3.1轴向拉伸和压缩时的内力.
轴向拉伸和压缩

第七章轴向拉伸和压缩一、内容提要轴向拉伸与压缩是杆件变形的基本形式之一,是建筑工程中常见的一种变形。
(一)、基本概念1. 内力 由于外力的作用,而在构件相邻两部分之间产生的相互作用力。
这里要注意产生内力的前提条件是构件受到外力的作用。
2. 轴力 轴向拉(压)时,杆件横截面上的内力。
它通过截面形心,与横截面相垂直。
拉力为正,压力为负。
3. 应力 截面上任一点处的分布内力集度称为该点的应力。
与截面相垂直的分量σ称为正应力,与截面相切的分量τ称为切应力。
轴拉(压)杆横截面上只有正应力。
4. 应变 单位尺寸上构件的变形量。
5. 轴向拉(压) 杆件受到与轴线相重合的合外力作用,产生沿着轴线方向的伸长或缩短的变形,称为轴向拉(压)。
6. 极限应力 材料固有的能承受应力的上限,用σ0表示。
7. 许用应力与安全系数 材料正常工作时容许采用的最大应力,称为许用应力。
极限应力与许用应力的比值称为安全系数。
8. 应力集中 由于杆件截面的突然变化而引起局部应力急剧增大的现象,称为应力集中。
(二)、基本计算1. 轴向拉(压)杆的轴力计算求轴力的基本方法是截面法。
用截面法求轴力的三个步骤:截开、代替和平衡。
求出轴力后要能准确地画出杆件的轴力图。
画轴向拉(压)杆的轴力图是本章的重点之一,要特别熟悉这一内容。
2. 轴向拉(压)杆横截面上应力的计算任一截面的应力计算公式 AF N =σ 等直杆的最大应力计算公式 AF max N max =σ 3. 轴向拉(压)杆的变形计算虎克定律 A E l F l N =∆εσE =或 虎克定律的适用范围为弹性范围。
泊松比 εε=μ'4. 轴向拉(压)杆的强度计算强度条件塑性材料:σma x ≤[σ] 脆性材料: σt ma x ≤[σt ]σ c ma x ≤[σc ]强度条件在工程中的三类应用(1)对杆进行强度校核在已知材料、荷载、截面的情况下,判断σma x是否不超过许用值[σ],杆是否能安全工作。
建筑力学与结构之轴向拉伸与压缩培训课件

拉伸时大。
b
铸铁拉应力图
压缩时的强度极限b是拉伸 时的4—5倍。
铸铁常作为受压构件使用。 铸铁破坏时断口与轴线成450。
第五节 拉压杆的强度条件及应用
一、许用应力与安全系数
(1)极限应力(危险应力、失效应力):构件发生破坏或产
生过大变形而不能安全工作时的最小应力值。“ ” (2)许用应力:构件安全工作时的最大应力。“[]”
横向 线应变:
a a
杆件在轴向拉(压)变形时,横向尺寸的改变 量称为横向变形。
a a1 a
符号: 拉伸时为负值;压缩时为正值。
第三节 轴向拉(压)杆的变形、虎克定律
三、泊松比
当杆件的变形在弹性范围内时,材料的横向线应变 与纵向线应变的比值的绝对值是一个常数,称为材料的 横向变形系数或泊松比,即
第一节 轴向拉伸和压缩时的内力
二、轴向拉(压)杆的内力及内力图
➢ 分析内力最基本的方法是截面法。
➢截面法计算内力的步骤:
①将构件沿需要求内力的位置用假设截面截开,把构 件分为两部分,取其中一部分为研究对象;
②画研究对象的受力图时,另一部分对研究对象的作 用力用内力来代替;
③根据研究对象的平衡条件列平衡方程求解内力。
第三章 轴向拉伸与压缩
• 第一节 轴向拉伸和压缩时的内力 • 第二节 轴向拉(压)杆横截面上的应力
目 • 第三节 轴向拉(压)杆的变形、虎克定律 录 • 第四节 材料在拉伸和压缩时的力学性能
• 第五节 拉(压)杆的强度条件及应用 • 第六节 拉(压)杆连接部分的强度计算
第三章 轴向拉伸与压缩
