【K12学习】物理教案次声波和超声波

【K12学习】物理教案次声波和超声波
【K12学习】物理教案次声波和超声波

物理教案次声波和超声波

教学目标

1、使学生知道什么是次声波和超声波

2、使学生能用所学知识解释生活中的次声波和超声波.

教学建议

因多普勒效应和此声波、超声波两节的内容少,建议用一个课时.

本节重点是掌握声波的概念和形成声波的条件.学习中要了解声波能够发生反射、衍射、干涉等现象.声波反射时能听到回声,利用回声可以测速或测距.声波发生共振时称为共鸣现象.

声波能离开空气在真空中传播吗?为什么?

解答:不能.因为声波是机械波,必须有介质,声波才能传播.空气、水、玻璃等都可以作为传播声波的介质.如果发声体的周围没有传声介质,声波无法向外传播,人们就不会听到声音,所以声音不能在真空中传播.

让学生了解声波有次声波、声波、超声波,它们是按频率划分的.了解它的利用和危害.

请教师阅读下列表:

项目

声波

备注

概念

声源的振动在介质中传播形成声波

声波是机械波,具有波的一切特征,能发生反射、衍射、干涉等现象

产生的条件

与介质、温度有关,标准状况下,空气中声速为332m /s,运算时常取340m/s

声波的波长范围

1.7cm——17cm

人耳能听到的声波频率范围

20Hz——XX0Hz

大学物理_电磁学公式全集

静电场小结 一、库仑定律 二、电场强度 三、场强迭加原理 点电荷场强点电荷系场强 连续带电体场强 四、静电场高斯定理 五、几种典型电荷分布的电场强度 均匀带电球面均匀带电球体 均匀带电长直圆柱面均匀带电长直圆柱体 无限大均匀带电平面

六、静电场的环流定理 七、电势 八、电势迭加原理 点电荷电势点电荷系电势 连续带电体电势 九、几种典型电场的电势 均匀带电球面均匀带电直线 十、导体静电平衡条件 (1) 导体内电场强度为零;导体表面附近场强与表面垂直。 (2) 导体是一个等势体,表面是一个等势面。 推论一电荷只分布于导体表面 推论二导体表面附近场强与表面电荷密度关系 十一、静电屏蔽 导体空腔能屏蔽空腔内、外电荷的相互影响。即空腔外(包括外表面)的电荷在空腔内的场强为零,空腔内(包括内表面)的电荷在空腔外的场强为零。

十二、电容器的电容 平行板电容器圆柱形电容器 球形电容器孤立导体球 十三、电容器的联接 并联电容器串联电容器 十四、电场的能量 电容器的能量电场的能量密度 电场的能量 稳恒电流磁场小结 一、磁场 运动电荷的磁场毕奥——萨伐尔定律 二、磁场高斯定理 三、安培环路定理 四、几种典型磁场 有限长载流直导线的磁场 无限长载流直导线的磁场 圆电流轴线上的磁场

圆电流中心的磁场 长直载流螺线管内的磁场 载流密绕螺绕环内的磁场 五、载流平面线圈的磁矩 m和S沿电流的右手螺旋方向 六、洛伦兹力 七、安培力公式 八、载流平面线圈在均匀磁场中受到的合磁力 载流平面线圈在均匀磁场中受到的磁力矩 电磁感应小结 一、电动势 非静电性场强电源电动 势 一段电路的电动势闭合电路的电动势 当时,电动势沿电路(或回路)l的正方向,时沿反方向。 二、电磁感应的实验定律 1、楞次定律:闭合回路中感生电流的方向是使它产生的磁通量反抗引起电磁感应的磁通量变化。楞次定律是能量守恒定律在电磁感应中的表现。 2、法拉第电磁感应定律:当闭合回路l中的磁通量变化时,在回路中的感应电动势为 若时,电动势沿回路l的正方向,时,沿反方向。对线图,为全磁通。

大学物理下册知识点总结(期末)

