茉莉酸甲酯诱导的小麦白粉病抗性与9个抗病相关基因表达间的关系
无人机植保技术:小麦白粉病

属;
➢ 无性态为串珠粉状孢 Oidium monilioides Nees,
无性态粉孢属;
➢ 菌丝体表生、无色; ➢ 闭囊壳球形至扁球形,暗色,内有多个子囊,卵形
至椭圆形;附属丝发育不良,很短;
温度:早春气温回升早且快,温度偏高,病害发生早。 湿度:高湿有利于病菌侵染和发病。
日照:病菌分生孢子对直射阳光非常敏感。
其它因素: ➢ 越夏区病菌初侵染菌量大,秋苗发病早且重; ➢ 越冬菌量大,翌春病害较重; ➢ 植株密度大、多施氮肥的田块有利于病菌的侵染, 发病重。
预测预报
➢ 小麦白粉病预测预报方法有发病程度预测和防治适 期预测两种。
➢ 根据对小麦品种的致病性差异,又可以分成多个 生理小种,对应与多个抗病基因。
侵染过程
➢ 分生孢子落到寄主表面,在相对湿度65~100%和气 温17~22℃,约4小时就可以萌发;产生芽管和附着 胞;进而形成侵入钉,侵入寄主细胞,形成吸器;
➢ 闭囊壳在-3~25℃和相对湿度0~98%的条件下可存 活1~3个月,子囊孢子侵入的最适温度为10~ 20℃;
➢ 根据当地品种布局、施肥水平、栽培条件、作物长 势、病菌越冬菌量、春季气候条件和病情的增长速 度等,综合分析,对病害流行程度分别作出中长期 预测和短期预报。小麦白粉病的流行程度可分为5 个等级:
小麦白粉病发生程度划分标 麦类准白粉病的发生程度分为5级,根据各地近年麦类白粉病
发生实况,以发病面积和病情指数两项指标为依据,具体标 准列表如下:
➢ 分生孢子梗基部膨大呈近球形;
➢ 分生孢子萌发对湿度的适应范围较广(0~100%), 适宜温度10~20℃;子囊孢子只有在饱和湿度下才能 形成,高湿下才可释放。
Identification and Analysis of -

作物学报ACTA AGRONOMICA SINICA 2010, 36(2): 249−255/zwxb/ ISSN 0496-3490; CODEN TSHPA9E-mail: xbzw@DOI: 10.3724/SP.J.1006.2010.00249小麦白粉病菌诱导的TaWRKY34基因的鉴定与分析秦伟1,2赵光耀2曲志才1,*张立超2段佳磊2李爱丽2贾继增2孔秀英2,*1曲阜师范大学生命科学学院, 山东曲阜273165; 2中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程 / 农业部作物种质资源利用重点开放实验室, 北京100081摘要: WRKY转录因子在植物抗病防卫反应中发挥重要作用。
利用cDNA宏阵列(macroarray)和RT-PCR相结合的方法, 从小麦全长cDNA文库的WRKY转录因子中筛选出一个应答小麦白粉病菌胁迫的TaWRKY34转录因子, 该基因编码464个氨基酸。
染色体定位分析表明, 该转录因子位于小麦第一同源群染色体的短臂上, 并且只在细胞核中表达。
其蛋白序列与拟南芥、大麦和葡萄抗病相关WRKY转录因子的亲缘关系较近, 与其中的3个WRKY基因具有相似的表达模式。
TaWRKY34在Pm16/北京8377抗白粉病近等基因系中, 对小麦白粉病菌、水杨酸和茉莉酸诱导的表达模式存在差异。
TaWRKY34可能与小麦对白粉菌的抗性有关。
关键词:小麦; 白粉病菌; WRKY转录因子; 染色体定位; 表达模式Identification and Analysis of TaWRKY34 Gene Induced by Wheat Powdery Mildew (Blumeria graminis f. sp. tritici)QIN Wei1,2, ZHAO Guang-Yao2, QU Zhi-Cai1,*, ZHANG Li-Chao2, DUAN Jia-Lei2, LI Ai-Li2, JIA Ji-Zeng2, and KONG Xiu-Ying2,*1 College of Life Science, Qufu Normal University, Qufu 273165, China;2 Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture / Institute of Crop Science, Chinese Academy of Agricultural Sci-ences, Beijing 100081, ChinaAbstract: WRKY transcription factors play important roles in plant defense signaling network. However, little is known about the biological roles of WRKY proteins in wheat (Triticum aestivum L.). The objectives of this study were to screen WRKY transcrip-tion factor genes conferring resistance to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) and disclose their function in wheat defense reaction. A WRKY transcription factor gene, TaWRKY34, was identified in response to Bgt by cDNA macroarray and semiquantitative RT-PCR from the wheat full-length cDNA libraries that were constructed in the authors’ earlier studies. This gene encodes 464 amino acid residues. TaWRKY34 was mapped onto short arms of chromosome 1B and 1D through blast search GrainGenes database and homemade full length cDNA library database of Aegilops tauschii. A further experiment indicated that TaWRKY34 also exists on chromosome 1AS through amplifying in Langdon D-genome disomic substitution lines and Chinese Spring nulli-tetrasomic lines with gene specific primers. Examining the subcellular localization of TaWARKY34, its coding region was fused to the 3′ end of green fluorescent protein (GFP). The GFP signal was detected only in the nucleus of onion epidermal cells to transiently express TaWRKY34-GFP, and the control-GFP protein distributed ubiquitously in both nuclei and cytoplasm. This suggests that TaWRKY34 is a nucleus-localized protein. Multiple sequence alignments of 57 WRKY domains from various species indicated that TaWRKY34 is closely related to WRKY transcription factors in response to pathogens in Arabidopsis