➢ 物体的简化模型,根据具体情形可分为刚体和变形体。
解: max
FN max A
材料力学《第二章》轴向拉伸与压缩

c'
杆受压时同样分析,可得同样结果。 由式可知: 1. FN s ,A s; 2. s 与FN符号相同,拉应力为正,压应力为负。
说明:所得结果经实验证明是准确的,因此平面假设符合实际 情况。
上海交通大学
注意: 1. 公式仅适用于轴向拉压情况; 2. 公式不适用于外力作用区域附近部分。
在外力作用区域附近,s 并不均布,而是由外力的作用情况而定。
k
F
将 pa 沿斜截面的垂直方向和平行 F 方向分解:
k
pa
pa
s0 s a pa cosa (1 + cos 2a ) 2 s0 t a pa sin a s 0 cosa sin a sin 2a 2
F
a k sa
a
可知:sa 、ta的大小和方向随 a 的改变而改变。
ta
pa
上海交通大学
得 FN4 = F4 = 10 kN (拉)
A F1 FN
1
B F2
2
C
3
D F4
FN1 = 5 kN 5 kN + B
1
F3 FN2 = –15 kN
2
FN3 = 10 kN 10 kN + C D x
3
A
三、 轴力图 –15 kN
在杆件中间部分有外力作用时,杆件不同段上的轴力不同。 可用轴力图来形象地表示轴力随横截面位置的变化情况。 横轴 x:杆横截面位置;纵轴 FN:杆横截面上的轴力。 正值轴力 (拉)绘在横轴 上方,负值轴力 (压)绘在横轴下方。
变形特点:杆件产生沿轴线方向的伸长或缩短,同时伴随横 向尺寸的变化(减小或增大)。
轴向拉伸:两端受拉力作用,杆的变形是轴向伸长,横向减小。
建筑力学(内力分析)复习资料

(2)剪切和挤压
剪切变形
剪切变形
挤压变形
(3)扭转
Me
g
j
Me
(4)弯曲
Me
Me
研究方法
将构件变形形式分为四种基本变形:
轴向拉伸 和压缩
剪切
扭转
弯曲
基本变形:
不同的外力 不同的内力 不同的变形
不同的计算公 式
实际构件受力情况多种多样 考虑主要外力作用,归到基本变形
几种力都不能忽略,归到组合变形
P
N1 2P(拉力)
N2
X 0
N 2 + P - 2P 0
N2 P(拉力)
直接根据外力计算内力的方法:
(1)取截面一侧为研究对象,确定截面正轴力 方向;
(2)观察研究对象上的各个外力的方向,与截面正 轴力同向的引起的内力为负值;异向为正。 (3)将判断正负后的外力代数相加即为截面轴力值。
例:求图示杆1-1、2-2、3-3截面上的轴力 并作轴力图 解:
N 1 10 kN N 2 -5 kN N 3 -20 kN
+ -
N 1 10 kN N 2 -5 kN N 3 -20 kN
计算图示各段轴力并做轴力图
3 1 f20 4kN 1 5kN 1kN 6kN 2 f10 f30
安全
一对矛盾 经济
荷载、截面一定,校核是否安全
材料、截面一定,求允许荷载
任务:研究构件的强度、刚度、稳定性,为工程设计提供理论 依据和计算方法。
4
杆件变形的基本形式
杆件的基本变形: 拉(压)、剪切、扭转、弯曲
拉压变形
剪切变形
扭转变形
弯曲变形
(1)轴向拉伸和压缩
3-1杆件轴向拉伸和压缩时的内力和轴力图

§3-1杆件轴向拉伸和压缩时的内力和轴力图课时计划:讲授3学时教学目标:1.本节课以拉压杆件为例,分析在外力作用下产生的内力。
2.使学生理解并掌握采用截面法计算轴力的方法。
教材分析:1.重点为分析拉压变形受力和变形的特点;2.难点是利用截面法计算拉压杆上的轴力并绘制出轴力图。
教学设计:本节课的主要内容是让学生理解外力和内力的区别及联系,并讲解工程力学中常采用截面法计算变形过程中产生的内力。