大学物理下册 学院: 姓名: 班级: 第一部分:气体动理论与热力学基础 一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 中心位置:3(平动自由度)直线方位:2(转动自由度)共5个 3.气体分子的自由度 单原子分子 (如氦、氖分子)3 i=;刚性双原子分子5 i=;刚性多原子分子6 i= 4.能均分原理:在温度为T的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 1 2 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为: 2 k i kT ε=

大学物理电子教案10电磁场理论

《大学物理》教案二〇一五年三月

第10章 电磁场理论 内容:全电流定律 麦克斯韦方程组 10.1全电流定律 10.1.1位移电流 麦克斯韦对电磁场的重大贡献的核心是位移电流的假说。位移电流是将安培环路定理运用于含有电容器的交变电路中出现矛盾而引出的。 我们知道,在稳恒电流中传导电流是处处连续的,磁场与传导电流之间满足安培环路定理 0i L i d I μ?=∑? B l 电流是稳恒的,所以∑i I 应该是穿过以该闭合回路L 为边界的任意形状曲面S 的传导电流。在非稳恒条件下,安培环路定理是否还成立? 对于S 1曲面,因有传导电流穿过该曲面,故应用安培环路定理 I l B 0 L d μ=?? 而对于S 2面来说,因没有传导电流通过S 2,因此有 0d L =??l B 可见,在非稳恒电流的磁场中,把安培环路定理应用到以同一闭合回路L 为边界的不同曲面时,得到完全不同的结果。也就是说安培环路定理在非稳恒的情况下不适用了。 麦克斯韦注意到了安培环路定理的局限 性,他注意到电容器充放电时,极板间虽无 传导电流,却存在着变化的电场。麦克斯韦 在仔细审核了安培环路定理后,肯定了电荷 守恒定律,对安培环路定理作了修改。为了 解决电流不连续的问题,麦克斯韦提出了位 移电流的假设,把变化的电场视为电流,称 为“位移电流”。 电容器充放电时,设t 时刻A 极板电荷为+q ,电荷密度为+σ,B 极板电荷为-q ,电荷密度为-σ,极板面积为S ,则导线中传导电流为

图10-2 位移电流 ()dt d S dt S d dt dq I c σσ=== dt d dt dq S I j c c σ===S dt d S dt dq S I j c c σ=== 在电容器充放电过程中,板上的电荷面密度为σ,两极板之间的电位移矢量大小D=σ和电位移通量DS D =Φ都是变化的,电位移通量对时间的变化率就称为“位移电流”I d ,即 ()c D d I dt d S dt dD S dt DS d dt d I ====Φ=σ dt dD j d = dt dD j d = (10-2) 麦克斯韦称I d 为位移电流强度,称j d 为位移电流密度。当电容器充电时,板上σ增加,极板之间电场E 也增大,电位移随时间变化率dt dD 的方向与电场方向一致,同时也与导体中电流方向一致;当放电时,板上σ减小,极板之间电场E 也减小,电位移随时间的变化率dt dD 的方向与D 方向相反同时也与导体中电流方向一致。为此,麦克斯韦提出假设:电容器中变化的电场可以看作是一种电流,其大小等于传导电流,方向与传导电流相同,即位移电流。这样,电容器两极板之间传导电流虽然中断了,但是有位移电流接替,于是解决了含有电容器的电路中电流不连续的问题。 10.1.2 全电流定律

