轴向拉伸与压缩习题

合集下载

轴向拉伸与压缩

轴向拉伸与压缩

第七章轴向拉伸和压缩一、内容提要轴向拉伸与压缩是杆件变形的基本形式之一,是建筑工程中常见的一种变形。

(一)、基本概念1. 内力 由于外力的作用,而在构件相邻两部分之间产生的相互作用力。

这里要注意产生内力的前提条件是构件受到外力的作用。

2. 轴力 轴向拉(压)时,杆件横截面上的内力。

它通过截面形心,与横截面相垂直。

拉力为正,压力为负。

3. 应力 截面上任一点处的分布内力集度称为该点的应力。

与截面相垂直的分量σ称为正应力,与截面相切的分量τ称为切应力。

轴拉(压)杆横截面上只有正应力。

4. 应变 单位尺寸上构件的变形量。

5. 轴向拉(压) 杆件受到与轴线相重合的合外力作用,产生沿着轴线方向的伸长或缩短的变形,称为轴向拉(压)。

6. 极限应力 材料固有的能承受应力的上限,用σ0表示。

7. 许用应力与安全系数 材料正常工作时容许采用的最大应力,称为许用应力。

极限应力与许用应力的比值称为安全系数。

8. 应力集中 由于杆件截面的突然变化而引起局部应力急剧增大的现象,称为应力集中。

(二)、基本计算1. 轴向拉(压)杆的轴力计算求轴力的基本方法是截面法。

用截面法求轴力的三个步骤:截开、代替和平衡。

求出轴力后要能准确地画出杆件的轴力图。

画轴向拉(压)杆的轴力图是本章的重点之一,要特别熟悉这一内容。

2. 轴向拉(压)杆横截面上应力的计算任一截面的应力计算公式 AF N =σ 等直杆的最大应力计算公式 AF max N max =σ 3. 轴向拉(压)杆的变形计算虎克定律 A E l F l N =∆εσE =或 虎克定律的适用范围为弹性范围。

泊松比 εε=μ'4. 轴向拉(压)杆的强度计算强度条件塑性材料: σma x ≤[σ] 脆性材料: σt ma x ≤[σt ] σ c ma x ≤[σc ] 强度条件在工程中的三类应用(1)对杆进行强度校核在已知材料、荷载、截面的情况下,判断σma x是否不超过许用值[σ],杆是否能安全工作。

轴向拉伸 习题

轴向拉伸 习题

轴向拉伸(压缩)的内力及强度计算一、判断题1.力是作用于杆件轴线上的外力。

()图 12.力越大,杆件越容易被拉断,因此轴力的大小可以用来判断杆件的强度。

()3.图1所示沿杆轴线作用着三个集中力,其m—m截面上的轴力为 N=-F。

()4.在轴力不变的情况下,改变拉杆的长度,则拉杆的绝对变化发生变化,而拉杆的纵向线应变不发生变化。

()5.轴力是指杆件沿轴线方向的内力。

()6.内力图的叠加法是指内力图上对应坐标的代数相加。

()7.轴力越大,杆件越容易被拉断,因此轴力的大小可以用来判断杆件的强度。

()8.两根等长的轴向拉杆,截面面积相同,截面形状和材料不同,在相同外力作用下它们相对应的截面上的内力不同()。

9.如图所示,杆件受力P作用,分别用N1、N2、N3和σ1、σ2、σ3表示截面I-I、II-II、III-III上的轴力和正应力,则有(1)轴力N1> N2> N3()(2)正应力σ1>σ2>σ 3 ()图 2 图 310.A、B两杆的材料、横截面面积和载荷p均相同,但L A > L B , 所以△L A>△L B(两杆均处于弹性范围内),因此有εA>εB。

()11.因E=σ/ε,因而当ε一定时,E随σ的增大而提高。

()12.已知碳钢的比例极限σp=200MPa,弹性模量E=200Pa,现有一碳钢试件,测得其纵向线应变ε=0.002,则由虎克定律得其应力σ=Eε=200×10×0.002=400Mpa。

