第四章 配位化学-2
合集下载
配位化学ppt课件

Nomenclature of Coordination compounds
1) Mononuclear coordination compounds
a) Ligands are named in alphabetical order followed by the name of the central metal atom. Note that, unlike in formulas, the
[Pt(NO2)(NH3)(NH2OH)(py)]Cl, 氯化硝基•氨•羟胺•(吡啶)合铂(II)
e) 若配位原子相同,配体中含原子的数目也相同,则按在 配体结构式中与配位原子相连的原子的元素符号字母顺序 排列; 如:
[PtNH2NO2(NH3)2] 氨基•硝基•二氨合铂(II)
精品课件
23
一个立体化学前缀(cis-, trans-, d 和l )加在配合物 名称前表示立体结构特点或手性, 如 : cis-二氯•二氨合铂(II);
[Co(ONO)(NH3)5]SO4 硫酸亚硝酸根•五氨合钴(III)。
也可在配体名称后标出参与配位的配位原子的元 素符号,如, (M-ONO)-, 亚硝酸-O; (M-NO2)-,亚 硝酸-N; (M-NCS)-, 硫氰酸-N; (M-SCN)-,硫氰酸S. 二硫代草酸根配体,有键合异构体
K2 Ni
精品课件
31
names of charged and neutral ligands are intermingled as dictated by alphabetization
b) When two or more same ligands are present, their number is indicated by a prefix (di-, tri-, tetra-, penta-, hexa-, etc.). However, when the ligand name itself contains one of these prefixes (as in ethylenediamine), then the multiplicative prefix is bis-, tris-, tetrakis-, pentakis-, hexakis-, etc. e.g.
1) Mononuclear coordination compounds
a) Ligands are named in alphabetical order followed by the name of the central metal atom. Note that, unlike in formulas, the
[Pt(NO2)(NH3)(NH2OH)(py)]Cl, 氯化硝基•氨•羟胺•(吡啶)合铂(II)
e) 若配位原子相同,配体中含原子的数目也相同,则按在 配体结构式中与配位原子相连的原子的元素符号字母顺序 排列; 如:
[PtNH2NO2(NH3)2] 氨基•硝基•二氨合铂(II)
精品课件
23
一个立体化学前缀(cis-, trans-, d 和l )加在配合物 名称前表示立体结构特点或手性, 如 : cis-二氯•二氨合铂(II);
[Co(ONO)(NH3)5]SO4 硫酸亚硝酸根•五氨合钴(III)。
也可在配体名称后标出参与配位的配位原子的元 素符号,如, (M-ONO)-, 亚硝酸-O; (M-NO2)-,亚 硝酸-N; (M-NCS)-, 硫氰酸-N; (M-SCN)-,硫氰酸S. 二硫代草酸根配体,有键合异构体
K2 Ni
精品课件
31
names of charged and neutral ligands are intermingled as dictated by alphabetization
b) When two or more same ligands are present, their number is indicated by a prefix (di-, tri-, tetra-, penta-, hexa-, etc.). However, when the ligand name itself contains one of these prefixes (as in ethylenediamine), then the multiplicative prefix is bis-, tris-, tetrakis-, pentakis-, hexakis-, etc. e.g.
配位化学课件 第四章 非经典配合物

271.1pm
255.1pm
配位化学
又如 : Co4(μ2 -CO)3(CO)9 其电子数为:27 × 4 + 12 × 2 = 132e/3 = 33e个 按EAN规则,每个Co原子还缺三个电子,因此每个Co原子 必须形成三个Co-Co键才能达到18个价电子。 ∴形成四面体原子簇结构
OC
OC
CO
第四章 非经典配合物
我们以前所学习的配合物多数属于经典配合物——其 中心原子 氧化态一般为+1、+2或更高价态,而配体为 NH3、X–、含氧酸根等,一般以σ 配键与中心原子键合。 而以C或N等为键合原子的配合物——非经典配合物 (也称为金属有机化合物),如,Cr(CO)6 , Cr(NO)4 , [CO(CO)3NO] , [Fe(CO)2(NO)2] ,[Mn(CO)(NO)3]
Ru(acac)3 + CO + H2 ∟乙酰丙铜
2CoCO3 + 2H2 + 8CO
Ru3(CO)12
Co2(CO)8 + 2CO2↑+ 2H2O
④利用歧化反应制备羰基配合物
2NiCN + 4CO = Ni(CO)4 + Ni(CN)2 K2[Ni(CN)3] + 2CO = K2[Ni(CN)3CO]
CO
CO CO
Co
Co
OC CO
Co
Co
CO CO
配位化学
CO CO
但EAN规则有许多例外,如V(CO)6:35e,按EAN 应为V2(CO)12,但实际证明V(CO)6具有顺磁性, V(CO)6稳 定性大于V2(CO)12,是因为空间位阻阻碍二聚体的形成, 但容易被氧化成[V(CO)6]ˉ:
第四章 配位化学

个复杂的离子或分子.形成的离子称为配离子,形成的 分子称为配分子. 配 合 物:由配离子与带有相反电荷的离子组成的电中性化合物 以及不带电荷的配分子本身.