《电磁学》教学大纲解析

《电磁学》教学大纲 英文名称:electromagnetics 授课专业:物理学学时:72学分:4 开课学期:二年级上学期 适用对象:物理学专业 一、课程性质与任务 电磁学是物理学专业的一门专业基础课。电磁学已渗透到物理学的各个领域,成为研究物质过程必不可少的基础。通过本门课程的教学,要求:使学生能全面地认识和理解电磁运动的基本现象和基本概念,系统地掌握电磁运动的基本规律,具有一定的分析和解决电磁学问题的能力,并为学习后继课程打下必要的基础。通过对电磁学发展史上某些重大的发现和发明的介绍,使学生了解物理学思想和实验方法,培养学生的辩证唯物主义世界观,使学生获得科学方法论上的教益。 二、课程教学的基本要求 1 、正确理解以下基本概念和术语: 基本粒子、静电场、库仑力、电场强度、电通量、电位、电位差、电功、静电平衡、静电屏蔽、电容、加速器、静电能、极化强度、电位移向量、电流密度、超导、电功率、经典金属电子论、电动势、非静电力、温差电动势、静磁场、磁感应强度、安培力、磁通量、磁矩、电磁感应、感生电场、自感、互感、涡电流、趋肤效应、磁能、磁化强度、磁化电流、磁场强度、顺磁性、抗磁性、铁磁性、磁畴、铁磁屏蔽、位移电流、电磁场、能流密度、电磁波谱。 2 、掌握以下基本规律及分析计算方法 (1)静电场基本定律和定理:库仑定律、电荷守恒定律、高斯定理、环路积分定理、叠加原理。 (2)稳恒电流和电路:欧姆定律、焦耳定律、基尔霍夫定律(节点方程、回路电压方程)

(3)稳恒磁场的基本定律和定理:毕——伐定律,安培定律、高斯定理、环路积分定理。 (4)交变电磁场的基本定律和定理:楞次定律、法拉第电磁感应定律、麦克斯韦方程组。 (5)掌握以下物理量的分析计算方法:电场强度、电位、电位差、电通量、电容、磁感应强度、磁通量、安培力、磁矩、电动势、电磁能量等。 3 、注意培养学生以下几方面能力 (1)分析电磁运动规律及物理实验构思方法,重视对实验现象的总结,培养科学分析问题的能力。 (2)积极思考并总结研究方法、实验技能,培养创新意识。 (3)灵活有效应用高等数学知识,解决物理问题,进一步提高科学知识、科学方法、科学态度和科学精神等科学素质。 三、课程教学内容 第一章静电场的基本规律(12课时) 第二章有导体时的静电场(8课时) 第三章静电场中的电介质(8课时) 第四章恒定电流和电路(8课时) 第五章恒定电流的磁场(12课时) 第六章电磁感应与暂态过程(12课时) 第七章磁介质 (8课时) 第九章时变电磁场和电磁波(4课时) 四、教学重点、难点 静电场的高斯定理,静电场的环路定理,电位,静电平衡时导体的性质,用电力线工具讨论静电平衡的若干电现象,电介质存在时场的讨论方法及场强计算,电介质存在时高斯定理的应用,电动势的物理意义及数学表示方法,基尔霍夫方程组求解电路,磁感应强度矢量的概念,毕奥—萨伐尔定律,磁场的

普通物理学下册重点

普通物理学下册重点 振动 习 题 一、选择题 1、某质点按余弦规律振动,它的x ~t 曲线如图4—8所示, 那么该质点的振动初相位为[ ]。 A . 0; B .2 π ; C .2 π -; D .π。 2、摆球质量为m ,摆长为l 的单摆,当其作简谐振动时,从正向最大位移处运动到正向角位移一半处,所需的最短时间是[ ]。 A . g l 3π ; B .g l 4π; C . g l 32π; D .g l 92π 。 3、两个同方向、同频率、等振幅的简谐振动合成后振幅仍为A ,则这两个分振动的相位差为[ ]。 A .60? ; B .90?; C .120?; D .180?。 二、填空题 1、一物体作简谐振动,周期为T ,则:(1)物体由平衡位置运动到最大位移的时间为 ;(2)物体由平衡位置运动到最大位移的一半处时间为 ;(3)物体由最大位移的一半处运动到最大位移处时间为 。 2、一质量为0.1kg 的物体以振幅为0.01m 作简谐振动,最大加速度为2m /s 04.0,则振动的周期为 ,通过平衡位置时的动能为 ;当物体的位移为 时,其动能为势能的一半。 3、有一个和轻弹簧相连的小球沿x 轴作振幅为A 的简谐振动,其表达式用余弦函数表示,若t =0的状态为已知,写出相应初相位值:初运动状态为x 0=-A 时,初相位为 ;初运动状态为过平衡位置向正向运动时,初相位为 ;初运 动状态为x 0=2A 时,初位相为 ;初运动状态为x 0=2A 时,初位相 为 。 4、同方向同频率的两个简谐振动合成后振幅最大的条件是 ,振幅最小的条件是 。 一、选择题 1.B ; 2.A ; 3.C 。

