then()()()()()⎪⎭⎫ ⎝⎛++++=+n n n h o h x f n h x f x f h x f !1, (1)as 0→h .Equality (1) is one of the varieties of Taylor's formula, written here for rather general classes of mappings.Proof. We prove Taylor's formula by induction. For1=nit is true by definition of ()x f ,.Assume formula (1) is true for some N n ∈-1.Then by the mean-value theorem, formula (12) of Sect. 10.5, and the induction hypothesis, we obtain.()()()()()()()()()()()()()⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-+++-+≤⎪⎭⎫ ⎝⎛+++-+--<<nn n n n n h o h h o h h x f n h x f x f h x f h x f n h f x f h x f 11,,,,10!11sup !1x θθθθθ ,as 0→h .We shall not take the time here to discuss other versions of Taylor's formula, which are sometimes quite useful. They were discussed earlier in detail for numerical functions. At this point we leave it to the reader to derive them (see, for example, Problem 1 below). 2. Methods of Studying Interior ExtremaUsing Taylor's formula, we shall exhibit necessary conditions and also sufficient conditions for an interior local extremum of real-valued functions defined on an open subset of a normed space. As we shall see, these conditions are analogous to the differential conditions already known to us for an extremum of a real-valued function of a real variable.Theorem 2. Let R U f →: be a real-valued function defined on an open set U in a normed space X and having continuous derivatives up to order 11≥-k inclusive in a neighborhood of a point U x ∈ and a derivative()()x f kof order k at the point x itself.If()()()0,,01,==-x f x f k and()()0≠x f k , then for x to be an extremum of the function f it is:necessary that k be even and that the form ()()k k h x fbe semidefinite,andsufficient that the values of the form()()k k h x fon the unit sphere 1=h be bounded awayfrom zero; moreover, x is a local minimum if the inequalities()()0>≥δk k h x f ,hold on that sphere, and a local maximum if()()0<≤δk k h x f ,Proof. For the proof we consider the Taylor expansion (1) of f in a neighborhood of x. The assumptions enable us to write()()()()()k k k h h h x f k x f h x f α+=-+!1where ()h α is a real-valued function, and ()0→h α as 0→h . We first prove the necessary conditions. Since ()()0≠x f k , there exists a vector00≠h on which ()()00≠kk h x f .Then for values of thereal parameter t sufficiently close to zero,()()()()()()k k k th th th x f k x f th x f 0000!1α+=-+ ()()()k k k k t h th h x f k ⎪⎭⎫ ⎝⎛+=000!1α and the expression in the outer parentheses has the same sign as ()()kk h x f 0.For x to be an extremum it is necessary for the left-hand side (and hence also the right-hand side) of this last equality to be of constant sign when t changes sign. But this is possible only if k is even.This reasoning shows that if x is an extremum, then the sign of the difference ()()x f th x f -+0is the same as that of ()()kk h x f 0 for sufficiently small t; hence in that case there cannot be twovectors 0h , 1h at which the form()()x f kassumes values with opposite signs.We now turn to the proof of the sufficiency conditions. For definiteness we consider the case when()()0>≥δk k h x ffor 1=h . Then()()()()()kk k h h h x f k x f h x f α+=-+!1()()()k k k h h h h x f k ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=α!1()kh h k ⎪⎭⎫ ⎝⎛+≥αδ!1 and, since ()0→h α as 0→h , the last term in this inequality is positive for all vectors0≠h sufficiently close to zero. Thus, for all such vectors h,()()0>-+x f h x f ,that is, x is a strict local minimum.The sufficient condition for a strict local maximum is verified similiarly.Remark 1. If the space X is finite-dimensional, the unit sphere ()1;x S with center at X x ∈, being a closed bounded subset of X, is compact. Then the continuous function()()()()kk i i i i k k h h x f h x f ⋅⋅∂= 11 (a k-form) has both a maximal and a minimal value on ()1;x S . Ifthese values are of opposite sign, then f does not have an extremum at x. If they are both of the same sign, then, as was shown in Theorem 2, there is an extremum. In the latter case, a sufficient condition for an extremum can obviously be stated as the equivalent requirement that the form()()k k h x fbe either positive- or negative-definite.It was this form of the condition that we encountered in studying realvalued functions on n R .Remark 2. As we have seen in the example of functions RR f n →:, the semi-definitenessof the form()()k k h x fexhibited in the necessary conditions for an extremum is not a sufficientcriterion for an extremum.Remark 3. In practice, when studying extrema of differentiable functions one normally uses only the first or second