历年大学生高等数学竞赛试题及答案

合集下载

高等数学竞赛真题及答案解析

高等数学竞赛真题及答案解析

高等数学竞赛真题及答案解析高等数学竞赛是对学生在该学科中的深入理解和应用能力的考察,对于提升学生的数学素养和能力有着重要的意义。

本文将为大家介绍一些高等数学竞赛的真题,并提供相应的解析,帮助大家更好地理解和掌握数学知识。

一、题目1让我们先来看一个简单的问题:计算$\int \frac{1}{x} dx$。

解析:这是一个基本的积分题目,我们可以使用积分的基本公式来解答。

首先,我们要找到该函数的原函数,即使得它的导数等于$\frac{1}{x}$的函数。

显然,原函数是$ln|x|$。

所以,该积分的结果就是$ln|x|+C$,其中C为常数。

二、题目2接下来,我们来看一个稍微复杂一些的题目:设$f(x)$在[0,1]上连续,且$\int_0^1 f(x) dx = c$,求证:存在$\xi \in (0,1)$,使得$f(\xi) = c$。

解析:根据题目要求,我们需要找到一个$\xi$,使得$f(\xi) = c$。

根据平均值定理,即在[0,1]区间上存在一个点$\xi$,使得$f(\xi) = \frac{1}{b-a} \int_a^b f(x) dx$,其中a和b为区间的两个端点。

由于$\int_0^1 f(x) dx = c$,所以存在$\xi \in (0,1)$,使得$f(\xi) = c$。

三、题目3现在我们来考虑一个涉及到函数极限的题目:设函数$f(x)$在0的某个去心邻域内有定义,且$\lim_{x \to 0} f(x) = A$,证明:$\lim_{x \to 0} \frac{f(x)}{x} = A$。

解析:根据题目给出的条件,我们知道当$x$趋近于0时,$f(x)$会趋近于A。

我们需要证明的是,当$x$趋近于0时,$\frac{f(x)}{x}$也会趋近于A。

我们可以通过将分子和分母都除以$x$来简化问题,得到$\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0}\frac{\frac{f(x)}{x}}{1} = \lim_{x \to 0} \frac{f(x)}{x} = A$。

历届大学生高等数学竞赛真题及答案非数学类14页

历届大学生高等数学竞赛真题及答案非数学类14页

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x y x x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,令u t -=1,则21t u -=2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面 2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

大学生高等数学竞赛试题汇总与答案

大学生高等数学竞赛试题汇总与答案
令x=1/t,则
原式=
(ln(1t)t)1/(1t)111
2
2(1t)
t2t2
limelimelimee
t0t0t0
(3)
11
sxnnsxnsxsxn
Iexdx()xde()[xe|edx]
n0
000
ss
nnn(n1)n!n!
sxn1
exdxIII
n12n2n0n1
sssss
0
二、(15分)设函数f(x)在(,)上具有二阶导数,并且
''()(2'
t2t)2(t)''()(2'
3
dxdx/dt(22t)
=。。。
上式可以得到一个微分方程,求解即可。
四、(15分)设
n
a0,Sa,证明:
nnk
k1
(1)当1时,级数
a
n
S
nn
1
收敛;
(2)当1且()
sn时,级数
n
a
n
S
nn
1
发散。
解:
(1)
a>0,
n
s单调递增
n

n1
a收敛时,
n
aa
nn
一、(25分,每小题5分)
(1)设
n
22
x(1a)(1a)(1a),其中|a|1,求limxn.
n
n
(2)求
x
lim e1
x
1
x
2
x