thaliana (AtWRKY3, AtWRKY4, and AtWRKY33), Hordeum vulgare (HvWRKY42 and HvWRKY46), and Vitis vinifera (VvWRKY2) with identities ranging from 81.8% to 94.5%. Furthermore, TaWRKY34 has similar expression pattern with three sequences from A. thaliana, which was up-regulated at first and then down-regulated when inoculated with pathogens. The ex-pression profiles of TaWRKY34 induced by powdery mildew fungus, salicylic acid, and jasmonic acid were different between Pm16/Beijing 8377 near-isogenic lines (resistant to Bgt) and Beijing 837 (susceptible to Bgt). The results imply that TaWRKY34 is probably related to the resistance to powdery mildew in wheat.Keywords: Wheat; Blumeria graminis f. sp. tritici; WRKY transcription factor; Chromosome location; Expression pattern本研究由国家高技术研究发展计划(863计划)项目(2006AA10A104)资助。
机械损伤及茉莉酸甲酯对紫粒小麦籽粒花青素积累的影响

机械损伤及茉莉酸甲酯对紫粒小麦籽粒花青素积累的影响李小兰1任明见2任群利1杨胜伟3钱小康4胡欢1王倩1王苗1(1遵义医科大学口腔医学院/贵州省普通高等学校微生物资源及药物开发特色重点实验室,贵州遵义563000;2贵州大学农学院/国家小麦改良中心贵州分中心,贵州贵阳550025;3遵义市农业科学研究院中药材研究所,贵州遵义563000;4遵义市农村发展服务中心,贵州遵义563000)摘要本研究通过对贵紫麦1号植株在不同时期分别进行机械损伤(4种损伤方式)、机械损伤并喷施茉莉酸甲酯(MeJA)、单独喷施茉莉酸甲酯(MeJA)等处理,以不作任何处理为对照,探索茉莉酸甲酯(MeJA)和机械损伤对紫粒小麦籽粒花青素积累的影响。
结果表明:机械损伤会改变籽粒花青素含量,进一步喷施MeJA会在机械损伤影响效果的基础上出现增效或抵消的效应,具体效应根据处理时期和损伤方式而改变,说明MeJA对不同机械损伤处理的调控具有时期特异性。
本研究为进一步研究机械损伤及MeJA调控紫粒小麦花青素合成及积累的分子机制奠定了前期基础,也为紫粒小麦抗性育种提供了参考依据。
关键词机械损伤;茉莉酸甲酯;紫粒小麦;花青素含量中图分类号S512文献标识码A文章编号1007-5739(2023)13-0012-06DOI:10.3969/j.issn.1007-5739.2023.13.004开放科学(资源服务)标识码(OSID):Effects of Mechanical Injury and MeJA on Anthocyanin Accumulation in PurpleWheat GrainsLI Xiaolan1REN Mingjian2REN Qunli1YANG Shengwei3QIAN Xiaokang4HU Huan1WANG Qian1WANG Miao1(1Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution/School of Stomatology,Zunyi Medical University,Zunyi Guizhou563000;2School of Agriculture,Guizhou University/Guizhou Sub-center of National Wheat Improvement Center,Guiyang Guizhou550025;3Institute of Chinese Herbal Medicines,Zunyi Agricultural Sciences and Technology Research Institute,Zunyi Guizhou563000;4Zunyi Rural Development Service Center,Zunyi Guizhou563000)Abstract This study explored the effects of methyl jasmonate(MeJA)and mechanical injury on anthocyanin accumulation in purple wheat grains by applying mechanical injury(including4methods),mechanical injury and spraying MeJA,and spraying MeJA alone to Guizimai1at different stages,with no treatment as the control.The results showed that mechanical injury changed the anthocyanin content of grains,and further spraying of MeJA had a synergistic or offset effect based on the effect of mechanical injury,and the detail effect of MeJA depended on the treatment period and injury method.These results indicated that MeJA had period-specific regulation of different mechanical injury treatments,which laid the foundation for the further study of mechanical injury and the molecular基金项目贵州省中医药管理局中医药、民族医药科学技术研究课题(QZYY-2019-064);遵义市科技计划项目(遵市科合HZ 字〔2020〕55号);遵义医科大学大学生创新项目(ZYDC2019129);遵义医科大学博士启动基金(黔科合平台人才〔2018〕5772-075/062)。
利用表达分析和基因沉默方法研究硫代硫酸硫转移酶基因TaTST与小麦抗白粉病反应的关系

作物学报ACTA AGRONOMICA SINICA 2012, 38(2): 231-239/zwxb/ ISSN 0496-3490; CODEN TSHPA9E-mail: xbzw@DOI: 10.3724/SP.J.1006.2012.00231利用表达分析和基因沉默方法研究硫代硫酸硫转移酶基因TaTST与小麦抗白粉病反应的关系贺 洋 岳洁瑜 王华忠*天津师范大学生命科学学院 / 细胞遗传与分子调控天津市重点实验室, 天津 300387摘要: 硫代硫酸硫转移酶参与植物体内的硫代谢、氰化物的清除以及活性氧的生成与清除, 与植物抗病反应密切相关。
小麦抗、感白粉病近等基因系材料在接种白粉菌后均诱导表达硫代硫酸硫转移酶基因TaTST, 并在接种后0~48h内呈现2次诱导峰值, 分别与白粉菌初次接触识别和附着胞侵入、吸器形成时间相对应, 也与2次氧突发时间对应。
TaTST在感病材料上的诱导表达水平明显高于在抗病材料上, 由此导致的活性氧过度清除可能是导致感病反应的原因之一。
TaTST也参与抗病反应过程。