()13.塑性材料的极限应力取强度极限,脆性材料的极限应力也取强度极限。

()14.现有低碳钢和铸铁两种材料,杆1选用铸铁,杆2选用低碳钢。

()图 415.一等直拉杆在两端承受拉力作用,若其一半段为钢,另一半段为铝,则两段的应力相同,变形相同。

()16.一圆截面轴向拉杆,若其直径增加一倍,则抗拉强度和刚度均是原来的2倍。

()17.铸铁的许用应力与杆件的受力状态(指拉伸或压缩)有关。

材料力学综合复习及详细答案

材料力学综合复习及详细答案

第二章轴向拉伸和压缩判断题轴向拉压时横截面上的内力1、“使杆件产生轴向拉压的外力必须是一对沿杆轴线的集中力。

“答案此说法错误答疑合力作用线与杆件的轴线重合的外力系使杆件产生轴向拉压2、“等直杆的两端作用一对等值、反向、共线的集中力时,杆将产生轴向拉伸或压缩变形。

”答案此说法错误答疑只有当外力的作用线与杆件的轴线重合时才能使杆件产生轴向拉压变形。

3、“求轴向拉压杆件的横截面上的内力时必须采用截面法”答案此说法正确4、“轴向拉压杆件横截面上内力的合力作用线一定与杆件的轴线重合。

”答案此说法正确答疑外力的作用线与杆件的轴线重合,内力的合力与外载平衡,固内力的合力作用线必然与杆件的轴线重合5、“只根据轴力图就可以判断出轴向拉压变形时杆件的危险面”答案此说法错误答疑判断危险面的位置应综合考虑轴力的大小,横截面面积的大小;轴力大,横截面面积也大,不一定是危险面。

选择题轴向拉压横截面上的内力1、计算M-M面上的轴力。

A:-5P B:-2P C:-7P D:-P答案正确选择:D答疑用截面法在M-M处截开,取右段为研究对象,列平衡方程。

2、图示结构中,AB为钢材,BC为铝材,在P力作用下。

A:AB段轴力大B:BC段轴力大C:轴力一样大答案正确选择:C答疑内力只与外力的大小和作用点有关,与材料无关。

3、关于轴向拉压杆件轴力的说法中,错误的是:。

A:拉压杆的内力只有轴力;B:轴力的作用线与杆轴重合;C:轴力是沿杆轴作用的外力;D:轴力与杆的材料、横截面无关。

答案正确选择:C答疑轴力是内力,不是外力;4、下列杆件中,发生轴向拉压的是。

A:a;B:b;C:c;D:d;答案正确选择:d答疑只有d的外力合力作用线与杆件轴线重合。

填空题轴向拉压时横截面上的内力1、情况下,构件会发生轴向拉压变形。

答案外力的合力作用线与杆件的轴线重合。

2、轴向拉压时横截面上的内力称为。

答案轴力答疑内力的合力作用线与杆件的轴线重合选择题轴向拉压时横截面上的应力1、图示中变截面杆,受力及横截面面积如图,下列结论中正确的是。

轴向拉伸与压缩的概念与实例

轴向拉伸与压缩的概念与实例

2.3 直杆轴向拉伸或压缩时斜截面上的应力
假想地用一平面沿斜 F 截面k-k将杆分成两
个部分, 取左段为研究
对象。
F
k
α
k k
F Fα
以 Fα 表 示 斜 截 面 上 的 内力, 以pα表示斜截面 上的应力。
k pα
与证明横截面上的应 力是均匀分布的方法 一样, 可以证明斜截面 上的应力也是均匀分 布的。
FN
=
FR 2
=
pbd 2
σ = FN = pbd = pd A 2bδ 2δ
=
2×106 × 0.2 2 × 5×10−3
=
40 ×106
Pa
=
40
MPa
2.3 直杆轴向拉伸或压缩时斜截面上的应力
前面讨论了轴向拉伸或压缩时, 直杆横截面上的正应力, 它是今后强度计算的依据。但不同材料的实验表明, 拉 (压)杆的破坏并不总是沿横截面发生, 有时却是沿斜截 面发生的。为此, 应进一步讨论斜截面上的应力。
=
−42.4
MPa
是压应力
例: 长为b、内径d=200 mm、壁厚 δ=5 mm的薄壁圆环, 承受
p=2 MPa的内压力作用, 如图所示。试求圆环径向截面上的拉
应力。
薄壁容器(参考内容)
解: 薄壁圆环在内压力作用下要均匀胀大, 故在包含圆环轴线 的任何径向截面上, 作用有相同的法向拉力FN。为求该拉力, 可 假想地用一直径平面将圆环截分为二, 并研究留下的半环的平 衡。半环上的内压力沿y方向的合力为
FB FN3
轴力图如右图
C
FC C
FC FN4
FN
5F
2F
D
FD D
FD D