配分子: Ni(CO) 4 , 配离子: 4 , BF
CoCl3 ( NH3 )3 Fe(CN)6 4- , Co(NH3 )5 (H 2O)3 , Cu(NH 3 ) 4 2 Co(NH3 )5 (H 2O)Cl3
Cu2[SiF6] 六氟合硅酸(IV)铜(I),
或六氟合硅酸(2-)铜 H4[Fe(CN)6] 六氰合铁(II)酸
4-1 配合物的基本概念
含配阳离子的配合物命名
命名时,阴离子在前,阳离子在后,与无机盐、无 机碱的命名同, 如: [Co(NH3)6]Cl3 三氯化六氨合钴(III) [Cu(NH3)4]SO4 硫酸四氨合铜(II) [Ag(NH3)2](OH) 氢氧化二氨合银(1+)
以罗马数 字Ⅱ、Ⅲ、 Ⅳ表示
4-1 配合物的基本概念
当配体是一很长名称的有机化合物或复杂配体时, 给该配体加一圆括号。如果中心离子有多种价态,则 应在中心离子名称后的括弧中以罗马数字表示其氧化 态。也可在配离子名称后头的圆括号内以阿拉伯数字 (如+1,-2)表明配离子所带的电荷。例如
[Co(NH3)6]3+ 六氨合钴(III)离子;
Cl
NH3 NH3 Cl
瑞士无机化学家.因创立配位化学而获得1913 年诺贝尔化学奖
Co
NH3
1923年,英国化学家西奇维克Sidgwick) 提出有效原子序数(EAN)法则….
XRD
③ 配位化学的蓬勃发展时期
20世纪40年代前后,第二次世界大战期间,无机化学家在围绕耕耘周期 表中某些元素化合物的合成中得到发展,在工业上,美国实行原子核裂变 曼哈顿(Manhattan)工程基础上所发展的铀和超铀元素溶液配合物的研究。 以及在学科上,195l年Panson和Miler对二茂铁的合成打破了传统无机和 有机化合物的界限。从而开始了无机化学的复兴。 Ziegler和Natta的金属烯烃催化剂,Eigen的快速反应。Lipscomb的硼烷 理论,Wnkinson和Fischer发展的有机金属化学,Hoffmann的等瓣理论 Taube研究配合物和固氮反应机理,Cram,Lehn和Pedersen在超分子化学 方面的贡献,Marcus的电子传递过程。在这些开创性成就的基础上,配 位化学在其合成、结构、性质和理论的研究方面取得了一系列进展。 我国配位化学的研究在中华人民共和国成立前几乎属于空白. 80年代后, 我国配位化学研究已步入国际先进行列。特别在下列方面取得了重要进 展:(1)新型配合物、簇合物、有机金属化合物和生物无机配合物,特别是 配位超分子化合物的合成及其结构研究取得丰硕成果,丰富了配合物的内 涵;(2)开展了热力学、动力学和反应机理方面的研究,特别在溶液中离子 萃取分离和均向催化等应用方面取得了成果;(3)现代溶液结构的谱学研究 及其分析方法以及配合物的结构和性质的基础研究;(4)随着高新技术的 发展,具有光、电、热、磁特性和生物功能配合物的研究正在取得进展。
配分子: Ni(CO) 4 , 配离子: 4 , BF
CoCl3 ( NH3 )3 Fe(CN)6 4- , Co(NH3 )5 (H 2O)3 , Cu(NH 3 ) 4 2 Co(NH3 )5 (H 2O)Cl3
Cu2[SiF6] 六氟合硅酸(IV)铜(I),
或六氟合硅酸(2-)铜 H4[Fe(CN)6] 六氰合铁(II)酸
4-1 配合物的基本概念
含配阳离子的配合物命名
命名时,阴离子在前,阳离子在后,与无机盐、无 机碱的命名同, 如: [Co(NH3)6]Cl3 三氯化六氨合钴(III) [Cu(NH3)4]SO4 硫酸四氨合铜(II) [Ag(NH3)2](OH) 氢氧化二氨合银(1+)
以罗马数 字Ⅱ、Ⅲ、 Ⅳ表示
4-1 配合物的基本概念