(3)设s0,求
sxn
Iexdxn。
(1,2,)
0
(4)设函数f(t)有二阶连续导数,

2023年天津市高等数学竞赛真题答案经管类

2023年天津市高等数学竞赛真题答案经管类

2023年 天津市大学数学竞赛试题参照解答 (经管类)一. 填空题(本题15分,每题3分):1. 设()f x 是持续函数, 且0()lim41cos x f x x →=-, 则01()lim 1x xf x x →⎛⎫+= ⎪⎝⎭ 2e .2. 设223()2x f x ax b x +=++- , 若 lim ()0,x f x →∞= 则 a =2,- b =4.- 3.1e ln d x x x x ⎛⎫+= ⎪⎝⎭⎰ e ln .xx C + 4. 设(,)f x y 是持续函数, 且(,)(,)d d ,Df x y xy f x y x y =+⎰⎰其中D 由x 轴、y 轴以及直线1x y +=围成, 则(,)f x y =1.12xy +5.ln 4ln 2x =⎰.6π二. 选择题(本题15分,每题3分):1. 设()(2)ln(1),f x x x =+- 则()f x 在0x =处(A) (0)2f '=-, (B) (0)0f '=, (C) (0)2f '=, (D) 不可导. 答: (A)2. 设函数()y f x =具有二阶导数, 且满足方程sin e 0.x y y '''+-=已知0()0,f x '=则(A) ()f x 在0x 旳某个邻域中单调增长, (B) ()f x 在0x 旳某个邻域中单调增少,(C) ()f x 在0x 处获得极小值, (D) ()f x 在0x 处获得极大值. 答: ( C)3. 图中曲线段旳方程为()y f x =, 函数()f x 在区间[0,]a 上有持续旳导数, 则积分()d a x f x x '⎰表达(A) 直角三角形AOB 旳面积, (B) 直角三角形AOC 旳面积, (C) 曲边三角形AOB 旳面积, (D) 曲边三角形AOC 旳面积答: (D)4. 设在区间[,]a b 上旳函数()0,f x >且 ()0,f x '< ()0.f x ''> 令 1()d ,b aS f x x =⎰2()(),S f b b a =- 31[()()](),2S f a f b b a =+- 则 (A) 123,S S S << (B) 312,S S S << (C) 213,S S S << (D) 231.S S S << 答: (C )5. 设函数(,)f x y 持续, 且011d (,)d d (cos ,sin )d b dx acx f x y x f r r r r θθθ-+=⎰⎰⎰⎰, 则,,,a b c d 取值为(A) 1,,,1;2sin cos a b c d ππθθ====+(B) 1,,,1;2sin cos a b c d ππθθ====-(C) 0,,sin cos ,1;2a b c d πθθ===+=(D) 0,,sin cos , 1.2a b c d πθθ===-=答: (B)三. (7分) 设函数()f x 在点0x 处可微, 求极限 002lim cos ()cos ().n n f x f x n →∞⎡⎤--⎢⎥⎣⎦解 由导数旳定义和复合函数旳求导法则00002cos ()cos ()2lim cos ()cos ()(2)lim 2n n f x f x n n f x f x n n→∞→∞--⎡⎤--=-⋅⎢⎥⎣⎦-000(2)[cos ()]2sin()().x x f x f x f x =''=-⋅=⋅四. (7分) 设函数()f x 在(,)-∞+∞上二阶可导,且0()lim0x f x x→=,记10()()x f xt dt ϕ'=⎰,求)(x ϕ旳导数,并讨论)(x ϕ'在0x =处旳持续性. 解 由已知旳极限知(0)0,(0)0,f f '== 从而有 10(0)(0)d 0.f t ϕ'==⎰当 0x ≠时, 1100011()()()()d()()d ,x f x x f x t dt f x t x t f u u x x x ϕ'''====⎰⎰⎰从而有 (),0()0,0.f x x x xx ϕ⎧≠⎪=⎨⎪=⎩由于()lim ()lim0(0),x x f x x xϕϕ→→===因此, ()x ϕ在0x =处持续. 当 0x ≠时, 2()()(),xf x f x x x ϕ'-'=在0x =处, 由(0)0,ϕ= 有200()(0)()()1(0)limlimlim (0)22x x x x f x f x f xx x ϕϕϕ→→→'-'''==== 因此,2()(),0()1(0),0.2xf x f x x x x f x ϕ'-⎧≠⎪⎪'=⎨⎪''=⎪⎩而20000()()()()lim ()limlim lim lim 2x x x x x f x f x f x f x x x x xx ϕ→→→→→''''=-=- 001()1()(0)1lim lim (0)(0),222x x f x f x f f x x ϕ→→'''-'''==== 故 ()x ϕ'在0x =处持续.五. (7分) 已知函数()((,))y f x x =∈-∞+∞旳导函数()y f x ''=是三次多项式,其图像如下图所示:(Ⅰ)有关函数()x f y =,填写下表:(Ⅱ)若还懂得()x f y =旳极大值为6,点()2,2在曲线()x f y =上,试求出()x f y =旳体现式. 解(Ⅰ)(Ⅱ)设32,y ax bx cx d '=+++ 则由(0)0,(2)0,(2)0,y y y '''=-== 得0,0,4,d b c a ===- 故34,y ax ax '=- 从而422.4a y x ax m =-+ 再由(0)6,(2)2,y y == 得 1, 6.a m == 因此 4212 6.4y x x =-+ 六. (7分)设函数()y y x =在(,)-∞+∞上可导, 且满足22,(0)0.y x y y '=+=(Ⅰ) 研究()y x 在区间(0,)+∞旳单调性和曲线()y y x =旳凹凸性.(Ⅱ) 求极限 30()lim.x y x x →解 (Ⅰ) 当0x >时, 有220,y x y '=+>故 ()y x 在区间(0,)+∞单调增长. 从而当0x >时, 22y x y '=+也单调增长. 可见, 曲线()y y x =在区间(0,)+∞向下凸.(或当0x >时, 可得222222()0.y x y y x y x y '''=+⋅=++> 可见, 曲线()y y x =在区间(0,)+∞向下凸. ) (Ⅱ) 由题设知, (0)(0)0.y y '== 应用洛必达法则22322000()()lim lim lim 33x x x y x y x x y x x x→→→'+== []22011111lim (0).33333x y y x →⎛⎫'=+=+= ⎪⎝⎭七. (7分) 设()f x 在[0,1]上具有持续导数, 且0()1,(0)0.f x f '<≤= 试证211300()d ][()]d .f x x f x x ⎡⎤≥⎢⎥⎣⎦⎰⎰证 令 2300()()d [()]d ,x xF x f t t f t t ⎡⎤=-⎢⎥⎣⎦⎰⎰ 则 ()F x 在 [0,1]持续, 且对 (0,1)x ∈,30()2()()d [()]x F x f x f t t f x '=-⎰20()2()d ().xf x f t t f x ⎡⎤=-⎢⎥⎣⎦⎰ 又由题设知, 当(0,1)x ∈时, ()0.f x > 令20()2()d (),x g x f t t f x =-⎰则()g x 在[0,1]上持续, 且()2()[1()]0,(0,1),g x f x f x x ''=-≥∈故有()(0)0(0,1).g x g x ≥=∈因此()0,(0,1),F x x '≥∈于是()F x 在[0,1]上单调增长, ()(0)0,[0,1].F x F x ≥=∈ 取1x =, 即得211300(1)()d [()]d 0.F f t t f t t ⎡⎤=-≥⎢⎥⎣⎦⎰⎰ 所证结论成立.