利用病毒诱导的基因沉默技术(virus-induced gene silencing, VIGS)创造了TaTST基因沉默的抗病植株。
尽管充分发病时间后沉默植株叶片上并未观察到肉眼可见的病斑, 但侵染早期白粉菌成功侵入频率的增加和次级菌丝的有限伸长说明TaTST沉默植株抗病水平下降。
TaTST沉默导致乳突致密度下降和H2O2在细胞内的扩散时间延迟。
因此, TaTST可能通过调节活性氧的积累和扩散、乳突的形成等小麦-白粉菌互作早期的寄主细胞反应而参与小麦对白粉菌的抗侵入过程。
关键词:小麦; 白粉菌; 硫代硫酸硫转移酶; VIGSGene Expression Profiling and Silencing Reveal the Relationship between TaTST, a Wheat Thiosulfate Sulfurtransferase Gene, and the Resistance Re-sponse of Wheat to Powdery MildewHE Yang, YUE Jie-Yu, and WANG Hua-Zhong*School of Life Sciences / Tianjin Key Laboratory of Cyto-Genetical & Molecular Regulation, Tianjin Normal University, Tianjin 300387, China Abstract: Plant thiosulfate sulfurtransferase (TST), which participates in sulfur metabolism, removal of cyanide, generation and removal of reactive oxygen species (ROS), is closely related to plant disease resistance. The wheat TST-encoding gene TaTST was induced by the powdery mildew pathogen fungus Blumeria graminis f. sp. tritici (Bgt) in both the resistant and the susceptible wheat near-isogenic lines. Two expression peaks of TaTST were found from 0 to 48 h after inoculation of Bgt, corresponding tothe initial contact and recognition between the host cell and Bgt and the invasion attempt of appressoria and haustoria formation. The two expression peaks were also in agreement with the two oxygen burst reactions. The induced expression level of TaTST was significantly higher in the susceptible line than in the resistant line, which may result in excessive removal of ROS as a responseto Bgt infection and so contribute to the process of disease susceptibility. TaTST also involved in the process of disease resistance. The method of virus-induced gene silencing (VIGS) was used to silence the TaTST gene of the resistant line. Although TaTST- silencing plants did not produce visible mildew spots or lesions, they showed reduction of resistance to powdery mildew with the increased successful penetration rate and limited elongation of secondary hypha. Decreased density of papilla and delayed H2O2 spreading in the Bgt-challenged host cells of the VIGS plants suggest that TaTST possibly affects the Bgt penetration process in resistance response through participating in the ROS accumulation and spread and the papilla formation at early stage of wheat-Bgt interaction.Keywords: Wheat; Blumeria graminis f. sp. tritici (Bgt); Thiosulfate sulfurtransferase (TST); VIGS本研究由天津市自然科学基金(08JCYBJC05000)和天津市高等学校科技发展基金(200100606)资助。
小麦ERF_亚族转录因子参与逆境胁迫的研究进展

㊀山东农业科学㊀2024ꎬ56(2):176~180ShandongAgriculturalSciences㊀DOI:10.14083/j.issn.1001-4942.2024.02.024收稿日期:2023-03-05基金项目:国家自然科学基金项目(32001545)ꎻ山东省农业良种工程项目(2021LZGC013)ꎻ山东省农业科学院农业科技创新工程项目(CXGC2023A01)ꎻ农业农村部黄淮北片小麦种质资源精准鉴定项目作者简介:崔德周(1987 )ꎬ男ꎬ山东惠民人ꎬ博士ꎬ助理研究员ꎬ主要从事小麦种质资源与遗传育种研究ꎮE-mail:dezhoucui@126.com王丽丽(1989 )ꎬ女ꎬ山东郓城人ꎬ山东大学人居环境研究中心特约研究员ꎬ主要从事植物种质资源研究ꎮE-mail:565993570@qq.com∗同为第一作者ꎮ通信作者:樊庆琦(1978 )ꎬ男ꎬ山东郓城人ꎬ博士ꎬ研究员ꎬ主要从事小麦种质创新研究ꎮE-mail:fanqingqi@163.com小麦ERF亚族转录因子参与逆境胁迫的研究进展崔德周1ꎬ王丽丽2∗ꎬ陈祥龙3ꎬ李永波1ꎬ黄琛1ꎬ隋新霞1ꎬ楚秀生1ꎬ樊庆琦1(1.山东省农业科学院作物研究所/小麦玉米国家工程研究中心/农业农村部黄淮北部小麦生物学与遗传育种重点实验室/山东省小麦技术创新中心/济南市小麦遗传改良重点实验室ꎬ山东济南㊀250100ꎻ2.山东省林草种质资源中心ꎬ山东济南㊀250102ꎻ3.