当配体是一很长名称的有机化合物或复杂配体时, 给该配体加一圆括号。如果中心离子有多种价态,则 应在中心离子名称后的括弧中以罗马数字表示其氧化 态。也可在配离子名称后头的圆括号内以阿拉伯数字 (如+1,-2)表明配离子所带的电荷。例如
[Co(NH3)6]3+ 六氨合钴(III)离子;
Cl
NH3 NH3 Cl
瑞士无机化学家.因创立配位化学而获得1913 年诺贝尔化学奖
Co
NH3
1923年,英国化学家西奇维克Sidgwick) 提出有效原子序数(EAN)法则….
XRD
③ 配位化学的蓬勃发展时期
20世纪40年代前后,第二次世界大战期间,无机化学家在围绕耕耘周期 表中某些元素化合物的合成中得到发展,在工业上,美国实行原子核裂变 曼哈顿(Manhattan)工程基础上所发展的铀和超铀元素溶液配合物的研究。 以及在学科上,195l年Panson和Miler对二茂铁的合成打破了传统无机和 有机化合物的界限。从而开始了无机化学的复兴。 Ziegler和Natta的金属烯烃催化剂,Eigen的快速反应。Lipscomb的硼烷 理论,Wnkinson和Fischer发展的有机金属化学,Hoffmann的等瓣理论 Taube研究配合物和固氮反应机理,Cram,Lehn和Pedersen在超分子化学 方面的贡献,Marcus的电子传递过程。在这些开创性成就的基础上,配 位化学在其合成、结构、性质和理论的研究方面取得了一系列进展。 我国配位化学的研究在中华人民共和国成立前几乎属于空白. 80年代后, 我国配位化学研究已步入国际先进行列。特别在下列方面取得了重要进 展:(1)新型配合物、簇合物、有机金属化合物和生物无机配合物,特别是 配位超分子化合物的合成及其结构研究取得丰硕成果,丰富了配合物的内 涵;(2)开展了热力学、动力学和反应机理方面的研究,特别在溶液中离子 萃取分离和均向催化等应用方面取得了成果;(3)现代溶液结构的谱学研究 及其分析方法以及配合物的结构和性质的基础研究;(4)随着高新技术的 发展,具有光、电、热、磁特性和生物功能配合物的研究正在取得进展。
第4章 配位化学

2. 价键理论
3,sp2杂化 配位数2,sp杂化 5,sp3d 或 dsp3杂化
4,sp3杂化
4,dsp2杂化 XeF6
6,sp3d2 或 d2sp3杂化
7,sp3d3杂化
2. 价键理论
配合单元构型与中心原子杂化方式及配位数之间的关系
配位数 2 3 4 5 6 7 中心原子杂化类型 sp杂化 sp2杂化 sp3杂化 dsp2杂化 sp3d杂化 或dsp3杂化 sp3d2杂化 或d2sp3杂化 sp3d3杂化 空间构型 直线形 平面三角形 四面体 平面四边形 三角双锥 八面体 五角双锥 配离子举例 [Ag(NH3)2]+ [Cu(CN)3]2 [Zn(NH3)4]2+ [PtCl4]- [Fe(CO)5] [Fe(CN)6]3 [ZrF7]3
氯化硝基•氨•羟氨•吡啶合铂(Ⅱ)
●
同一配体有两个不同配位原子: SCN- NCS- ; NO2- ,ONO硫氰酸根, 异硫氰酸根; 硝基, 亚硝酸根
K 3 Fe(NCS)6
六异硫氰根合铁(Ⅲ)酸钾
(四)多核配合物
OH / [(H2O)4Fe \ \ Fe (H2O)4]SO4 /
OH
硫酸二(羟基)•二[四水合铁(Ⅱ)]
旋光异构
一.结构异构
组成相同而原子间连接方式不同引起的异构现象。
●
键合异构 [Co(NO2)(NH3)5]Cl2 硝基 黄褐色 酸中稳定 [Co(ONO)(NH3)5]Cl2 亚硝酸根 红褐色 酸中不稳定
● 电离异构
[Co(SO4)(NH3)5]Br
[Co Br(NH3)5] SO4