建筑力学 第六章 轴向拉伸与压缩

建筑力学 第六章 轴向拉伸与压缩

应力正负号规定
• 正应力:离开截面的正应力为正,指向 截面的正应力为负。
• 切应力以其对分离体内一点产生顺时针 转向的力矩时为正值的切应力,反之, 则为负的切应力 。
• 切应力的说法只对平面问题有效。
(3). 应力的特征: 1 应力定义在受力物体的某一截面上的某一点处,因
此,讨论应力必须明确是在哪一个截面上的哪一点处。
5. 要判断杆是否会因强度不足而破坏,还必须知道: ① 度量分布内力大小的分布内力集度-应力。 ② 材料承受荷载的能力。
大多数情形下,工程构件的内力并非均匀分布,内力集度 的定义不仅准确而且重要,因为“破坏”或“失效”往往从内 力集度(应力)最大处开始。
(2)应力的表示: F1 截面
F
△A上的内力平均集度为:

C
D
F
轴向拉压杆件横截面上的应力
一. 应力的概念:
F
F
(1)问题提出:
F
F
1. 两杆的轴力都为F. 2. 但是经验告诉我们,细杆更容易被拉断。同样材料,
同等内力条件下,横截面积较大的拉杆能承受的 轴向拉力较大。
3. 内力大小不能衡量构件强度的大小。 4. 根据连续性假设,内力是连续分布于整个横截面上的, 一般而言,截面上不同点处分布的内力大小和方向都不 同。
遇到向右的F , 轴力 F N 增量为负F。
如果左端是约束,需先求出约束反力(约束反力也是外力)
8kN
5kN
3kN
8kN 3kN
5kN +
8kN – 3kN
如果杆件由几段不同截面的等直杆构成,轴力的计算方 法和单一截面的轴力计算方法一样。
O
B
C
4F 3F
D 2F

习题选讲

习题选讲

3.矩形截面简支梁由圆形木材刨成,已知F=5KN, a =1.5m,[σ]= 10MPa,试确 定此矩形截面b/h的最优比值,使其截面的抗弯截面系数具有最大值,并计算所需 圆木的最小直径d。
Wbh2 b(d2b2)
6
6
令抗弯截面系数取最大值,则: dW 0
db
h/b 2
7.5KN•m
3d 2
2、图示等直杆,杆长为3a,材料的抗拉刚度为EA,受力 如图。杆中点横截面的铅垂位移有四种答案:( B )
(A)0;
(B)Fa/(EA);
F
(C)2 Fa/(EA);
(D)3 Fa/(EA)
2F
3、刚性杆AB的左端铰支,1、2两杆为长度相 等、横截面面积相等的直杆,其弹性横量分别 为E1 和E2,且有 E1 = 2 E2 ,平衡方程与补充方 程可能有以下四种:( C )
FN1a2FN2a3Fa0FN12FN23F
2l1l22F EN 1A 1lF EN 2A 2lFN1FN2
4、图示平板,两端受均布载荷q 作用,若变形前在板面 划上两条平行线段AB和CD,则变形后:( A )
(A) AB//CD, a角减小;(B) AB //CD,a角不变 (C) AB //CD,a角增大 (D)) AB 不平行于CD
d3
b ,h d,W
3
3
93
m a x M W m a x [] W M [m ] a x d 393 M [m ] a x 0 .2 2 7 m
4、简支梁如图所示,试求梁的最低层纤维的总伸长。 M ( x ) 1 qx (l x ) 2

(x)