八. (7分) (Ⅰ) 设函数(),()f x g x 在区间 [,]a a - 上持续(0)a >, ()g x 为偶函数, ()f x 满足条件()()f x f x c +-= (c 为常数). 证明:()()d ()d a aaf xg x x c g x x -=⎰⎰;(Ⅱ) 设 ()()sin ,u x x nx ϕ= 其中n 为正整数, 22,0,(),0.x x x x x x x ππϕππ⎧+-≤<=⎨-≤≤⎩计算定积分()arccot e d x I u x x ππ--=⎰.解 (Ⅰ)()()d ()()d ()()d .a aaaf xg x x f x g x x f x g x x --=+⎰⎰⎰对于上式右边旳第一种积分, 令,x t =- 有()()d ()()d (())()d a aaf xg x x f t g t t c f x g x x -=--=-⎰⎰⎰0()d ()()d aacg x x f x g x x =-⎰⎰因此()()d ()()d ()()d ()d .a aaaaf xg x x f x g x x f x g x x c g x x --=+=⎰⎰⎰⎰(Ⅱ) 由于 22e (arccot e arccot e )0,1e 1x xxxx xe e ----'+=+=++ 而当 0x =时, arccot 1arccot 1,2π+=因此, arccot e arccot e .2x x π-+=轻易验证,()u x 是偶函数. 应用(Ⅰ)旳结论20()arccot ed ()sin d 2xI u x x x x nx xπππππ--==-⎰⎰2011()cos (2)cos d 02x x nx x nx x n n πππππ⎡⎤=--+-⎢⎥⎣⎦⎰2212(2)sin sin d 02x nx nx x nn ππππ⎡⎤=-+⎢⎥⎣⎦⎰33(1cos )[1(1)].nn nnπππ=-=--九. (7分) 设函数()f x 在闭区间[,]a b 上持续, 并且对任一[,]x a b ∈, 存在[,]y a b ∈使得1()|()|.2f y f x =证明: 存在[,],a b ξ∈ 使()0.f ξ= 证法一 应用闭区间上持续函数旳最值定理, 存在12,[,]x x a b ∈, 使 12[,][,]()min ()()max ().x a b x a b f x m f x f x M f x ∈∈====由题设, 对于 [,]x a b ∈, 存在[,]y a b ∈, 使得1()|()|0.2f y f x =≥ 可见 0.M ≥ 目前证明: 1[,]()min ()0.x a b f x m f x ∈==≤ 实际上, 假如1()0,f x m => 由题设, 存在0[,]x a b ∈, 使011111()()()()22f x f x f x f x ==<此与“1()f x 是()f x 在 [,]a b 上旳最小值 ” 矛盾.综上, 得到结论: 0.m M ≤≤ 于是, 应用介值定理, 存在[,],a b ξ∈ 使()0.f ξ= 证法二 任取一种0[,],x a b ∈ 由题设存在1[,],x a b ∈ 使101()().2f x f x =从而存在2[,],x a b ∈ 使210211()()().22f x f x f x ==如此继续下去, 可得数列{}[,],n x a b ⊂ 使01()()0().2n n f x f x n =→→∞ 由于有界无穷数列{}n x 必有一种收敛旳子数列{}kn x , 可设存在一种[,]a b ξ∈, 使lim .k kn x ξ→∞=由()f x 旳持续性, ()lim ()0.k kn f f x ξ→∞== 证毕.十. (7分) 设函数()y f x =具有二阶导数, 且()0.f x ''>直线a L 是曲线()y f x =上任意一点(,())a f a 处旳切线, 其中[0,1].a ∈ 记直线a L 与曲线()y f x =以及直线0,1x x ==所围成旳图形绕y 轴旋转一周所得旋转体旳体积为().V a 试问 a 为何值时 ()V a 获得最小值.解 切线a L 旳方程为 ()()(),y f a f a x a '-=- 即 ()()().y f a x af a f a ''=-+ 于是10()2[()()()()]d V a x f x f a x af a f a x π''=-+-⎰10112()d ()()().322a xf x x f a f a f a π⎡⎤''=-+-⎢⎥⎣⎦⎰ 可见, ()V a 在[0,1]持续, 在(0,1)可导. 令1()2[()()]()(32)0323a V a f a f a f a a ππ'''''''=-+=-=,由于 ()0,f a ''> ()V a 在(0,1)内有唯一旳驻点2.3a =并且, 当 2(0,)3a ∈时, ()0V a '<; 当2(,1)3a ∈时, ()0,V a '> 因此, ()V a 在23a =处获得最小值.十一. (7分) 设(1)闭曲线Γ是由圆锥螺线 OA :θθθθθ===z y x ,sin ,cos ,(θ从0变到2π)和直线段 AO 构成, 其中()0,0,0O , ()2,0,2A ππ; (2)闭曲线Γ将其所在旳圆锥面z =∑是其中旳有界部分. ∑在xOy 面上旳投影区域为D .(Ⅰ) 求D 上认为∑曲顶旳曲顶柱体旳体积; (Ⅱ) 求曲面∑旳面积.解(Ⅰ) ∑在xOy 面上旳投影区域为D , 在极坐标系下表达为:0,02.r θθπ≤≤≤≤故所求曲顶柱体旳体积为d d V x y =⎰⎰220d d r r πθθ=⎰⎰234014d .33πθθπ==⎰(Ⅱ) Γ所在旳圆锥面方程为z =曲面上任一点处向上旳一种法向量为(,,1)x y n z z =--=故所求曲面∑旳面积d d d DDS x y x y ==⎰⎰⎰⎰2223d d d .23r r πθπθθθ===⎰⎰十二.(7分) 设圆 222x y y += 含于椭圆 22221x y a b +=旳内部, 且圆与椭圆相切于两点(即在这两点处圆与椭圆均有公共切线).(Ⅰ) 求 a 与 b 满足旳等式; (Ⅱ) 求 a 与 b 旳值, 使椭圆旳面积最小解 (Ⅰ) 根据条件可知, 切点不在y 轴上. 否则圆与椭圆只也许相切于一点. 设圆与椭圆相切于点00(,)x y , 则00(,)x y 既满足椭圆方程又满足圆方程, 且在00(,)x y 处椭圆旳切线斜率等于圆旳切线斜率, 即2002001b x xa y y -=--. 注意到00,x ≠ 因此, 点00(,)x y 应满足2200222200022001(1)2(2)1(3)1x y a b x y y b a y y ⎧+=⎪⎪⎪+=⎨⎪⎪=-⎪⎩由(1)和(2)式, 得222200220.b a y y a b--+= (4)由 (3) 式得 2022.b y b a =- 代入(4) 式2242222222220.()b a b b a b b a b a-⋅-+=-- 化简得 2222,b a b a=- 或 22420.a b a b --= (5) (Ⅱ) 按题意, 需求椭圆面积S ab π=在约束条件 (5) 下旳最小值. 构造函数2242(,,)().L a b ab a b a b λλ=+-- 令2322242(24)0(6)(22)0(7)0(8)a b L b ab a L a a b b L a b a b λλλ⎧=+-=⎪=+-=⎨⎪=--=⎩(6) ·a − (7)·b , 并注意到 0λ≠, 可得 242b a =. 代入 (8) 式得 644220a a a --=, 故a =从而2b == 由此问题旳实际可知, 符合条件旳椭圆面积旳最小值存在,因此当2a b ==时, 此椭圆旳面积最小.。