以拉压变形的杆件为例,分析该种变形的受力和变形的特点,在此基础上利用截面法分析杆件上的轴力,掌握轴力计算方法及正负号的规定,进而掌握轴力图的绘制方法。
教学过程:第1学时教学内容:本节课的主要内容是让学生理解外力和内力的区别及联系,以拉压变形的杆件为例分析其受力和变形的特点,全面理解轴向拉伸和压缩的概念。
1.外力和内力的概念如图3-1a所示的构件在力F、B F、P F的作用下处于平A衡。
无论这些力是主动力还是约束力,都是构件受到其他物体的作用力,称为外力。
为了维持构件各部分之间的联系,保持构件的形状和尺寸,构件内部各部分之间必定存在着相互作用的力,该力称为内力。
在外部载荷作用下,构件内部各部分之间相互作用的内力也随之改变,这个因为外部载荷作用而引起构件内力的改变量,称为附加内力。
在材料力学中,该附加内力简称内力。
2.截面法计算内力为了确定构件的承载能力,需要分析内力。
为此假想用平面n-n将构件截成两段(图3-1b、c),垂直于构件轴线假想截开的剖面,称为横截面,简称截面。
利用截面将构件截开,分析截面内力的方法,称为截面法。
3.轴向拉伸和压缩的概念直杆受到与其轴线重合的外力,就会发生沿轴线方向的伸长或缩短变形。
如图3-2a所示的吊车吊起重物时,CD杆是受拉伸的二力杆。
图3-2b的螺旋夹具,旋紧螺杆加紧工件后,螺杆的上段受压。
第2学时教学内容:本次课讲解拉压变形杆件的轴力计算方法。
分析发生此变形所受外力的特点,利用截面法计算轴上产生的轴力,根据平衡条件建立轴力与外力的关系。
轴向拉伸和压缩时横截面上的内力.

轴向拉伸和压缩时横截面上的内力教学目标一、知识目标1.外力、内力及相互的关系。
2.轴向拉伸和压缩时横截面上的内力。
3.轴向拉伸和压缩时横截面上的内力的计算方法-----截面法。
4.绘制各截面的轴力图。
二、能力目标在理论力学的基础上,学会在材料力学中分析构件的内力,为分析材料的力学性能打好基础。
培养学生灵活分析和解决问题的能力。
三、德育目标培养学生辩证唯物主义观点,安全操作和生产的重要性及明确具体问题具体分析的思维能力。
教学重点1、外力与内力的关系;2、轴向拉伸和压缩时横截面上的内力;3、截面法;4、绘制各截面的轴力图。
教学难点1.轴向拉伸和压缩时横截面上的内力;2.截面法。
教学方法讲练法、归纳法、课件演示。
教学用具计算机、投影仪、弹簧拉力器、构件等。
教学课时2学时。
教学步骤一、复习旧课,导入新课1.以提问的方式,让学生回答力的定义,力的效应,力的相互作用,物体受力分析的方法,拉伸和压缩时构件的受力特点和变形特点。
2.学生回答问题后,老师进行评价和纠正。
3.新课引入:通过理论力学中已学习的外效应(外力)引出材料力学中将要学习的内效应(内力);通过理论力学中已学习的物体受力分析的方法(隔离法)引出材料力学中将要学习的内力的求法截面法;通过生活和工程中的具体例子,如弹簧拉力器,连接螺栓、起重机支褪等所运用的力学原理引出本节课。
二、新课教学(一)用投影片出示本节课的学习目标:1.外力与内力的关系。
2.轴向拉伸和压缩时横截面上的内力。
3.轴向拉伸和压缩时横截面上的内力的计算方法-----截面法。
4.绘制各截面的轴力图。
(二)学习目标完成过程:(1)用投影片出示;(2)老师分析讲解。
轴向拉伸和压缩时横截面上的内力举例连接螺栓弹簧拉力器起重机支褪一、外力、内力1.外力:是指由其他物体施加的力或由物体本身的质量引起的力。
外力的正负号取决于所建立的坐标系,与坐标轴同向为正,反向为负。