6M (x) bh2
应为 B

《材料力学》第2章轴向拉(压)变形习题解答


其方向。 解:斜截面上的正应力与切应力的公式为:
ασσα20cos = αστα2sin 2 = 式中,MPa mm N A N 1001001000020===σ,把α的数值代入以上二式得:
[习题 2-7] 一根等直杆受力如图所示。已知杆的横截面面积 A 和材料的弹性模量 E 。试作轴力图,并求杆端点 D 的位移。 解: (1)作轴力图
[习题 2-9] 一根直径 mm d 16=、长 m l 3=的圆截面杆,承受轴 向拉力 kN F 30=,其伸长为 mm l 2.2=?。试求杆横截面上的应 力与材料的弹性模量 E 。 解:(1)求杆件横截面上的应力 MPa mm N A N 3.1491614.34 110302 23=???==σ (2)求弹性模量 因为:EA Nl l = ?, 所以:GPa MPa l l l A l N E 6.203)(9.2035902 .23000 3.149==?=??=???=σ。 [习题 2-10] (1)试证明受轴向拉伸(压缩)的圆截面杆横截 面沿圆周方向的线应变 s ε等于直径方向的线应变 d ε。 (2)一根直径为 mm d 10=的圆截面杆,在轴向力 F 作用下,直 径减小了 0.0025mm 。如材料 的弹性模量 GPa E 210=,泊松比 3.0=ν,试求该轴向拉力 F 。 (3)空心圆截面杆,外直径 mm D 120=,内直径 mm d 60=,材 料的泊松比 3.0=ν。当其轴向拉伸时,已知纵向线应变 001.0=, 试求其变形后的壁厚。 解:(1)证明 d s εε= 在圆形截面上取一点 A ,连结圆心 O 与 A 点,则 OA 即代表直 径方向。过 A 点作一条直线 AC 垂直于 OA ,则 AC 方向代表圆周方向。νεεε-==AC s(泊