[CoSO4(NH3)5] Br
3. 配位化合物的类型 (穴状配体,冠醚)
配位化学第四章

关而与qi ,j 无i 关
20
2.方程形式(近似后)
算符: 邋N
N轾 2
Hˆ 0 =
hˆ i =
i= 1
i=1 犏 犏 臌- ( 2m D i ) + V(ri )
(1)
Hˆ 0f 0 = Ef 0
Slater近似(参考:徐光宪,赵学庄,化学学报,1956,22,441)
V (ri )
z*e 2 ri
=
(2.275) 2 鬃r
p
e-
2.275r ?2
j
2 px
=
5
(2.275) 2 鬃r
p
e- 2.275r ?sin
q cos
f
5
j
2 py
=
(2.275) 2 鬃r
p
e-
2.275r ?sin
q cos
f
原子完全表示:Y = j
鬃j 1s1
1s2
j
鬃j 2 s1
2s2
j
?
1 p1
...
E = e1 + e2 + ... e8
m = 0. 北1. l m ? l
12
通常用字母表示 l值:
l 012345
代号 s p d f g h
13
类氢原子的径向波函数 (a = z / na0)
Rnl R10 R20 R21
表示式
2a 32e- a r
2a
3 2
e-
ar
(1-
a r)
(2
)a 3 2 re- a r
3
角度部分: Y = q l.m( q.j )
(z i )e2
20
2.方程形式(近似后)
算符: 邋N
N轾 2
Hˆ 0 =
hˆ i =
i= 1
i=1 犏 犏 臌- ( 2m D i ) + V(ri )
(1)
Hˆ 0f 0 = Ef 0
Slater近似(参考:徐光宪,赵学庄,化学学报,1956,22,441)
V (ri )
z*e 2 ri
=
(2.275) 2 鬃r
p
e-
2.275r ?2
j
2 px
=
5
(2.275) 2 鬃r
p
e- 2.275r ?sin
q cos
f
5
j
2 py
=
(2.275) 2 鬃r
p
e-
2.275r ?sin
q cos
f
原子完全表示:Y = j
鬃j 1s1
1s2
j
鬃j 2 s1
2s2
j
?
1 p1
...
E = e1 + e2 + ... e8
m = 0. 北1. l m ? l
12
通常用字母表示 l值:
l 012345
代号 s p d f g h
13
类氢原子的径向波函数 (a = z / na0)
Rnl R10 R20 R21
表示式
2a 32e- a r
2a
3 2
e-
ar
(1-
a r)
(2
)a 3 2 re- a r
3
角度部分: Y = q l.m( q.j )
(z i )e2
第四章配合物中的化学键

① 价键理论简单、明了,可以定性的解释配 合物的稳定性; ② 价键理论顺利地解释了配合物的分子构型
显然, 分子构型决定于杂化轨道的类型: 配 位 数 杂化轨道 分子构型 配 位 数 2 3 4 4
sp
直线
5
sp2
三角形
5
sp3
正四面体
6
dsp2
正方形
杂化轨道 sp3d d2sp2, d4s 分子构型 三角双锥 四方锥
2
△ o <12,600 cm-1 (白色)
NH3
12,600 cm-1 (蓝色)
[Cu(NH3)4]2+ 15,100 cm-1(绛蓝色)
e) P 值的影响 P(d4)=26B P(d6) =18.5B
P(d5)=27.5B P(d7) =20B
因为 P(d5) > P(d4) > P(d7) > P(d6) 因此,d6 离子,例如 Fe2+, Co3+ 几乎总是形成低 自旋配合物。 而 d5 离子,例如 Fe3+, Mn2+,几乎总是形成高自 旋配合物。