山东鲁研农业良种有限公司ꎬ山东济南㊀250100)㊀㊀摘要:小麦是中国三大粮食作物之一ꎬ其生长发育过程中会受到多种逆境胁迫的影响ꎮAP2/EREBP是植物特有的一个庞大的转录因子超家族ꎬ普遍参与生长发育和逆境胁迫应答等生物学进程ꎮERF类转录因子是AP2/EREBP转录因子超家族的一个亚族ꎮ本研究结合国内外相关研究进展ꎬ简要综述了小麦ERF亚族转录因子的结构特征与分布ꎬ重点阐述近年来小麦ERF亚族转录因子响应高盐㊁干旱㊁低温㊁重金属㊁病原菌侵染等逆境胁迫的功能和机制研究进展ꎬ最后展望了ERF亚族转录因子的研究方向和应用前景ꎮ关键词:小麦ꎻERF亚族ꎻ转录因子ꎻ胁迫响应ꎻ研究进展中图分类号:S512.1㊀㊀文献标识号:A㊀㊀文章编号:1001-4942(2024)02-0176-05AdvancesinResearchonFunctionofWheatERFTranscriptionFactorSubfamilyinStressResponseCuiDezhou1ꎬWangLili2∗ꎬChenXianglong3ꎬLiYongbo1ꎬHuangChen1ꎬSuiXinxia1ꎬChuXiusheng1ꎬFanQingqi1(1.CropResearchInstituteꎬShandongAcademyofAgriculturalSciences/NationalEngineeringResearchCenterofWheatandMaize/KeyLaboratoryofWheatBiologyandGeneticsandBreedinginNorthernHuang ̄HuaiRiverPlainꎬMinistryofAgricultureandRuralAffairs/ShandongTechnologyInnovationCenterofWheat/JinanKeyLaboratoryofWheatGeneticImprovementꎬJinan250100ꎬChinaꎻ2.ShandongProvincialCenterofForestandGrassGermplasmResourcesꎬJinan250102ꎬChinaꎻ3.ShandongLuyanAgriculturalCo.ꎬLtd.ꎬJinan250100ꎬChina)Abstract㊀WheatisoneofthethreemajorgraincropsinChinaꎬbutitsgrowthanddevelopmentmightbeaffectedbymultipleadversestresses.AP2/EREBPisasuperfamilyofplantspecifictranscriptionfactorswhicharewidelyinvolvedinbiologicalprocessesessuchasgrowthꎬdevelopmentandstressresponse.TheERFtranscriptionclassisasubfamilyoftheAP2/EREBPsuperfamily.Hereꎬthestructuralcharacteristicsanddis ̄tributionsofERFsubfamilytranscriptionfactorsinwheatwerebrieflyintroduced.Andtherecentresearchpro ̄gressesofthefunctionsandmechanismsofERFsubfamilytranscriptionfactorsinwheatwasemphasizedinre ̄sponsetostressessuchashighsaltꎬdroughtꎬlowtemperatureꎬheavymetalandpathogeninfection.FinallyꎬtheresearchdirectionandapplicationprospectofERFsubfamilytranscriptionfactorswereprospected.Keywords㊀WheatꎻERFsubfamilyꎻTranscriptionfactorꎻStressresponseꎻResearchprogress㊀㊀小麦(TriticumaestivumL.)是世界上最重要的粮食作物之一ꎬ是全球三分之一以上人口的主食ꎮ中国是世界上最大的小麦生产国和消费国ꎬ小麦的高产稳产对保障国家粮食安全至关重要ꎮ小麦生长发育周期长ꎬ期间干旱㊁盐碱㊁低温㊁高温㊁重金属㊁病虫害等生物㊁非生物胁迫都会不同程度地威胁小麦的高产稳产ꎮ近年来ꎬ得益于小麦基因组学的飞速发展ꎬ小麦响应逆境胁迫的分子调控网络被逐步阐明ꎬ转录因子在功能基因表达调控中的关键作用进一步凸显[1-4]ꎮ根据DNA结合域的特性ꎬ转录因子可分成若干家族ꎬ包括MYB㊁WRKY㊁bZIP㊁NAC㊁AP2/EREBP等[5-7]ꎮAP2/EREBP转录因子是植物特有的一类转录因子ꎬ广泛参与小麦逆境胁迫应答[8-10]ꎮERF转录因子是AP2/EREBP转录因子超家族的一个亚族ꎬ最早从烟草中分离得到[11]ꎮ本研究综述小麦ERF亚族转录因子在逆境胁迫应答中的作用及可能机制ꎬ以期为深入研究小麦ERF亚族的分子功能及其抗逆遗传改良提供参考ꎮ1㊀ERF亚族转录因子的特征AP2/EREBP是一个庞大的基因家族ꎬ因含有60~70个氨基酸组成的AP2/EREBP结构域而得名[12]ꎮ在拟南芥中ꎬSakuma等[13]根据序列相似性和AP2/EREBP结构域的数量ꎬ将其分为5个亚族 ERF亚族㊁DREB亚族㊁RAV亚族㊁AP2亚族和其他ꎮAP2亚族含有2个AP2/EREBP结构域ꎬ主要在细胞生长发育过程中发挥调控作用[14-15]ꎻRAV亚族含有1个AP2/EREBP结构域和1个B3结构域ꎬ在乙烯㊁油菜素内酯和胁迫响应过程中发挥重要作用[14ꎬ16-17]ꎻDREB亚族和ERF亚族均属于EREBP型转录因子ꎬ都仅含1个AP2/EREBP结构域ꎬ在调控植物细胞发育及对病原菌㊁干旱㊁高盐㊁低温㊁激素等胁迫的应答反应中发挥作用[14ꎬ18-22]ꎬ但AP2/EREBP结构域的第14位和第19位氨基酸存在差异ꎬDREB亚族分别是缬氨酸和谷氨酸ꎬ而ERF亚族则分别是丙氨酸和天冬氨酸ꎮERF亚族转录因子还可与乙烯诱导顺式作用元件GCC-box结合ꎬ抵御植物逆境胁迫[23-26]ꎮ2㊀小麦ERF亚族转录因子鉴定分析目前正式命名的小麦ERF亚族转录因子基因只有8个ꎬ而从全基因组水平分析ꎬ符合ERF亚族特征的基因则有上百个之多[27-28]ꎮZhuang等[29]在全基因组水平鉴定到47个小麦ERF亚族转录因子成员ꎬ根据拟南芥和水稻同源基因分类ꎬ将其分为B1㊁B2㊁B3㊁B4和B6五个亚组ꎮ随着二代测序技术及小麦基因组学研究的飞速发展ꎬRiaz等[30]鉴定到138个ERF亚族转录因子成员ꎬ分为6个亚组ꎬ主要定位于细胞核ꎻMagar等[2]鉴定到238个成员ꎬ其中ꎬ174个基因不含内含子㊁3个基因含3个内含子ꎬ鉴定数量有了质的飞跃ꎮ李世姣等[31]利用隐马尔可夫模型文件检索中国春数据库ꎬ筛选到229条小麦ERFsꎬ通过分析A/B/D同源关系ꎬ将其归为96个ERF亚族成员ꎮ此外ꎬFaraji等[32]在硬粒小麦中鉴定到185个ERF亚族成员ꎮ3㊀小麦ERF亚族转录因子参与逆境胁迫的分子机制3.1㊀非生物胁迫越来越多的研究表明ꎬ大部分小麦ERF亚族成员在对高盐㊁干旱㊁低温㊁重金属等非生物胁迫抗性调控中发挥重要作用(表1)ꎮ位于小麦7A染色体上的TaERF1ꎬ通过结合GCC-box和DRE/CRT元件㊁激活启动子区含GGCC-box的PR蛋白(pathogenesisrelatedpro ̄teinꎬ病程相关蛋白)㊁磷酸化TaMAPK1等方式ꎬ参与干旱㊁高盐㊁低温等代谢途径ꎬ过表达TaE ̄RF1可显著提高转基因拟南芥对干旱㊁高盐和低温的耐受能力[33]ꎮTaERF2基因受干旱㊁高盐㊁低温和湿害强烈诱导ꎬ过表达后可提高转基因拟南芥对干旱㊁低温等非生物胁迫的抗性[34-35]ꎮTaERF3通过特异结合GCC-boxꎬ正向调控LEA3㊁GST6等抗逆相关基因表达ꎬ过表达TaERF3可增加叶片脯氨酸㊁叶绿素含量ꎬ降低过氧化氢含量ꎬ增强小麦对高盐㊁干771㊀第2期㊀㊀㊀㊀㊀㊀崔德周ꎬ等:小麦ERF亚族转录因子参与逆境胁迫的研究进展旱胁迫的耐受能力ꎻ而经病毒诱导基因沉默(VIGS)干扰后的小麦植株则表现为盐和干旱敏感[36]ꎮTaERF4是一个具有EAR基序的转录抑制因子ꎬ过表达TaERF4抑制AtNHX1㊁AtNHX2等钠离子转运相关基因的表达ꎬ通过非ABA依赖的信号通路降低拟南芥耐盐性[37]ꎮTaERF5受高盐㊁渗透胁迫㊁乙烯㊁ABA和茉莉酸甲酯诱导表达ꎬ遗传学证据显示ꎬTaERF5-B过表达增强了转基因水稻的耐盐性[38]ꎮ叶片TaERF7表达受温度和日照调控ꎬ进而影响小麦百农不育系育性[27]ꎮTaE ̄RF8-2D的表达受高盐胁迫诱导持续上调ꎬ其分子机制有待进一步研究[39]ꎮZhu等[40]研究发现ꎬTaPIEP1/TaPIE1通过激活乙烯合成基因ꎬ增强小麦对冷害胁迫的抗性ꎮTaERFL1a受低温㊁高盐㊁干旱㊁ABA等胁迫诱导表达ꎬVIGS干扰该基因降低小麦对干旱胁迫的抗性[41]ꎮDu等[42]研究表明ꎬTaERF87通过与Ta ̄AKS1互作ꎬ协同增强TaP5CS1和TaP5CR1的表达ꎬ提高脯氨酸的生物合成ꎬ进而增强小麦抗旱性ꎮ此外ꎬ在硬粒小麦(TriticumturgidumL.sub ̄sp.durum)中ꎬTdERF1响应高盐和干旱胁迫[43-44]ꎬTdSHN1受高盐㊁干旱㊁低温㊁ABA和重金属胁迫强烈诱导表达ꎬ过表达TdSHN1可显著提高酵母对非生物胁迫的耐受性[45-46]ꎮ㊀㊀表1㊀参与非生物胁迫的小麦ERF亚族转录因子基因结合元件分子功能参考文献TaERF1GCC-box/DRE/CRT提高拟南芥对干旱㊁高盐和低温的耐受能力[33]TaERF2GCC-box/ERE提高拟南芥对干旱㊁低温的耐受能力ꎬ响应小麦湿害胁迫[34-35]TaERF3GCC-box提高小麦对高盐㊁干旱胁迫的耐受能力[36]TaERF4 降低拟南芥对高盐胁迫的耐受能力[37]TaERF5 提高水稻对高盐胁迫的耐受能力[38]TaERF6 与TdERF1高度同源[47]TaERF7GCC-box/DRE/CRT控制百农不育系小麦育性[27]TaERF8-2D 高盐胁迫下持续上调表达[39]TaPIEP1/TaPIE1GCC-box提高小麦对冷害胁迫的耐受能力[40]TaERFL1a 提高小麦对干旱胁迫的耐受能力[41]TaERF87GCC-box/E-box提高小麦对干旱胁迫的耐受能力[42]TdERF1GCC-box/DRE响应高盐和干旱胁迫[43-44]TdSHN1GCC-box/DRE提高酵母对高盐㊁干旱㊁重金属胁迫的耐受能力[45-46]3.2㊀生物胁迫小麦生育期遭遇的生物胁迫主要包括病原菌侵染和植食性害虫啃食ꎬ而小麦响应生物胁迫的转录因子研究主要集中在前者ꎮ研究表明ꎬERF亚族转录因子可以提高小麦对病原菌的抗性(表2)ꎮTaERF1的表达受白粉病菌侵入的诱导ꎬ过表达TaERF1可提高转基因拟南芥对真菌㊁细菌病害的抗性[33]ꎮ病原菌侵染下ꎬTaERF3可激活防御基因表达ꎬ其中ꎬ在白粉病菌侵染早期主要通过水杨酸途径ꎬ而在镰刀菌㊁纹枯病菌侵染晚期主要通过乙烯/茉莉酸途径[48]ꎮ过表达TaPIEP1/TaPIE1可大量激活下游防卫基因的表达ꎬ进而提高小麦对纹枯病㊁根腐病的抗性[40ꎬ49]ꎮChen等[50]从中间偃麦草中分离了一个新的ERF基因TiERF1ꎬ该基因主要通过依赖乙烯的信号转导途径激活病程蛋白相关基因的表达ꎬ提高转基因小麦对纹枯病的抗性ꎮ㊀㊀表2㊀参与生物胁迫的小麦ERF亚族转录因子基因结合元件分子功能参考文献TaERF1GCC-box/DRE/CRT提高拟南芥对真菌㊁细菌病害的抗性[33]TaERF3GCC-box参与对小麦白粉病菌㊁镰刀菌㊁纹枯病菌的防卫[48]TaPIEP1/TaPIE1GCC-box提高小麦对纹枯病㊁根腐病的抗性[40ꎬ49]TiERF1GCC-box提高小麦对纹枯病的抗性[50]871山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀4㊀展望近年来ꎬ极端天气频发ꎬ低温㊁干旱㊁高盐等非生物胁迫及病原菌侵染等生物胁迫严重制约小麦的安全生产ꎬ给粮食安全带来了严峻挑战ꎮ作为AP2/EREBP转录因子超家族的一个亚族ꎬERF类转录因子连接上游信号和下游功能基因ꎬ在小麦抵御逆境胁迫中具有关键作用ꎮ基因组学分析表明ꎬ小麦ERF亚族基因有200余个ꎬ但目前只克隆鉴定了部分基因ꎬ并且已经投入育种应用的转基因材料也鲜有报道ꎬ后续仍需进一步深入挖掘具有重要抗逆功能的ERF亚族基因ꎮ此外ꎬ目前的研究多集中在转录因子基因的克隆及转录调节功能的鉴定分析上ꎬERF亚族转录因子自我调节的模式及其同其他转录因子间的相互作用关系尚未完全了解ꎮ相信随着基因组学㊁分子生物学技术的发展ꎬ对小麦ERF亚族转录因子的抗逆网络解析会更加深入ꎬ从而为小麦抗逆遗传改良提供更坚实的理论依据和更强有力的基因工具ꎮ参㊀考㊀文㊀献:[1]㊀GahlautVꎬJaiswalVꎬKumarAꎬetal.Transcriptionfactorsinvolvedindroughttoleranceandtheirpossibleroleindevelo ̄pingdroughttolerantcultivarswithemphasisonwheat(Tritic ̄umaestivumL.)[J].Theor.Appl.Genet.ꎬ2016ꎬ129(11):2019-2042.[2]㊀MagarMMꎬLiuHꎬYanGJ.Genome ̄wideanalysisofAP2/ERFsuperfamilygenesincontrastingwheatgenotypesrevealsheatstress ̄relatedcandidategenes[J].Front.PlantSci.ꎬ2022ꎬ13:853086.[3]㊀XiaoJꎬLiuBꎬYaoYYꎬetal.Wheatgenomicstudyforgenet ̄icimprovementoftraitsinChina[J].Sci.ChinaLifeSci.ꎬ2022ꎬ65(9):1718-1775.[4]㊀解亚蒙ꎬ赵晓蕾ꎬ白菁华ꎬ等.小麦NF-Y家族基因TaNF-YA1介导植株耐旱功能研究[J].河北农业大学学报ꎬ2023ꎬ46(1):1-9.[5]㊀丰锦ꎬ陈信波.抗逆相关AP2/EREBP转录因子研究进展[J].生物技术通报ꎬ2011(7):1-6ꎬ11.[6]㊀王淑叶ꎬ伍国强ꎬ魏明.WRKY转录因子调控植物逆境胁迫响应的作用机制[J].生物工程学报ꎬ2024ꎬ40(1):35-52. [7]㊀JavedTꎬShabbirRꎬAliAꎬetal.Transcriptionfactorsinplantstressresponses:challengesandpotentialforsugarcaneim ̄provement[J].Plantsꎬ2020ꎬ9(4):491.[8]㊀YuYꎬYuMꎬZhangSXꎬetal.TranscriptomicidentificationofwheatAP2/ERFtranscriptionfactorsandfunctionalcharac ̄terizationofTaERF ̄6 ̄3Ainresponsetodroughtandsalinitystresses[J].Int.J.Mol.Sci.ꎬ2022ꎬ23(6):3272. [9]㊀KaramiMꎬFatahiNꎬLohrasebiTꎬetal.RAVtranscriptionfactorregulatoryfunctioninresponsetosaltstressintwoIranianwheatlandraces[J].J.PlantRes.ꎬ2022ꎬ135(1):121-136. [10]洪林ꎬ杨蕾ꎬ杨海健ꎬ等.AP2/ERF转录因子调控植物非生物胁迫响应研究进展[J].植物学报ꎬ2020ꎬ55(4):481-496.[11]Ohme ̄TakagiMꎬShinshiH.Ethylene ̄inducibleDNAbindingproteinsthatinteractwithanethylene ̄responsiveelement[J].PlantCellꎬ1995ꎬ7(2):173-182.[12]刘建光ꎬ王永强ꎬ张寒霜ꎬ等.ERF转录因子在植物抗逆境胁迫的研究进展[J].华北农学报ꎬ2013ꎬ28(增刊):214-218.[13]SakumaYꎬLiuQꎬDubouzetJGꎬetal.DNA ̄bindingspecific ̄ityoftheERF/AP2domainofArabidopsisDREBstranscriptionfactorsinvolvedindehydration ̄andcold ̄induciblegeneexpres ̄sion[J].Biochem.Biophys.Res.Commun.ꎬ2002ꎬ290(3):998-1009.[14]张计育ꎬ王庆菊ꎬ郭忠仁.植物AP2/ERF类转录因子研究进展[J].遗传ꎬ2012ꎬ34(7):44-56.