项目三 轴向拉压杆习题

项目三轴向拉伸与压缩一、填空题:1、内力是由引起的杆件内个部分间的。

2、求内力的基本方法是。

3、直杆的作用内力称。

其正负号规定为:当杆件受拉而伸长时为正,其方向截面。

4、截面法就轴力的步骤为:、、。

5、轴力图用来表达,画轴力图时用的坐标表示横截面位置,坐标表示横截面上的轴力。

6、轴力图中,正轴力表示拉力,画在轴的。

7、轴力的大小与外力有关。

与杆件截面尺寸、材料(有关、无关)。

8、应力是,反应了内力的分布集度。

单位,简称。

9、1pa= N/mm2 = N/m2。

1Mpa= pa。

10、直杆受轴力作用时的变形满足假设,根据这个假设,应力在横截面上分布,计算公式为。

11、正应力是指。

12、在荷载作用下生产的应力叫。

发生破坏是的应力叫。

许用应力是工作应力的;三者分别用符号、、表示。

13、当保证杆件轴向拉压时的安全,工作应力与许用应力应满足关系式:。

14、等截面直杆,受轴向拉压力作用时,危险截面发生在处。

而变截面杆,强度计算应分别进行检验。

15、轴向拉压杆的破坏往往从开始。

16、杆件在轴向力作用下长度的改变量叫,用表示。

17、胡克定律表明在范围内,杆件的纵向变形与及,与杆件的成正比。

18、材料的抗拉、压弹性模量用表示,反映材料的能力。

19、EA称作材料的,它反映了材料制成一定截面尺寸后的杆件的抗拉、压能力。

EA越大,变形越。

20、ε叫作,指单位长度的变形。

21、泊松比又叫,ν= ,应用范围为弹性受力范围。

二、计算题:1、试计算轴向拉压杆指定截面的轴力。

2、绘制图示杆件的轴力图。

3、求图示结构中各杆的轴力。

4、用绳索起吊管子如图所示。

若构件重W=10KN ,绳索的直径d=40mm ,许用30 20KNB 45C 455、图示支架中,荷载P=100KN。

杆1为圆形截面钢杆,其许用应力[σ]拉=150MPa,杆2位正方形截面木杆,其许用应力[σ]压=4MPa。

试确定钢杆的直径d和木杆截面的边长c。

C6、钢杆长l=2m,截面面积A=200 mm2,受到拉力P=32KN的作用,钢杆的弹性模量E=2.0×105MPa,试计算此钢杆的伸长量Δl。

工程力学习题册第五章 - 答案

第五章拉伸和压缩一、填空题1.轴向拉伸或压缩的受力特点是作用于杆件两端的外力__大小相等___和__方向相反___,作用线与__杆件轴线重合_。

其变形特点是杆件沿_轴线方向伸长或缩短__。

其构件特点是_等截面直杆_。

2.图5-1所示各杆件中受拉伸的杆件有_AB、BC、AD、DC_,受压缩的杆件有_BE、BD__。

图5-13.内力是外力作用引起的,不同的__外力__引起不同的内力,轴向拉、压变形时的内力称为_轴力__。

剪切变形时的内力称为__剪力__,扭转变形时的内力称为__扭矩__,弯曲变形时的内力称为__剪力与弯矩__。

4.构件在外力作用下,_单位面积上_的内力称为应力。

轴向拉、压时,由于应力与横截面__垂直_,故称为__正应力__;计算公式σ=F N/A_;单位是__N/㎡__或___Pa__。

1MPa=__106_N/m2=_1__N/mm2。

5.杆件受拉、压时的应力,在截面上是__均匀__分布的。

6.正应力的正负号规定与__轴力__相同,__拉伸_时的应力为__拉应力__,符号为正。

__压缩_时的应力为__压应力_,符号位负。

7.为了消除杆件长度的影响,通常以_绝对变形_除以原长得到单位长度上的变形量,称为__相对变形_,又称为线应变,用符号ε表示,其表达式是ε=ΔL/L。

8.实验证明:在杆件轴力不超过某一限度时,杆的绝对变形与_轴力__和__杆长__成正比,而与__横截面面积__成反比。

9.胡克定律的两种数学表达式为σ=Eε和ΔL=F N Lo/EA。

E称为材料的_弹性模量__。

它是衡量材料抵抗_弹性变形_能力的一个指标。

10.实验时通常用__低碳钢__代表塑性材料,用__灰铸铁__代表脆性材料。

11.应力变化不大,应变显著增大,从而产生明显的___塑性变形___的现象,称为__屈服___。

12.衡量材料强度的两个重要指标是__屈服极限___和__抗拉强度__。

13.采用___退火___的热处理方法可以消除冷作硬化现象。

材料力学 拉伸压缩 习题及参考答案

轴向拉伸和压缩 第二次 作业1. 低碳钢轴向拉伸的整个过程可分为 弹性阶段 、 屈服阶段 、 强化阶段 、 局部变形阶段 四个阶段。

2. 工作段长度100 mm l =,直径10 mm d =的Q235钢拉伸试样,在常温静载下的拉伸图如图所示。

当荷载F = 10kN 时,工作段的伸长∆l = 0.0607mm ,直径的缩小∆d = 0.0017mm 。

则材料弹性模量E = 210 GPa ,强度极限σb = 382 MPa ,泊松比μ = 0.28 ,断后伸长率δ = 25% ,该材料为 塑性 材料。

∆l / mmO0.0607253. 一木柱受力如图所示。

柱的横截面为边长20mm 的正方形,材料的弹性模量E =10GPa 。

不计自重,试求 (1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱端A 的位移。

100kN260kN解:(1)轴力图如图所示 (2)AC 段 310010250MPa 2020NAC AC AC F A σ-⨯===-⨯ CB 段 326010650MPa 2020NCB CB CB F A σ-⨯===-⨯ (3)AC 段 69250100.0251010NAC AC AC AC F EA E σε-⨯====-⨯ CB 段 69650100.0651010NCB CB CBCB F EA E σε-⨯====-⨯ (4)AC 段 0.025150037.5mm NAC ACAC AC AC ACF l l l EA ε∆===-⨯=- CB 段 0.065150097.5mm NCB CBCB CB CB CBF l l l EA ε∆===-⨯=- 柱端A 的位移 37.597.5135mm A AC CB l l ∆=∆+∆=--=-(向下)4. 简易起重设备的计算简图如图所示。

已知斜杆AB 用两根63×40×4不等边角钢组成,63×40×4不等边角钢的截面面积为A = 4.058cm 2,钢的许用应力[σ] = 170 MPa 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴向拉伸与压缩习题
一、填空题
1.在工程设计中,构件不仅要满足、和稳定性的要求,同时还必须符合经济方面的要求。