c类全国大学生数学竞赛试题及答案

c类全国大学生数学竞赛试题及答案

c类全国大学生数学竞赛试题及答案由于我无法提供具体的试题和答案,因为这些通常受版权保护,并且每年都会有不同的试题。

但我可以提供一个模拟的C类全国大学生数学竞赛试题的样例,以及一个参考答案的框架。

样例试题:1. 选择题:设函数\( f(x) = x^3 - 3x^2 + 2 \),求\( f(2) \)的值。

A. -1B. 2C. 4D. 62. 填空题:若\( \sin(\alpha) = \frac{3}{5} \),且\( \alpha \)在第一象限,求\( \cos(\alpha) \)的值。

3. 简答题:证明:对于任意实数\( a \)和\( b \),不等式\( a^2 + b^2 \geq 2ab \)总是成立。

4. 计算题:计算下列不定积分:\[ \int \frac{1}{x^2 + 4x + 13} dx \]5. 证明题:证明等差数列的前\( n \)项和公式:\[ S_n =\frac{n}{2}(a_1 + a_n) \]其中,\( a_1 \)是首项,\( a_n \)是第\( n \)项。

6. 应用题:某工厂生产一种产品,其成本函数为\( C(x) = 1000 +50x \),销售价格为\( P(x) = 300 - 0.5x \),其中\( x \)是生产的产品数量。

求工厂生产多少产品时,利润最大。

参考答案框架:1. 选择题:根据函数\( f(x) \)的定义,将\( x = 2 \)代入,计算得到\( f(2) = 2^3 - 3 \times 2^2 + 2 = 8 - 12 + 2 = -2 \)。

因此,正确答案是A。

2. 填空题:由于\( \sin(\alpha) = \frac{3}{5} \),根据勾股定理,\( \cos(\alpha) = \sqrt{1 - \sin^2(\alpha)} = \sqrt{1 -(\frac{3}{5})^2} = \frac{4}{5} \)。