823普通物理考试大纲

硕士研究生招生考试业务课考试大纲 考试科目: 普通物理 科目代码: 823 一、 参考书目: 《普通物理学教程:力学》(第二版),漆安慎,高等教育出版社,2005年 《电磁学》(上、下册)(第二版),赵凯华,高等教育出版社,1985年 或包含以下“考试内容范围”所列内容的任意一套“普通物理”或“大学物理”教科书。 二、考试内容范围: 力学部分: (一)、质点运动学 1、直角坐标系中质点的位置矢量、速度、加速度、运动学方程 2、质点运动的角量描述(即角位置、角速度、角加速度等),自然坐标系中质点的切向和法向加速度 3、掌握已知运动方程()r r t 求)(t v 和)(t a ,已知加速度)(t a 求)(t v ,)(t r 的方法 (二)、质点动力学 1、动量、动量守恒定律、动量定理的应用 2、牛顿运动定律及其应用 3、功的计算,质点和质点系的动能定理 4、保守力和非保守力,重力、弹簧弹力、万有引力的功及其相关的势能 5、势能与保守力的关系,机械能守恒定律及应用 6、关于质点对于某固定点的角动量定理及角动量守恒 (三)、刚体力学 1、刚体定轴转动的运动学方程、角速度、角加速度 2、刚体定轴转动转动惯量的计算。 3、刚体定轴转动时的动能表示式、转动定理、角动量守恒定律及其应用

4、刚体定轴转动与质点平动的组合求解 (四)、振动和波动 1.简谐振动的运动学方程及动力学方程 2.同方向、同频率和同方向不同频率简谐振动的合成 3.波的干涉 (五)、狭义相对论 1、狭义相对论的基本假设及本质含义 电磁学部分 (一)、静电场 1、库仑定律,电场和电场强度 2、高斯定理及应用 3、电势,电场强度与电势的相互关系 4、掌握各种对称性带电体周围的电势与场强的分布规律和计算 5、掌握电容器与电容计算方法及其电能储存,静电场能量的计算。 6、有介质时的高斯定理 (二)、恒磁场 1、磁场,磁感应强度,毕奥--萨伐尔定律 2、掌握磁通量的定义及计算方法,磁场的高斯定理 3、安培环路定理,磁场对载流导线及线圈的作用 4、带电粒子在电场和磁场中的运动 (三)、电磁感应 1、电磁感应的基本定律,动生与感生电动势的计算

大学物理学习知识重点(全)

y 第一章 质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移 是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D ==+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动 运动方程矢量式为 2 012 r v t gt =+ r r r

程守珠普通物理学六版电子教案12-3

本文由lovebobsir贡献 ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 §12-3 双缝干涉 12一、杨氏双缝实验 杨(T.Young)在1801年首先用实验方法研究光的干涉 ) 年首先用实验方法研究光的干涉 上页 下页 返回 退出 相干光的获得: 相干光的获得:分波阵面法 x r λ θ 1 x p r ?x x1 x0 x I 2 d δ o D x?1 光路原理图: 光路原理图: d >>λ,D >> d , 上页 下页 返回 退出 钠黄光的杨氏双缝干涉条纹 上页 下页 返回 退出 二、干涉明暗条纹的位置 1. 波程差的计算 设实验在真空(或空气)中进行,则波程差为: 设实验在真空(或空气)中进行,则波程差为: p r θ 1 ? r 2 x x d o δ D 上页 下页 返回 退出 2. 干涉明暗条纹的位置 干涉相长, 干涉相长,明纹 干涉相消, 干涉相消,暗纹 暗纹中心 Dλ 2, x = ±(2k + 1) , = 1, 3L k 2d Dλ x = ±k , k = 0, 2 3L 1,, 明纹中心 d D λ 两相邻明纹(或暗纹) 两相邻明纹(或暗纹)间距 ?x = d 上页 下页 返回 退出 3. 条纹特点: 条纹特点: 一系列平行的明暗相间的条纹; (1) 一系列平行的