Zn(NH3)62+(d10), CFSE= -4Dq×6+6Dq×4=0 例 2 Ni(H2O)62+(d8): CFSE= -4Dq×6+6Dq×2=-12 Dq 对自旋状态发生变化的配体场 (强场):
CFSE= -4Dq × nt + 6Dq×neg + (n2-n1)P
2g
例 3 对d4 组态 如果中心离子取低自旋构型,那么
Co 3d74s2: Co3+ 3d6: 在配位后, CoF63-: sp3d2 在CoF63-中, 杂化轨道的类型为sp3d2, 配离子有4个 单电子, 显顺磁性, 为外轨型配合物(也叫电价配合物)。 6CN- Co(CN)63-: d2sp3 6F-
显然, 分子构型决定于杂化轨道的类型: 配 位 数 杂化轨道 分子构型 配 位 数 2 3 4 4
sp
直线
5
sp2
三角形
5
sp3
正四面体
6
dsp2
正方形
杂化轨道 sp3d d2sp2, d4s 分子构型 三角双锥 四方锥
2
△ o <12,600 cm-1 (白色)
NH3
12,600 cm-1 (蓝色)
[Cu(NH3)4]2+ 15,100 cm-1(绛蓝色)
e) P 值的影响 P(d4)=26B P(d6) =18.5B
P(d5)=27.5B P(d7) =20B
因为 P(d5) > P(d4) > P(d7) > P(d6) 因此,d6 离子,例如 Fe2+, Co3+ 几乎总是形成低 自旋配合物。 而 d5 离子,例如 Fe3+, Mn2+,几乎总是形成高自 旋配合物。
Zn(NH3)62+(d10), CFSE= -4Dq×6+6Dq×4=0 例 2 Ni(H2O)62+(d8): CFSE= -4Dq×6+6Dq×2=-12 Dq 对自旋状态发生变化的配体场 (强场):
CFSE= -4Dq × nt + 6Dq×neg + (n2-n1)P
2g
例 3 对d4 组态 如果中心离子取低自旋构型,那么
Co 3d74s2: Co3+ 3d6: 在配位后, CoF63-: sp3d2 在CoF63-中, 杂化轨道的类型为sp3d2, 配离子有4个 单电子, 显顺磁性, 为外轨型配合物(也叫电价配合物)。 6CN- Co(CN)63-: d2sp3 6F-
配位化学第4章 配合物的立体化学与异构现象

迄今为止, 罕有五配位化合物异构体的实例报道, 无 疑这与TBP←→SP两种构型容易互变有关, 因为互 变将使得配体可以无差别的分布于所有可能出现的 位置.
尽管X-射线衍射和红外光谱结果显示, 在[Fe(CO)5] 和PF5中, 处于轴向(z轴)的配体和处于赤道平面(xy 平面)的配体, 其环境是不等价的, 但NMR研究却证 实, [Fe(CO)5]或PF5中所有五个配位位置的配体都 是完全等价的, 这些结果揭示出这些分子在溶液中 具有流变性(fluxional molecules), 即分子结构在溶 液中的不确定性.
217 pm 187 187
Ni
187 184
199 pm 183
190 Ni
185 191
四方锥
变形三角双锥
图 4–3 在配合物[Cr(en)3][Ni(CN)5]1.5H2O中, 配阴离 子[Ni(CN)5]3–的两种结构
b) 三角双锥结构
五配位的非金属化合物如PF5具有三角双锥结构, 轴向 和赤道平面的P–F键键长是非等价的. 一般说来, 在PX5 分子中, 轴向键长比赤道平面的键长要稍长些. 但在配 合物[CuCl5]3−中赤道平面的键长反而比轴向键长稍微长 一些, 见图 4–2.
欲从四方锥(SP)构型转变成三角双锥(TBP)构型的话, 结构上看, 只需要挪动其中一个配体的位置即可, 反之 亦然.