高等数学竞赛试题含答案

高等数学竞赛试题含答案

高等数学竞赛试题一、选择题1.设n n n y z x ≤≤,且0)(lim =-∞→n n n x y ,则n n z ∞→lim (C )(A)存在且等于零;(B)存在但不一定等于零;(C)不一定存在;(D)一定不存在.2.设)(x f 是连续函数,)()(x f x F 是的原函数,则(A )(A)当)(x f 为奇函数时,)(x F 必为偶函数;(B)当)(x f 为偶函数时,)(x F 必为奇函数;(C)当)(x f 为周期函数时,)(x F 必为周期函数;(D)当)(x f 为单调增函数时,)(x F 必为单调增函数.3.设0>a ,)(x f 在),(a a -内恒有2|)(|0)("x x f x f ≤>且,记⎰-=a adx x f I )(,则有(B )(A)0=I ;(B)0>I ;(C)0<I ;(D)不确定.4.设)(x f 有连续导数,且0)0(',0)0(≠=f f ,⎰-=x dt t f t x x F 022)()()(,当0→x 时,kx x F 与)('是同阶无穷小,则=k (B )(A)4;(B)3;(C)2;(D)1.5.设⎪⎩⎪⎨⎧=+≠++=0,00,),(2222222y x y x y x yx y x f ,则),(y x f 在点)0,0((D)(A)不连续;(B)连续但偏导数不存在;(C)可微;(D)连续且偏导数存在但不可微.6.设k j b j i a+-=+=2,,则以向量a、b为边的平行四边形的对角线的长度为(A )(A)11,3;(B)3,11;(C)10,3;(D)11,2.7.设21L L 与是包含原点在内的两条同向闭曲线,12L L 在的内部,若已知2222L xdx ydykx y +=+⎰ (k 为常数),则有1222L xdx ydyx y ++⎰(D)(A)等于k ;(B)等于k -;(C)大于k ;(D)不一定等于k ,与L 2的形状有关.8.设∑∞=0n nn x a 在1=x 处收敛,则∑∞=-+0)1(1n n nx n a 在0=x 处(D )二、设)(1lim)(2212N n x bxax x x f n n n ∈+++=-∞→,试确定a 、b 的值,使与)(lim 1x f x →)(lim 1x f x -→都存在.解:当||1x <时,221lim lim 0n n n n x x -→∞→∞==,故2()f x ax bx =+;当||1x >时,1()f x x=112111,1,lim ()1,lim (),1(),11,1,1,lim (),lim ()1,1x x x x x f x f x a b a b x f x ax bx x x f x a b f x a b x -+-+→-→-→→⎧<-=-=--=⎪⎪⎪=+-<<⎨⎪⎪>=+=+=⎪⎩0a =,1b =。

最近五届全国大学生高等数学竞赛真题及答案(非数学类)

目录第一届全国大学生数学竞赛预赛试卷 ........................................................................................... 1 第二届全国大学生数学竞赛预赛试卷 ........................................................................................... 7 第三届全国大学生数学竞赛预赛试卷 ......................................................................................... 11 第四届全国大学生数学竞赛预赛试卷 ......................................................................................... 18 第五届全国大学生数学竞赛预赛试卷 .. (23)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u uvu u u y x yx x yy x DDd d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

(完整版)大学生高等数学竞赛试题汇总及答案,推荐文档


而此图形绕 x 轴旋转一周而成的旋转体的体积 即

V (a) 2 a 1 (1 2a) 8 (1 a) 0 ,
5
3
27


因此
a 5 ,b 3 ,c 1.
42
七、(15
分)已知 un (x)
满足 un (x)
un (x)
xn1e x (n
1,2,)
,且 un (1)
e n
,
求函数项级数
收敛;
(2)当
1且 sn
(n ) 时,级数
n1
an Sn
发散。
解:
(1) an >0, sn 单调递增

n1
an
收敛时,
an sn
an s1
,而 an
s1
收敛,所以 an
sn
收敛;

n1
an
发散时,
lim
n
sn
所以, an s n1 n
a1 s1
n2
sn sn1
dx x
a1 s1
(1) xesin ydy yesin xdx
L
D
x
( xesin
y
)
y
(
ye sin
x
)dxdy
而 D 关于 x 和 y 是对称的,即知
因此
(2)因



即 xesin ydy yesin ydx 5 2
L
2
五、(10 分)已知 y1 xex e2x , y2 xex ex , y3 xex e2x ex 是某
zy 2 y 知 2 zx (x0 , y0 ) x0 ,2 zy (x0 , y0 ) 2 y0 , 即 x0 2, y0 1,又 z(x0 , y0 ) z(2,1) 5 ,于是曲面 2x 2 y z 0 在 (x0 , y0 , z(x0 , y0 )) 处的切平面方程是

大学生高等数学竞赛试题汇总及答案

前三届高数竞赛预赛试题(非数学类)行, 因 此, 由 , Z y =2y 知(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009-2010年第一届全国大学生数学竞赛预赛试卷、填空题(每小题5分)(x + y ) ln (1 +》)1.计算 D -------------------- x dxdy =16/15,其中区域D 由直线y = 1与J 1-x-y两坐标轴所围成三角形区域.令t = 1 -u ,贝y u =1 -t1 2du =-2tdt ,u 2=1 —2t 2t 4,u(1—u)二 t 2(1—t)(1 t),22 .设f(x)是连续 函数,且满足f(x) = 3x 2 - .o f(x)dx-2 ,则f(x) = _______________ .2解:令 A=J 0f(x)dx ,贝S f(x)=3x 3—A —2,22A (3x 2- A - 2)d x = 8 - QA 2) = 4 - 2A ,解得 A =—。