2.内力:是指在外力作用下物体内各个部分之间的作用力----可理解为材料颗粒之间因相对位置改变而产生的相互作用力。
第3章 杆件的内力分析

50
基本概念:
外力、内力、内力分量、轴力、剪力、 弯矩、扭矩、内力函数、内力图、 轴力、 扭转、平面弯曲。
内力图的作法及特点:
(1)直杆受轴向拉伸或压缩时的内力图--轴力图
剪力 Fy 0 RA Q 0
Fb Q RA l
弯矩
对截面m-m上的形心O取矩,得:
Mo 0
M RA x 0
Fb M RA x x l
40
按照同样方法,在2-2处将梁截开为左右两部分, 仍取左段为分离体,就可求出2-2截面上的内力及 内力矩。
41
③ 剪力和弯矩的符号 截面上的剪力对梁上任意 一点的矩为顺时针转向时, 剪力为正;反之为负。
点击图标播放
24
(3)力偶矩的计算及横截面上的内力
1)外力偶矩
直接计算:
25
按输入功率和转速计算
P Fv
v R P F R T
2n 2n Tn P T T =T = 60 60 9.55
2n n 60 30
30 P P T 9.55 n n
PC 15 TC 9.55 9.55 0.478 n 300
kN· m
PD 25 m TD 9.55 9.55 0.796 kN· n 300
(3)求出各段的扭矩 BC段:Tn1-TB=0, Tn1=TB=0.318 kN· m; CA段:Tn2-TB-TC=0,Tn2=TB+TC=0.796 kN· m; AD段:Tn3+TD=0, Tn3=-TD=-0.796 kN· m。
第3章 杆件的内力分析
外力与内力的平衡 内力分量 内力分析与内力图
建筑力学第3章轴向拉伸与压缩

A
F
x
0
FN 1 cos 45 FN 2 0
FN 2 45° B
F
x
F
45°
y
0
B F
C
FN 1 sin 45 - F 0
FN 1 28.3kN FN 2 -20kN
A
2、计算各杆件的应力。
45°
C
B
FN 1 28.3 10 90MPa A1 20 2 4
斜截面上全应力:
p 0 cos
k
③pa 分解为:
p
P
P
p cos 0 cos 2
p sin 0 cossin
0
2
k
k
sin2
P
P
k
反映:通过构件上一点不同截面上应力变化情况。 当 = 0时, 当 = 90°时, 当 = ±45°时, 当 = 0,90°时,
Ⅱ段柱横截面上的正应力
FN 2 - 150 103 -1.1 MPa Ⅱ 2 A2 370
所以,最大工作应力为
max= = -1.1 MPa (压应力)
三、 轴向拉(压)杆斜截面上的应力
上述讨论的横截面上的正应力是今后强度计算的基础。 但不同的材料实验表明,拉(压)杆的破坏并不总是沿横截 面发生,有时确是沿斜截面发生的,为此,应进一步讨论斜 截面上的应力。为了全面分析拉(压)杆的强度,应研究它 斜截面上的应力情况。
解(1)、(2)曲线交点处:
30
60
B 31;PB 54.4kN
1 1
PB1 ,60 A /cos60/sin604601024/ 355.44kN
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3—1 轴向拉伸和压缩时的内力
一、 轴向拉伸和压缩的概念 沿杆件轴线作用一对大小相等、方向相反的外力,杆件将发生轴向伸长(或缩短)变形,这种变形称为轴向拉伸(或压缩)。
(图3-1a 、b )。
产生轴向拉伸或压缩的杆件称为拉杆或压杆。
图3-1a
图3-1b
二、 用截面法计算轴向拉(压)杆的内力
内力指杆件本身一部分与另一部分之间的相互作用力。