[15]WangYYꎬSunLLꎬWangRꎬetal.TheAP2transcriptionfactorsTOE1/TOE2conveyArabidopsisageinformationtoeth ̄ylenesignalinginplantdenovorootregeneration[J].Plantaꎬ2022ꎬ257(1):1.[16]FuMꎬKangHKꎬSonSHꎬetal.AsubsetofArabidopsisRAVtranscriptionfactorsmodulatesdroughtandsaltstressresponsesindependentofABA[J].PlantCellPhysiol.ꎬ2014ꎬ55(11):1892-1904.[17]LuoYXꎬChenSKꎬWangPDꎬetal.Genome ̄wideanalysisoftheRAVgenefamilyinwheatandfunctionalidentificationofTaRAV1insaltstress[J].Int.J.Mol.Sci.ꎬ2022ꎬ23(16):8834.[18]于志晶ꎬ蔡勤安ꎬ刘艳芝ꎬ等.拟南芥抗逆基因DREB2A转化大豆的研究[J].大豆科学ꎬ2013ꎬ32(5):606-608. [19]ZhangXXꎬTangYJꎬMaQBꎬetal.OsDREB2Aꎬaricetran ̄scriptionfactorꎬsignificantlyaffectssalttoleranceintransgenicsoybean[J].PLoSONEꎬ2013ꎬ8(12):e83011.[20]刘坤ꎬ李国婧ꎬ杨杞.参与植物非生物逆境响应的DREB/CBF转录因子研究进展[J].生物技术通报ꎬ2022ꎬ38(5):201-214.[21]ChengCꎬAnLKꎬLiFZꎬetal.Wide ̄rangeportrayalofAP2/ERFtranscriptionfactorfamilyinmaize(ZeamaysL.)developmentandstressresponses[J].Genesꎬ2023ꎬ14(1):194.[22]阮航ꎬ多浩源ꎬ范文艳ꎬ等.AtERF49在拟南芥应答盐碱胁迫中的作用[J].生物技术通报ꎬ2023ꎬ39(1):150-156. [23]MüllerMꎬMunné ̄BoschS.Ethyleneresponsefactors:akeyregulatoryhubinhormoneandstresssignaling[J].PlantPhys ̄iol.ꎬ2015ꎬ169(1):32-41.[24]DebbarmaJꎬSarkiYNꎬSaikiaBꎬetal.Ethyleneresponse971㊀第2期㊀㊀㊀㊀㊀㊀崔德周ꎬ等:小麦ERF亚族转录因子参与逆境胁迫的研究进展factor(ERF)familyproteinsinabioticstressesandCRISPR ̄Cas9genomeeditingofERFsformultipleabioticstresstoler ̄anceincropplants:areview[J].Mol.Biotechnol.ꎬ2019ꎬ61(2):153-172.[25]赵曾强ꎬ郭文婷ꎬ张析ꎬ等.棉花抗枯萎病相关基因GhERF5 ̄4D的克隆及功能分析[J].生物技术通报ꎬ2022ꎬ38(4):193-201.[26]才晓溪ꎬ胡冰霜ꎬ沈阳ꎬ等.GsERF6基因过表达对水稻耐盐碱性的影响[J].作物学报ꎬ2023ꎬ49(2):561-569. [27]李紫良ꎬ张建朝ꎬ李政ꎬ等.小麦转录因子基因TaERF7的克隆及其表达分析[J].西北植物学报ꎬ2020ꎬ40(2):210-217.[28]ZhangLꎬLiuPꎬWuJꎬetal.IdentificationofanovelERFgeneꎬTaERF8ꎬassociatedwithplantheightandyieldinwheat[J].BMCPlantBiol.ꎬ2020ꎬ20(1):263.[29]ZhuangJꎬChenJMꎬYaoQHꎬetal.Discoveryandexpres ̄sionprofileanalysisofAP2/ERFfamilygenesfromTriticumaestivum[J].Mol.Biol.Rep.ꎬ2011ꎬ38(2):745-753. [30]RiazMWꎬLuJꎬShahLꎬetal.ExpansionandmolecularcharacterizationofAP2/ERFgenefamilyinwheat(TriticumaestivumL.)[J].Front.Genet.ꎬ2021ꎬ12:632155. [31]李世姣ꎬ张晓军ꎬ乔麟轶ꎬ等.小麦盐胁迫响应相关ERF基因的分离和初步验证[J].核农学报ꎬ2021ꎬ35(5):1039-1047.[32]FarajiSꎬFilizEꎬKazemitabarSKꎬetal.TheAP2/ERFgenefamilyinTriticumdurum:genome ̄wideidentificationandex ̄pressionanalysisunderdroughtandsalinitystresses[J].Genesꎬ2020ꎬ11(12):1464.[33]XuZSꎬXiaLQꎬChenMꎬetal.Isolationandmolecularchar ̄acterizationoftheTriticumaestivumL.ethylene ̄responsivefac ̄tor1(TaERF1)thatincreasesmultiplestresstolerance[J].PlantMol.Biol.ꎬ2007ꎬ65(6):719-732.[34]宋桂成ꎬ周淼平ꎬ余桂红ꎬ等.小麦乙烯转录因子TaERF2响应湿害胁迫的表达分析[J].核农学报ꎬ2022ꎬ36(5):876-884.[35]徐兆师.小麦抗逆相关DREB/ERF转录因子基因的克隆与鉴定[D].北京:中国农业科学院ꎬ2005:114-121. [36]RongWꎬQiLꎬWangAYꎬetal.TheERFtranscriptionfactorTaERF3promotestolerancetosaltanddroughtstressesinwheat[J].PlantBiotechnol.J.ꎬ2014ꎬ12(4):468-479. [37]DongWꎬAiXꎬXuFꎬetal.IsolationandcharacterizationofabreadwheatsalinityresponsiveERFtranscriptionfactor[J].Geneꎬ2012ꎬ511(1):38-45.[38]张蕾.小麦盐胁迫应答相关基因TaERF5的功能研究[D].北京:中国农业科学院ꎬ2013:32-34.[39]崔德周ꎬ李永波ꎬ隋新霞ꎬ等.小麦盐胁迫持续上调转录因子基因TaERF8 ̄2D的克隆及其分析[J].山东农业科学ꎬ2021ꎬ53(5):32-37.[40]ZhuXLꎬQiLꎬLiuXꎬetal.Thewheatethyleneresponsefac ̄tortranscriptionfactorpathogen ̄inducedERF1mediateshostresponsestoboththenecrotrophicpathogenRhizoctoniacerealisandfreezingstresses[J].PlantPhysiol.ꎬ2014ꎬ164(3):1499-1514.[41]GaoTꎬLiGZꎬWangCRꎬetal.FunctionoftheERFL1atranscriptionfactorinwheatresponsestowaterdeficiency[J].Int.J.Mol.Sci.ꎬ2018ꎬ19(5):1465.[42]DuLYꎬHuangXLꎬDingLꎬetal.TaERF87andTaAKS1synergisticallyregulateTaP5CS1/TaP5CR1 ̄mediatedprolinebiosynthesistoenhancedroughttoleranceinwheat[J].NewPhytol.ꎬ2023ꎬ237(1):232-250.