因此 f(x) =3x 2-10。

3323 .曲面z=L ,y 2-2平行平面2x 2y-z = 0的切平面方程是2解:因平面2x ,2y-z=0的法向量为(2,2,-1),而曲面2z=x y 2-2 在(X 0,y °)处的法向量为2(Z x (x °, y °),Z y (x °, y °),T ),故(Z x (x °, y °), Z y (x °, y 。

),-1)与(2,2^1)平解:令 x y=u,x=v ,贝卩 x=v, y=u —v ,■0 1 dudv = dudvJdxdy= det 〔2 =Z x (x °, y °) =x °,2 =Z y (x °, y °) =2y °,即 X o = 2, y ° =1,又 z(X o , y °) = z(2,1) = 5,于是曲面 2x 亠 2y —z =0 在(X o , y °,z(X o , y 。

高等数学竞赛试题含答案

高等数学竞赛试题一、选择题1. 下列命题中正确的命题有几个?…………………………………………………………( A ) (1)无界变量必为无穷大量; (2) 有限多个无穷大量之和仍为无穷大量; (3)无穷大量必为无界变量; (4) 无穷大量与有界变量之积仍为无穷大量. (A) 1个; (B) 2个; (C) 3个; (D) 4个.2. 设1, 0()0, 0x f x x ≠⎧=⎨=⎩,1sin , 0() 1 , 0x x g x xx ⎧≠⎪=⎨⎪=⎩ 则0x =是间断点的函数是…………………………( B )(A) ()()f x g x +; (B) ()()f x g x -; (C) {}max (), ()f x g x ; (D) {}min (), ()f x g x ..3. 设ξ为()arctan f x x =在[ 0, ]b 上应用拉格朗日中值定理的“中值”,则 22limb b ξ→=…………( C )(A) 1; (B) 12 ; (C) 13 ; (D) 14.4. 设() , ()f x g x 连续,当0→x 时,()f x 与()g x 为等价无穷小,令0()()xF x f x t dt =-⎰,10() () G x x g xt dt =⎰,则当0→x 时,() ()F x G x 是的 …………………………………… ( D ) (A) 高阶无穷小; (B) 低阶无穷小; (C) 同阶无穷小但非等价无穷小;(D) 等价无穷小. 5. 设),(y x f 在点)0,0(的某邻域内连续,且满足 220(,)(0,0)lim31sin cos x y f x y f x x y y→→-=-+--则),(y x f 在点)0,0(处 …………………………………………………………………………………………… ( A )(A) 取极大值; (B) 取极小值; (C) 无极值; (D) 不能确定是否有极值. 6. 设()f x 在(,)-∞+∞连续,且导函数()y f x '=的图形如图所示,则()f x 有……………… ( D )(A) 1个极小值点与2个极大值点,无拐点;(B) 2个极小值点与1个极大值点,1个拐点; (C) 2个极小值点与2个极大值点, 无拐点; (D) 2个极小值点与2个极大值点,1个拐点.7. 设f 有连续的一阶导数,则 (1,2)(0,0)()d ()d f x y x f x y y +++=⎰ …………………………… ( B )(A) 102() d f x x ⎰; (B) 3() d f x x ⎰; (C) (3)(0)f f -; (D) 0 .8. 设任意项级数 1n n a ∞=∑条件收敛,将其中的正项保留负项改为0所组成的级数记为1n n b ∞=∑, 将其中的负项保留正项改为0所组成的级数记为1n n c ∞=∑,则1n n b ∞=∑与1n n c ∞=∑……………………( B )(A) 两者都收敛; (B) 两者都发散; (C)一个收敛一个发散; (D) 以上三种情况都可能发生.二、设()f x 在区间(,)-∞+∞连续,01()() d (>0), ()() d 2x ax x aF x f t t aG x f t t a +-==⎰⎰, 试解答下列问题:(1)用()G x 表示()F x ;(2)求()F x ';(3)求证:0lim()()a F x f x →==; (4)设()f x 在[],x a x a -+内的最大值和最小值分别是M m 、,求证:()()F x f x M m -≤-.解(1)00111()()[()()][()()]222x a x a x a x a F x f t dt f t dt f t dt G x a G x a a a a ++--==-=+--⎰⎰⎰ (2)11()['()'()][()()]22F x G x a G x a f x a f x a a a'=+--=+--(3)000()()[()()][()()]lim ()lim lim22a a a G x a G x a G x a G x G x G x a F x a a→→→+--+-+--== 1['()'()]'()()2G x G x G x f x =+== (4)11|()()||()()||[()()]()()|22x a x a F x f x f t dt f x x a x a f f x a aξ+--=-=+---⎰|()()|()f f x M m x a x a ξξ=-≤--≤≤+三、求曲线 ln ln 1x y += 所围成的平面图形的面积. [解1]去掉绝对值曲线为:,11,1,101,0111,0101xy e x y y x x y e y ex x y xy x y e =≥≥⎧⎪⎪=≥<<⎪⎨=<<≥⎪⎪=<<<<⎪⎩且且且且 11111()()e ee x A ex dx dx e ex x e e =-+-=-⎰⎰[解2]令ln ,ln ,,,:||||1,uvx u y v x e y e D u v '====+≤则00uuv u v v uv xx e J e e y y e===⋅. ||DD dxdy J dudv '==⎰⎰⎰⎰u v D e e dudv '⋅=⎰⎰01111111u uu v u v u u e du e dv e du e dv e e+-----+=-⎰⎰⎰⎰.