在图 4–3中列出了[Ni(CN)5]3−既可以采取四方锥结构也 可以采取歪曲的三角双锥结构. 将四方锥底的两个对位 配体向下弯曲可转变成三角双锥结构的两个赤道配体, 在这个扭变的三角双锥结构中, 赤道平面的另一个配体 源于原先的锥顶配体, 赤道平面上的其中一个C–Ni–C 夹角(142°)要明显大于另外两个C–Ni–C的夹角 (107.3°和111
《配位化学》课件

配位化合物的稳定性
总结词
配位化合物的稳定性
详细描述
配位化合物的稳定性取决于多个因素,包括中心原子或离子的性质、配位体的数目和类型、配位键的 数目和类型等。一般来说,配位数越大,配位化合物的稳定性越高。此外,具有强给电子能力的配位 体也能提高配位化合物的稳定性。
03
配位键理论
配位键的定义
总结词
配位键是一种特殊的共价键,由一个 中心原子和两个或更多的配位体通过 共享电子形成。
《配位化学》PPT课件
目录
• 配位化学简介 • 配位化合物 • 配位键理论 • 配位反应动力学 • 配位化学的应用
01
配位化学简介
配位化学的定义
配位化学是研究金属离子与有机配体 之间相互作用形成络合物的科学。
它主要关注配位键的形成、性质和反 应机制,以及络合物在催化、分离、 分析等领域的应用。
方向性是指配位键的形成要求中心原子和配 位体的电子云在特定的方向上重叠。这决定 了配合物的特定空间构型。饱和性则是指一 个中心原子最多只能与数目有限的配位体形 成配位键,这取决于中心原子的空轨道数量 和配位体的可用孤对电子数。
04
配位反应动力学
配位反应的动力学基础
反应速率
01
配位反应的速率是研究配位反应动力学的关键参数,它决定了
05
配位化学的应用
在工业生产中的应用
催化剂
配位化合物可以作为工业生产中的催化剂,如烯烃的氢化反应、 烷基化反应等。
分离和提纯
利用配位化合物的特性,可以实现工业生产中的分离和提纯过程 ,如金属离子的分离和提纯。
化学反应控制
通过配位化合物可以控制化学反应的速率、方向和选择性,从而 实现工业化生产中的优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要点:
(1)中心离子(或原子)空轨道杂化,配体提 供孤对电子。
(2)配位键的本质为共价键。
(3)配合物(配离子)的空间构型取决于中心 离子的杂化方式。
2020/8/16
精品课件
3
杂化轨道形式与配合物的空间构型
配 空间构型 杂化轨
位
道类型
数
实例
2 直线形 3 平面三角形 4 正四面体 4 四方形 5 三角双锥 5 四方锥 6 八面体
故可用磁矩的降低判断内轨型配合物的生成
2020/8/16
精品课件
21
例:Co(NH3)63+的μ =0 B.M,判断该配
离子的空间构型,中心离子所采用的杂化 轨道和内、外轨类型
解:
Co3+: 3d6
μ =0 B.M, 推出n=0ቤተ መጻሕፍቲ ባይዱ即单电子数为零,
如NiCl42-(正四面体),Ni(CN)42-(平面正方形)。
sp3杂化
dsp2杂化
2020/8/16
精品课件
7
4) 配位数为5(较少见):呈三角双锥和四方锥
如Ni(CN)53- (四方锥),[CuCl5]3- (三角双 锥)。
3-
N
2020/8/16
N C
C N
C
N
C
Ni
C N
精品课件
dsp3杂化
外轨型
配位键的键能:内轨型 > 外轨型
配合物的稳定性:内轨型 > 外轨型 稳定常数: 内轨型 > 外轨型
2020/8/16
精品课件
19
2)配合物的磁性(价键理论的实验依据) 磁性:磁矩(磁天平测出)
n(n2) B.M.