[43]MakhloufiEꎬYousfiFEꎬMarandeWꎬetal.Isolationandmo ̄lecularcharacterizationofERF1ꎬanethyleneresponsefactorgenefromdurumwheat(TriticumturgidumL.subsp.durum)ꎬpotentiallyinvolvedinsalt ̄stressresponses[J].J.Exp.Bot.ꎬ2014ꎬ65(22):6359-6371.[44]MakhloufiEꎬYousfiFEꎬPirrelloJꎬetal.TdERF1ꎬanethyl ̄eneresponsefactorassociatedwithdehydrationresponsesindu ̄rumwheat(TriticumturgidumL.subsp.durum)[J].PlantSignalandBehav.ꎬ2015ꎬ10(10):e1065366.[45]DjemalRꎬKhoudiH.IsolationandmolecularcharacterizationofanovelWIN1/SHN1ethylene ̄responsivetranscriptionfactorTdSHN1fromdurumwheat(TriticumturgidumL.subsp.du ̄rum)[J].Protoplasmaꎬ2015ꎬ252(6):1461-1473. [46]DjemalRꎬKhoudiH.Theethylene ̄responsivetranscriptionfactorofdurumwheatꎬTdSHN1ꎬconferscadmiumꎬcopperꎬandzinctolerancetoyeastandtransgenictobaccoplants[J].Protoplasmaꎬ2022ꎬ259(1):19-31.[47]HaghirSꎬAlemzadehA.Cloningandmolecularcharacteriza ̄tionofTaERF6ꎬageneencodingabreadwheatethylenere ̄sponsefactor[J].Mol.Biol.Res.Commun.ꎬ2018ꎬ7(4):153-163.[48]ZhangZYꎬYaoWLꎬDongNꎬetal.AnovelERFtranscriptionactivatorinwheatanditsinductionkineticsafterpathogenandhormonetreatments[J].J.Exp.Bot.ꎬ2007ꎬ58(11):2993-3003.[49]DongNꎬLiuXꎬLuYꎬetal.OverexpressionofTaPIEP1ꎬapathogen ̄inducedERFgeneofwheatꎬconfershost ̄enhancedresistancetofungalpathogenBipolarissorokiniana[J].Funct.Integr.Genomic.ꎬ2010ꎬ10(2):215-226.[50]ChenLꎬZhangZYꎬLiangHXꎬetal.OverexpressionofTiERF1enhancesresistancetosharpeyespotintransgenicwheat[J].J.Exp.Bot.ꎬ2008ꎬ59(15):4195-4204.081山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀。
小麦新品种“山农20”抗病基因的分子检测

作物学报 ACTA AGRONOMICA SINICA 2014, 40(4): 611−621/ISSN 0496-3490; CODEN TSHPA9E-mail: xbzw@本研究由国家自然科学基金项目(31171154), 山东省农业良种工程项目(鲁农良种字[2011]7号和[2012]213号)和国家转基因生物新品种培育重大专项(2013ZX08002-003)资助。
*通讯作者(Corresponding author): 田纪春, E-mail: jctian@, Tel: 0538-*******第一作者联系方式: E-mail: jfli610@ **同等贡献(Contributed equally to this work)Received(收稿日期): 2013-08-28; Accepted(接受日期): 2014-01-12; Published online(网络出版日期): 2014-02-14. URL: /kcms/detail/11.1809.S.20140214.1019.012.htmlDOI: 10.3724/SP.J.1006.2014.00611小麦新品种“山农20”抗病基因的分子检测李继发1,** 邓志英1,** 孙福来2 关西贞1 王延训1 田纪春1,*1山东农业大学作物生物学国家重点实验室 / 山东省作物生物学重点实验室, 山东泰安 271018; 2山东省滨州市种子管理站, 山东滨州 256600 摘 要: 山农20是2011年和2012年分别通过国家黄淮南、北片审定的小麦高产多抗新品种, 在国家区试抗病性鉴定和生产中都表现出良好的抗黄淮麦区主要病害的特性。
本研究利用与小麦抗白粉病、条锈病、叶锈病、纹枯病基因和抗赤霉病主效QTL 紧密连锁的SSR 、SCAR 、STS 等标记对该品种进行了分子检测, 发现山农20含有6个抗白粉病基因(Pm12、Pm24、Pm30、Pm31、Pm35和Pm36), 6个抗条锈病基因(Yr5、Yr9、Yr15、Yr24、Yr26和YrTp1), 2个抗叶锈病基因(Lr21和Lr26), 1个抗纹枯病基因(Ses1), 但未检测到抗赤霉病主效QTL 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Agricultural Science&Technology,201 1,12(4):504—508 Copyright⑥201 1,Information Institute of HAAS.All rights resewed Agricultural Biotechnology
The Relationsh i p of Methyl Jasmonate En hanced Powdery Mildew Resistance i n Wheat and the Expressions of 9 Disease Resistance Related Genes
NIU Ji.shan’ ,LIU Jing ,MA Wen-bin。,U Qiao-yun’,WANG Zheng—yang’,HE De-xian’
1.National Centre of Engineering and Technological Research for Wheat,Henan Agricultural University/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province,Zhengzhou 450002;2.College of Life Science,Henan Agricultural Uni— versity,Zhengzhou 450002