四、设曲面S 为曲线 e 0y z x ⎧=⎨=⎩ (12y ≤≤) 绕z 轴旋转一周所成曲面的下侧,计算曲面积分24 d d 2 d d (1) d d SI zx y z z z x z x y =-+-⎰⎰[解1]S 的方程为2222(14)x y z ex y +=≤+≤补两平面2222212:(1,):(4,)S z e x y S z e x y =+≤=+≤下侧上侧122S S S VzdV ++=⎰⎰⎰⎰⎰Ò2()2e e D z zdz d σ=⎰⎰⎰224252ln 22e e z zdz e e πππ==-⎰ 1222242(1)(1)(1)(1)xyS D zxdydz zdzdx zdxdy e dxdy e e ππ-+-=--=--⋅=-⎰⎰⎰⎰;2121244225(1)4(1);(1)4(1)22xyS D S S S S S e dxdy e I e e e e πππππ44++=-=-=--=-----⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ò42332e e πππ13=--2 [解2]2(4,2,1)(,,1)x y DI zx z z z z dxdy =--⋅-⎰⎰222220142221(4cos 2sin 1)(41)1333(:14)22DD r edxdy dxdyd e r rdr e e D x y πθθθππππ⎡⎤⎥=+-⎥⎦=-+--=--≤+≤⎰⎰⎰⎰⎰⎰五、设幂级数 0n n n a x ∞=∑, 当1n >时2 (1) n n a n n a -=-,且014, 1a a ==;(1)求幂级数0n n n a x ∞=∑的和函数()S x ;(2)求和函数()S x 的极值..解(1)令101(),()nn n n n n S x a x S x na x ∞∞-=='==∑∑则22222()(1)()n n n n n n n n n S x n n a xa xa x S x ∞∞∞---===''=-===∑∑∑,()()0S x S x ''-=1201()(0)4,(0)1x x S x c e c e S a S a -'=+====由,求得125353,,()2222x x c c S x e e -===+(2)由000531313()0ln ,()0,()(ln )222525x x S x e e x S x S x S -'''=-==>∴=得又为极小值.六、设函数),(y x f 可微,(,), 0,12f f x y f x π∂⎛⎫=-= ⎪∂⎝⎭, 且满足()coty 1 ( 0, )lim e 0,nn f y n f y →∞⎛⎫+ ⎪= ⎪ ⎪ ⎪⎝⎭求 (,)f x y . 解 1(0,)(0,)lim 1(0,)11(0,)(0,)(0,)lim lim 1(0,)(0,)n nnf y f y n f y nn n f y f y f y n n e f y f y →∞+-→∞→∞⎡⎤⎡⎤++-⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(0,)(0,)y f y f y e = (0,)ln (0,)cot (0,)y f y d f y y f y dy==,对y 积分得ln (0,)lnsin ln (0,)sin f y y c f y c y =+=代入(0,)112f c π==得,(0,)sin ff y y f x∂==-∂又已知(,)()x f x y c y e -⇒=,(0,)sin f y y =Q ,()sin (,)sin .xc y y f x y e y -∴==故七、如图所示,设河宽为a ,一条船从岸边一点O 出发驶向对岸,船头总是指向对岸与点O 相对的一点B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前三届高数竞赛预赛试题(非数学类) (参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。) 2009-2010年第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分)

1.计算yxyxxyyxDdd1)1ln()(16/15,其中区域D由直线1yx与两坐标轴所围成三角形区域. 解:令vxuyx,,则vuyvx,,vuvuyxdddd

1110detdd,

102d1uu

u(*)

令ut1,则21tu

dt2dtu,42221ttu,)1)(1()1(2tttuu, 2.设)(xf是连续函数,且满足2022d)(3)(xxfxxf,则)(xf

____________. 解:令20d)(xxfA

,则23)(2Axxf,

AAxAxA24)2(28d)23(202

,

解得34

A。因此3103)(2xxf。

3.曲面2222yxz平行平面022zyx的切平面方程是__________. 解:因平面022zyx的法向量为)1,2,2(,而曲面

2222yxz在),(00yx处的法向量为)1),,(),,((0000yxzyxz

yx

故)1),,(),,((0000yxzyxzyx与)1,2,2(平行,因此,由xz

x,

yzy2知0000002),(2,),(2yyxzxyxzyx, 即1,2

00yx,又5)1,2(),(00zyxz,于是曲面

022zyx

在)),(,,(

0000yxzyx处的切平面方程是

0)5()1(2)2(2zyx,即曲面2222yxz平行平面 022zyx的切平面方程是0122zyx。 4.设函数)(xyy由方程29ln)(yyfexe确定,其中f具有二阶导数,且1f,则