要确定杆件某一截面中的内力,可以假想地将杆件沿需求内力的截面截开,将杆分为两部分,并取其中一部分作为研究对象。
此时,
截面上的内力被显示了出来,并成为研究对象上的外力。
再由静力平衡条件求出此内力。
这种求内力的方法,称为截面法。
现以图3-2a 所示拉杆为例确定杆件任一横截面mm 上的内力。
运用截面法,将杆沿截面mm 截开,取左段为研究对象(图3-2b )。
考虑左段的平衡,可知截面mm 上的内力必是与杆轴相重合的一个力N
,且由平衡条件
∑=0X 可知P N =,其指向背离截面。
若取右
段为研究对象,如图3-2c 所示,同样可得出相同的结果。
图3-2a
图3-2b
由此可知,轴向拉压杆件的内力是与轴线重合的力,故称它为轴力,用N 表示。
当杆件受拉时,轴力为拉力,其方向背离截面;当杆件受压时,轴力为压力,其方向指向截面。
规定:拉力用正号表示,压力用负号表示。
轴力的单位为N 或KN 。
例3-1杆件受力如图3-3a 所示,在力321P P P 、、作用下处于平衡状态。
已知KN P 81=,
KN P KN P 21032==,,求杆件AB 和BC 段的轴力。
图3-3a
图3-3b
图3-3c
图3-3d
解 (1) 求AB 段的轴力
用11-截面在AB 段内将杆截开,取左段为研究对象(图3-3b ),以1N 表示截面轴力,并假定为拉力,写出平衡方程
∑=0X , 011
=-P N
所以 KN P N 811==
得正号,说明假定方向与实际方向相同,AB 段的轴力为拉力。
(2) 求BC 段的轴力
用2-2截面在BC 段内将杆截开,取左段为研究对象(图3-3c ),以2N 表示截面轴力,写出平衡方程
∑=0X , 0212
=+-P P N
得 KN P P N 2108212-=-=-= 负号说明假设方向与实际方向相反,BC 段轴力实际为压力。
若取右段为研究对象(图3-3d ),写出平衡方程
∑=0X , 033
=--P N
得 KN P N 233-=-=
结果与取左段为研究对象一样。
本例由于右段上的外力少,计算较简单,应取右段计算。
三、 轴力图
表明轴力沿杆长各横截面变化规律的图形称为轴力图。
轴力图由如下部分组成: 1.坐标系N x -:x 轴平行于杆的轴线。
2.基线:x 轴上杆的正投影部分。
当坐标轴略去不画时,基线代替x 轴。
3.图线:图线上点的x 坐标表示横截面的位置;点的N 坐标表示该截面的轴力值。
4.纵标线:图线上的点向基线引的垂线。
5.纵标值:标上具有代表意义的纵坐标值。
6.符号:杆段内轴力的正、负。
全图只须标一个正号,一个负号。
7.图名、单位。
轴力图可以形象地表示轴力沿杆长变化情况,明显地找到最大轴力所在位置和数值。
例 3-2 杆件受力如图3-4a 所示,已知KN P KN P KN P 53020321===,,,试画出杆件的轴力图。
图3-4c
图3-4d
解 (1)计算各段杆的轴力
AB 段:用1-1截面在AB 段内将杆截开,取右段为研究对象(图3-4c ),以1N 表示截面上的轴力,并假设为拉力。
写出平衡方程
∑=0X , 011
=--P N
得 KN P N 2011-=-=
BC 段:类似上述步骤(图3-4d ),写出平衡方程
∑=,0X 0122
=-+-P P N
得 KN P P N 102030122=-=-=
CD 段:同理(图3-4e )可得
KN P P P N 5530203213=-+-=-+-=
(2) 画轴力图
以平行于杆轴的x 轴为横坐标,垂直于杆轴的N 轴为纵坐标,按一定比例将各段轴力标在坐标上,可得到轴力图如图3-4b 所示。
图3-4b。