Abstract f 0biective]This study was carried out to determine the jnduction effect of iasmonic acid(JA)Oil powdery mildew resistance jn wheat.the activation effect on the expressions of plant disease resistance relaled genes,and to investigate the relationship between the induced resistance and the gene expression patterns.『Method 1 Three powdery mildew susceptible cultivars of”Chinese Spring”,”Pumai 9”and“ Zhoumai 1 8“typically representing diferent phenotypes in the field were employed.The powdery.mildew was assessed by detached leaf assay. and real time quantitative RT-PCR was used to determine the expression pa ̄erns of 9 disease resistance reIated genes of PR1(PR1.1),PR2 (I3,1—3 glucanase),尸月3(chitinase),PR4(wheatwin1),PFI5( thaumatin-like protein),PR9(TaPER0,peroxidase),PR10, GL a (germin.1ike)and Ta.JA2(iasmonate—induced protein)in leaf of the three cultivars.1 Reslllt I MeJA application enhanced the powdery mildew re— sistances of”Chinese Spring”.”Pumai 9”and”Zhoumai 18”.The induced powdery mildew resistance could be detecled from 12 h c0 96 h after MeJA treatment.and the peak value was at 24 h.Though there were differences between the three cultivars,MeJA significantly effect on the ex・ pressions of the 8 disease resistance reIa{ed genes except 7_aGL尸2a and the peak values were at 12 h.24 h or 48 h after treatmerits.The strongest activation of MeJA was on PB9 and PR1 that their expressions could reach more than 1 0O times of the untreated samples.MeJA strongly activated P 、PR4、PFi5、尸Fi3、PR1 0 and Ta・JA2,their expression could reach 1 0 tO 7O times,and there was almost no activation effect on 7_aGL户2a.The induced powdery mildew resistance positively correlated with the induced expressions of the 8 disease related genes.f Con. clusion]The induced powdery mildew resistance positively correlated with the induced.expressions of the disease reIaled genes.Jasmonate sig- nailing plays a role in defence against Blumeria graminis f.sD.tritici.and future manipulation of this pathway may improve powdery mildew re- sistance in wheat. Key words Wheat:Powdery mildew;Jasmonic acid(JA):Resistance;Gene;Expression
Wheat(Triticum aesfivum L.)powdery mildew is one of the most severe foliar diseases caused by Blunera graminis f. sp.tritici f Bgt).which can Iead to seed Iosses at about 13 to 34 percent….Studying the main signaling molecules and sig— naling pathways of powdery mildew resistance in wheat can help us to understand better about the resistance molecular mechanism of wheat,thus exploring new ways for powdery mildew resistance breeding in wheat.improving the resist— ance.and controlling wheat diseases.Jn order to protect themselves.plants have evolved an accurate and complex mechanism which can resist pathogenic organisms.The mechanism jncludes preexisted and pathogen induced physi— caI and chemicaI barriers .Plant active resistance includes gene-for-gene mediated resistance and pathogen induced re- sistance.Pathogen jnduced resistance includes IocaI acquired resistance(LAR).systemic acquired resistance(SAR),and induced systemic resistance(ISR) ’4j.Salicylic acid(SA) pathway and jasmonic acid(JA)pathway are two major sig— nalinq pathways of gene mediated resistance and pathogen in— duced resistance ’ .Molecular phytopathology study has Iaid a foundation for exploring new methods and ways for plant resistance improving and disease controI.Using the beneficial effect of SAR and ISR as an effective method to controI plant diseases has been promoted as a practical way,that’s to say, Received:March 21,2011 Accepted:April 17,2011 Supported by The Key Project of Science and Technology of Henan Province(10210211O04O)and Innovation Scientists and the Innovation Fund for Outstanding Scholars of Henan Province(104200510013). Corresponding author.E。mail:jsniu@263.net we can control plant diseases by manipulating SAR.ISR and r,, their crosstalk points .