differentials. If the uniqueness and type of extremum are obvious from the meaning of the problem being studied, one can restrict attention to the first differential when seeking an extremum, simply finding the point x where ()0,=x f 3. Some Examples Example 1. Let()()RR C L ;31∈ and()[]()R b a C f ;,1∈.In other words,()()321321,,,,u u u L u u uis a continuously differentiable real-valued function defined in 3Rand ()x f x a smoothreal-valued function defined on the closed interval []R b a ⊂,. Consider the function()[]()R R b a C F →;,:1(2)defined by the relation()[]()()f F R b a C f ;,1∈()()()R dx x f x f x L b a∈=⎰,,,(3)Thus, (2) is a real-valued functional defined on the set of functions()[]()R b a C ;,1.The basic variational principles connected with motion are known in physics and mechanics. According to these principles, the actual motions are distinguished among all the conceivable motions in that they proceed along trajectories along which certain functionals have an extremum. Questions connected with the extrema of functionals are central in optimalcontrol theory. Thus, finding and studying the extrema of functionals is a problemof intrinsic importance, and the theory associated with it is the subject of a large area of analysis - the calculus of variations. We have already done a few things to make the transition from the analysis of the extrema of numerical functions to the problem of finding and studying extrema of functionals seem natural to the reader. However, we shall not go deeply into the special problems of variational calculus, but rather use the example of the functional (3) to illustrate only the general ideas of differentiation and study of local extrema considered above.We shall show that the functional (3) is a differentiate mapping and find its differential. We remark that the function (3) can be regarded as the composition of the mappings()()()()()x f x f x L x f F ,1,,= (4)defined by the formula()[]()[]()R b a C R b a C F ;,;,:11→(5)followed by the mapping[]()()()R dx x g g F R b a C g ba∈=∈⎰2;, (6)By properties of the integral, the mapping 2F is obviously linear and continuous, so thatits differentiability is clear. We shall show that the mapping1F is also differentiable, and that()()()()()()()()()()x h x f x f x L x h x f x f x L x h f F ,,3,2,1.,,,∂+∂=(7)for()[]()R b a C h ;,1∈.Indeed, by the corollary to the mean-value theorem, we can write in the present case()()()ii iu u u L u u u L u u u L ∆∂--∆+∆+∆+∑=32131321332211,,,,,,()()()()()()∆⋅∂-∆+∂∂-∆+∂∂-∆+∂≤<<u L u L u L u L u L u L 3312211110sup θθθθ()()ii i i u L u u L i ∆⋅∂-+∂≤=≤≤=3,2,110max max 33,2,1θθ (8)where ()321,,u u u u = and ()321,,∆∆∆=∆.If we now recall that the norm ()1c fof the function f in()[]()R b a C ;,1is⎭⎬⎫⎩⎨⎧c c f f ,,max (wherecfis the maximum absolute value of the function on the closed interval []b a ,), then,setting x u =1,()x f u =2, ()x f u ,3=, 01=∆, ()x h =∆2, and ()x h ,3=∆, we obtain from inequality (8),taking account of the uniform continuity of the functions ()3,2,1,,,321=∂i u u u L i , on boundedsubsets of3R , that()()()()()()()()()()()()()()()()x h x f x f x L x h x f x f x L x f x f x L x h x f x h x f x L bx ,,3,2,,,0,,,,,,,,max ∂-∂--++≤≤()()1c h o = as()01→c hBut this means that Eq. (7) holds.By the chain rule for differentiating a composite function, we now conclude that the functional (3) is indeed differentiable, and()()()()()()()()()()⎰∂+∂=b adx x h x f x f x L x h x f x f x L h f F ,,3,2,,,,, (9)We often consider the restriction of the functional (3) to the affine space consisting of the functions()[]()R b a C f ;,1∈that assume fixed values ()A a f =, ()B b f = at the endpoints of theclosed interval []b a ,. In this case, the functions h in the tangent space ()1f TC , must have the value zero at the endpoints of the closed interval []b a ,. Taking this fact into account, we may integrate by parts in (9) and bring it into the form()()()()()()()()⎰⎪⎭⎫⎝⎛∂-∂=b a dx x h x f x f x L dx d x f x f x L h f F ,3,2,,,,,(10)of course under the assumption that L and f belong to the corresponding class ()2C .In particular, if f is an extremum (extremal) of such a functional, then by Theorem 2 we have()0,=h f Ffor every function()[]()R b a C h ;,1∈such that ()()0==b h a h . From this and relation (10)one can easily conclude (see Problem 3 below) that the function f must satisfy the equation()()()()()()0,,,,,3,2=∂-∂x f x f x L dxdx f x f x L (11)This is a frequently-encountered form of the equation known in the calculus of variations as the Euler-Lagrange equation.Let us now consider some specific examples. Example 2. The