2、在式σ=eε中,比例系数e称作材料的拉压_______,相同材料的e值相同;它
充分反映某种材料抵抗变形的能力,在其他条件相同时,ea越大,杆件的变形__________。

3、构件工作应力的最高极限叫做__________。

材料能承受的最大应力叫做材料
__________。

4、材料抵抗弹性变形能力的指标就是____和_______。

5.在低碳钢的拉伸试验中,材料的应力变化不大而变形显著增加的现象称为。

二、选
择题
1.轴向弯曲或放大时,直杆横截面上的内力称作轴力,则表示为:()
a.fn
b.fs
fqc.d.
fjy
2.材料的塑性指标
有:()
a.σu和δ
b.σs和ψ
c.σb和δ
d.δ和ψ
3.截面上的内力大
大,()
a.与截面的尺寸和形状无关
b.与截面的尺寸有关,但与截面的形状无关
c.与截面的
尺寸无关,但与截面的形状有关d.与截面的尺寸和形状都有关
4.等横截面直杆在两个外力的促进作用下出现轴向放大变形时,这对外力所具有的特
点一定就是等值、
()。

a逆向、共线
b反向,过截面形心
c方向相对,促进作用线与杆轴线重合d方向相对,沿同一直线促进作用
5.一阶梯形杆件受拉力p的作用,其截面1-1,2-2,3-3上的内力分别为n1,n2和
n3,三者的关系为()。

an1≠n2n2≠n3bn1=n2n2=n3cn1=n2n2>n3dn1=n2n2<n3
6.图示阶梯形杆,cd段为铝,横截面面积为a;bc和de段为钢,横截面面积均为2a。

设1-1、2-2、3-3截面上的正应力分别为σ1、σ2、σ3,则其大小次序为()。

aσ1>σ2>σ3bσ2>σ3>σ
1
cσ3>σ1>σ2dσ2>σ1>σ3
7.轴向拉伸杆,正应力最大的截面和剪应力最大的截面()a分别是横截面、450斜截
面b都是横截面c分别是450斜截面、横截面d都是450斜截面10.由变形公式δl=
pl/ea即e=pl/aδl可知,弹性模量()
a与载荷、杆长、横截面面积毫无关系b与载荷成正比
c与杆长成正比d与横截面面积成正比
11.在以下观点,()就是恰当的。

a内力随外力增大而增大b内力与外力无关c内力随外力增大而减小d内力沿杆轴是
不变
13、塑性较好的材料在接头处形变促进作用下,当危险点的最小形变高于材料的屈服
音速时,()。

a、既不可能有明显塑性变形,也不可能发生断裂;
b、虽可能有明显塑性变形,但不
可能发生断裂;c、不仅可能有明显塑性变形,而且可能发生断裂;d、虽不可能有明显塑
性变形,但可能发生断裂。

14、对于在弹性范围内受力的扎压杆,以下结论中错误的就是____。

a、长度相同、
受力相同的杆件,拉压刚度越大,轴向变形越大b、材料相同的杆件,正形变越大,轴向
正快速反应越大
c、杆件受力相同,横截面面积相同但形状不同,横截面上轴力相等d、正应力是由
杆件所受外力引起的,故只要所受外力相同,正应力也相同三、作图题
1、图画出来低碳钢弯曲时的形变――快速反应图,表明变形发展的阶段,标示出其
主要的力学指标。

2、画出图示杆件的轴力图。

四、计算题
1、阶梯状直杆受力如图所示,未知ab段横截面面积aab=800mm2,bd段的横截面面积abd=1200mm2,材料的弹性模量e=200gpa。

试求整个杆的总变形量。

(10分后)
2、图示三角支架,ac为钢杆,横截面面积a1=6cm2,[σ]=160mpa;ab为木杆,横截面面积a2=100cm2,[σ]木=7mpa,求此结构的许用荷载[p]。

(14分)
1.图示结构中,未知p=30kn,斜杆ac、bc的直径分别为d1=25mm,d2=20mm,ac杆的许用形变[σ]1=80mpa,bc杆的许用形变[σ]2=160mpa,先行校核ac、bc杆的强度。

相关文档
最新文档