μ :磁矩,单位:玻尔磁子(B.M),n为单电子数
一般可分成顺磁性物质、反磁性物质和铁磁性物质
sp3d2杂化
3d8
sp3d2杂化轨
N3HN3HNH 3NH 3 NH 3NH 3
2020/8/16 外轨型配合物精品课,件 八面体构型
16
中心离子的d电子排列不变,仅用原有的外 层空轨道与配体成键,称之外轨型配合物。
特点:
配位键离子性较强,共价性较弱,稳定 性较内轨型配合物差
2020/8/16
精品课件
•外轨型
2020/8/16
精品课件
10
中心离子杂化轨道的形成
1)(n-1)d nS nP型(内轨型)
例1、讨论Ni(CN)42 –构型
2020/8/16
精品课件
11
Ni(CN)42 – Ni2+ (3d8):
3d
4s 4p
在CN-作用下,d电子重排
然后空d轨道进行杂化
2020/8/16
•• •• •• ••
dsp2杂化
精品课件
12
[Fe(CN)6]4-:
Fe2+ (3d6):
在CN-作用下,d电子重排后,空轨道进行杂化
•• ••
3d
•• •• •• ••
4s 4p
d2sp3杂化,内轨型配合物 (低自旋)
2020/8/16
精品课件
13
中心离子d电子排列发生了变化,空出内层 的d轨道与配体成键(或用原有的内层空轨 道与配体成键),称之内轨型配合物
C﹥ N ﹥ O ﹥ F 2020/8/16
精品课件
18
(b) 中心原子d3型, 如Cr3+,有空(n-1)d轨道, (n-1)d2 ns np3易形成内轨型
中心原子d8~ d10型,如Fe2+, Ni2+,Zn2+, Cd2+,
Cu+
无空(n-1)d轨道, (ns) (np)3 (nd)2易形成
配合物的化学键理论
一、价键理论 二、晶体场理论
2020/8/16
精品课件
1
4.2 价键理论
1. 理论要点
中心思想:
中心离子必须具有空轨道,以接受 配体的孤对电子形成配位共价键,为了增 加成键能力,中心离子能量相近的空轨道 杂化,以杂化轨道来接受配体的孤对电子 形成配合物
2020/8/16
精品课件
2
如 [HgI3]-, [Cu(CN)3]2-, [Pt0(PPh3)3], [CuCl3]2-。
三角锥形,VA族,含孤对电子,如 NH3, PH3, AsCl3,SbCl3。
2020/8/16
精品课件
6
3) 配位数为4: 呈正四面体型和平面正方形 非过渡金属配合物,如AlCl42-, SO42- (四面体型)。 过渡金属配合物可形成平面正方形和正四面体型。
4
d2sp3 Fe (CN) 3 – Co(NH )
1) 配位数为2:
直线型, 金属离子为d10的1B族元素, sp 杂化,如 [MCl2]- (M = Cu, Au), [M(CN)2]- (M = Ag, Au) 。
2020/8/16
精品课件
5
2) 配位数为3:
一般为平面三角形,金属离子组态为d10,sp2杂化
μ > 0 顺磁性物质
μ=0
反磁性物质
2020/8/16
精品课件
20
例:μ =5 B.M 则n=4,表现为顺磁性
外轨型配合物,中心原子的电子结构不发生改变, 未成对电子数多,µ 较大, 一般为高自旋配合物
内轨型配合物,中心原子的电子结构发生了重排, 未成对电子数减少, µ 较小,一般为低自旋配合物
特点:
键的共价性较强,稳定性较好,在水溶液 中,一般较难离解为简单离子。
2020/8/16
精品课件
14
2)nS nP nd型(外轨型) [FeF6]3–
[FeF ] 20206/8/136 – sp3d2杂化,精品八课件面体构型, 外轨型15 配合
Co(NH3)62+: Co2+: 3d7
4d 4p 4s 3d7
2020/8/16
sp Ag(NH3)2+ Ag(CN)2–
sp2 Cu(CN)32 – HgI3–
sp3 Zn(NH3)42+ Cd(CN)42–
dsp2 Ni(CN)42–
dsp3 Ni(CN)53– Fe(CO)5
d4s TiF52–
sp3d2 FeF63– AlF63- SiF62-
精品课P件tCl64-
8
5 ) 配 位 数 为 6 :呈八面体和畸变八面体 如Cu(en)2Cl2(拉长八面体)
偶尔形成三角棱柱,如[Re(S2C2Ph2)3]。
Cl 2.8
Ph Ph
S S
N
N
Cu
2.0
N
N
Cl
d sp 2020/8/16 2 3杂化
Re S S
精品课件
Ph
Ph
S S
Ph
9
Ph
2 .价键理论的应用
1)内层和外层的d轨道均可参与杂化 •内轨型
17
内外轨型取决于: 配位体(主要因素) 中心原子(次要因素)
(a) 强配体:CN –、 CO、 NO2 –等,使d电子,甚至s 电子重排,易形成内轨型(配位原子电负性小)
弱场配体: X – 、OH –易形成外轨型(不重排,配 位原子电负性大)
中等强度配体: H2O、NH3等,重排与否与中心体有关