2

2

ddxy

________________.

解:方程29ln)(yyfexe

的两边对x求导,得

因)(29lnyfyxee,故yyyfx)(1,即))(1(1yfxy,因此

二、(5分)求极限xenxxxxneee)(lim20,其中n是给定的正整数. 解:因 故 因此 三、(15分)设函数)(xf连续,10d)()(txtfxg,且Axxfx)(lim0,A为常数,求)(xg并讨论)(xg在0x处的连续性. 解:由Axxfx)(lim0和函数)(xf连续知,

0)(limlim)(lim)0(000xxfxxffxxx

因10d)()(txtfxg

,故0)0(d)0()0(10ftfg,

因此,当0x时,xuufxxg0d)(1)(

,故

当0x时,

xxfuufxxgx)(d)(1)(02, 这表明)(xg在0x处连续. 四、(15分)已知平面区域}0,0|),{(yxyxD,L为D的正向边界,试证: (1)LxyLxyxyeyxexyeyxeddddsinsinsinsin; (2)2sinsin25ddLyyxyeyxe

.

证:因被积函数的偏导数连续在D上连续,故由格林公式知 (1)yxye

yxexxyeyxeDxyLxydd)()(ddsinsinsinsin



而D关于x和y是对称的,即知 因此 (2)因 故 由 知 即2sinsin25ddLyyxyeyxe

五、(10分)已知xxexey21,xxexey2,xxxeexey23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 解设xxexey21,xxexey2,xxxeexey23是二阶常系数线性非齐次微分方程 的三个解,则xxeeyy212和xeyy13都是二阶常系数线性齐次微分方程 的解,因此0cyyby的特征多项式是0)1)(2(,而

0cyyby的特征多项式是 因此二阶常系数线性齐次微分方程为02yyy,由

)(2111xfyyy和 xxxexeey212,xxxexeey2142

知,1112)(yyyxf)(2)2(42222xxxxxxxxexeeexeeexe

二阶常系数线性非齐次微分方程为

六、(10分)设抛物线cbxaxyln22

过原点.当10x时,0y,又 已知该抛物线与x轴及直线1x所围图形的面积为31

.试确定cba,,,使

此图形绕x轴旋转一周而成的旋转体的体积最小. 解因抛物线cbxaxyln22

过原点,故1c,于是

即 而此图形绕x轴旋转一周而成的旋转体的体积 即 令

0)1(278)21(3152)(aaaaV, 得 即 因此

45a,23b,1c.

七、(15分)已知)(xun满足),2,1()()(1nexxuxuxn

nn,且neun)1(,

求函数项级数

1)(nnxu之和.

解 xnnnexxuxu1)()(

即 由一阶线性非齐次微分方程公式知 即 因此 由)

1()1(nCeune

n知,0C,

于是 下面求级数的和: 令 则 即 由一阶线性非齐次微分方程公式知

令0x,得CS)0(0,因此级数

1)(nnxu的和

八、(10分)求1x

时,与02nnx等价的无穷大量.

解令2

)(txtf,则因当10x,(0,)t时,2()2ln0tfttxx,

xttextf1ln22)(在(0,)上严格单调减。因此

000()d()1()dnfttfnftt



又 200()nnnfnx

21ln1d1

ln

1ddd)(001ln00222xtextetxttftxtt,

所以,当1x时,与02nnx等价的无穷大量是x121。 2010-2012年第二届全国大学生数学竞赛预赛试卷 (参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。) 一、(25分,每小题5分) (1)设22(1)(1)(1),nnxaaa

其中||1,a求lim.nnx

(2)求21lim1xxxex。 (3)设0s,求0(1,2,)sxnIexdxn。 (4)设函数()ft有二阶连续导数,221,(,)rxygxyfr,求2222ggxy



(5)求直线10:0xylz与直线2213:421xyzl的距离。 解:(1)22(1)(1)(1)nnxaaa=22(1)(1)(1)(1)/(1)nnxaaaaa

=222(1)(1)(1)/(1)naaaa==12(1)/(1)naa

(2)22211ln(1)ln(1)1lim1limlimxxxexxxxxxxxeeex 令x=1/t,则 原式=2

1(ln(1))1/(1)112(1)22000limlimlimttttttttteeee





(3)0000112021011()()[|](1)!!sxnnsxnsxsxnnsxnnnnnIexdxxdexeedxssnnnnnnexdxIIIsssss





 二、(15分)设函数()fx在(,)上具有二阶导数,并且 ()0,lim()0,lim()0,xxfxfxfx且存在一点0x,使得0()0fx。 证明:方程()0fx在(,)恰有两个实根。 解:二阶导数为正,则一阶导数单增,f(x)先减后增,因为f(x)有小于0的值,所以只需在两边找两大于0的值。 将f(x)二阶泰勒展开: 因为二阶倒数大于0,所以 lim()xfx,lim()xfx 证明完成。

相关文档
最新文档