shortest-path problemAmong all the curves in a plane joining two fixed points, find the curve that has minimal length.The answer in this case is obvious, and it rather serves as a check on the formal computations we will be doing later.We shall assume that a fixed Cartesian coordinate system has been chosen in the plane, in which the two points are, for example, ()0,0 and ()0,1 . We confine ourselves to just the curves that are the graphs of functions()[]()R C f ;1,01∈assuming the value zero at both ends ofthe closed interval []1,0 . The length of such a curve()()()⎰+=12,1dx x f f F (12)depends on the function f and is a functional of the type considered in Example 1. In this case the function L has the form()()233211,,u u u u L +=and therefore the necessary condition (11) for an extremal here reduces to the equation()()()012,,=⎪⎪⎪⎭⎫⎝⎛+x f x f dx dfrom which it follows that()()()常数≡+x fx f 2,,1 (13)on the closed interval []1,0 Since the function21uu + is not constant on any interval, Eq. (13) is possible only if()≡x f ,const on []b a ,. Thus a smooth extremal of this problem must be a linear function whosegraph passes through the points ()0,0 and ()0,1. It follows that ()0≡x f , and we arrive at the closed interval of the line joining the two given points. Example 3. The brachistochrone problemThe classical brachistochrone problem, posed by Johann Bernoulli I in 1696, was to find the shape of a track along which a point mass would pass from a prescribed point 0P toanother fixed point1Pat a lower level under the action of gravity in the shortest time.We neglect friction, of course. In addition, we shall assume that the trivial case in which both points lie on the same vertical line is excluded. In the vertical plane passing through the points 0P and 1P we introduce a rectangularcoordinate system such that 0P is at the origin, the x-axis is directed vertically downward,and the point1Phas positive coordinates ()11,y x .We shall find the shape of the track amongthe graphs of smooth functions defined on the closed interval []1,0x and satisfying the condition ()00=f ,()11y x f =. At the moment we shall not take time to discuss this by no means uncontroversial assumption (see Problem 4 below). If the particle began its descent from the pointP with zero velocity, the law of variationof its velocity in these coordinates can be written asgxv 2= (14)Recalling that the differential of the arc length is computed by the formula()()()()dx x f dy dx ds 2,221+=+=(15)we find the time of descent()()()⎰+=12,121x dx xx f gf F (16)along the trajectory defined by the graph of the function ()x f y = on the closed interval []1,0x .For the functional (16)()()1233211,,u u u u u L +=,and therefore the condition (11) for an extremum reduces in this case to the equation()()()012,,=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+x f x x f dx d , from which it follows that()()()x c x fx f =+2,,1 (17)where c is a nonzero constant, since the points are not both on the same vertical line. Taking account of (15), we can rewrite (17) in the formx c dsdy= (18)However, from the geometric point of viewϕcos =ds dx ,ϕsin =dsdy (19)where ϕ is the angle between the tangent to the trajectory and the positive x-axis.By comparing Eq. (18) with the second equation in (19), we findϕ22sin 1cx =(20)But it follows from (19) and (20) thatdx dy d dy =ϕ,2222sin 2sin c c d d tg d dx tg d dx ϕϕϕϕϕϕϕ=⎪⎪⎭⎫ ⎝⎛==,from which we find()b c y +-=ϕϕ2sin 2212(21)Settinga c =21 andt=ϕ2, we write relations (20) and (21) as()()bt t a y t a x +-=-=sin cos 1(22)Since 0≠a , it follows that 0=x only for πk t 2=,Z k ∈. It follows from the form of the function (22) that we may assume without loss of generality that the parameter value 0=t corresponds to the point()0,00=P . In this case Eq. (21) implies 0=b , and we arrive at thesimpler form()()t t a y t a x sin cos 1-=-=(23)for the parametric definition of this curve.Thus the brachistochrone is a cycloid having a cusp at the initial pointP where thetangent is vertical. The constant a, which is a scaling coefficient, must be chosen so that the curve (23) also passes through the point1P .Such a choice, as one can see by sketching thecurve (23), is by no means always unique, and this shows that the necessary condition (11) for an extremum is in general not sufficient. However, from physical considerations it is clear which of the possible values of the parameter a should be preferred (and this, of course, can be confirmed by direct computation).泰勒公式和极值的研究1.映射的泰勒公式定理1 如果从赋范空间X 的点x 的邻域()x U U=到赋范空间Y 的映射YU f→:在U中有直到n-1阶(包括n-1在内)的导数,而在点x 处有n 阶导数。

相关文档
最新文档