明暗相间的条纹; 不太大时条纹等间距; (2) θ 不太大时条纹等间距; (3) ?x ∝ λ。 双缝干涉条纹 杨氏双缝实验第一次测定了 波长这个重要的物理量。 波长这个重要的物理量。 上页 下页 返回 退出 思考题 在双缝干涉实验中: 在双缝干涉实验中: (1)如何使屏上的干涉条纹间距变宽? 如何使屏上的干涉条纹间距变宽? (2)将双缝干涉装置由空气中放入水中时, 将双缝干涉装置由空气中放入水中时, 屏上的干涉条纹有何变化? 屏上的干涉条纹有何变化? 两条缝的宽度不等,条纹有何变化? (3)若S1、S2两条缝的宽度不等,条纹有何变化? 上页 下页 返回 退出 (1)如何使屏上的干涉条纹间距变宽? 如何使屏上的干涉条纹间距变宽? 两相邻明纹(或暗纹)间距 两相邻明纹(或暗纹) D ?x = λ d 若D、d 已定,只有λ↑,条纹间距 已定,只有λ↑ λ↑, x 变宽。 变宽。 若λ已定,只有D↑、d↓(仍然满足 已定,只有 、 (仍然满足d>> λ),条纹 , 间距 变宽。 x 变宽。 上页 下页 返回 退出 (2)将双缝干涉装置由空气中放入水中时,屏上的 将双缝干涉装置由空气中放入水中时, 干涉条纹有何变化? 干涉条纹有何变化? 两相邻明纹(或暗纹) 两相邻明纹(或暗纹)间距 D Dλ ?x = λn = d d n n水> n空气 x水 < ?x空气 实验装置放入水中后条纹间距变小 上页 下页 返回 退出 两条缝的宽度不等,条纹有何变化? (3)若S1、S2两条缝的宽度不等,条纹有何变化? 两条缝的宽度不等,使两光束的强度不等;虽 两条缝的宽度不等,使两光束的强度不等; 然干涉条纹中心距不变, 然干涉条纹中心距不变,但原极小处的强度不再 为零,条纹的可见度变差。 为零,条纹的可见度变差。 I1 ≠ I 2 I Imax I 4I1 I1 = I 2 Imin -2π π -4π π o 2π π 4π π -4π π -2π π o 2π π 4π π 现:可见度差 原:可见度好

大学物理电磁学题库及答案

一、选择题:(每题3分) 1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) 2 r 2B . (B) r 2B . (C) 0. (D) 无法确定的量. [ B ] 2、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为 ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) r 2B . (B) 2 r 2B . (C) - r 2B sin . (D) - r 2B cos . [ D ] 3、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00. (C) 1.11. (D) 1.22. [ C ] 4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度 (A) 方向垂直环形分路所在平面且指向纸内. (B) 方向垂直环形分路所在平面且指向纸外. (C) 方向在环形分路所在平面,且指向b . (D) 方向在环形分路所在平面内,且指向a . (E) 为零. [ E ] 5、通有电流I 的无限长直导线有如图三种形状, 则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . [ D ] 6、边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方 形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为 (A) 01 B ,02 B . (B) 01 B ,l I B 0222 . (C) l I B 0122 ,02 B . a

大一普通物理学电磁学随堂测试题及答案

解:由于圆环上的电荷对y 轴呈对称性分布,电场分布也是轴对称,则有 0d =?L x E ,点O 处的合电场强度为?=L y j E E ρ ρd 20 1 sin d 4O L Q E l R R θπε π=- ? ?? 由几何关系: d d l R θ=,统一积分变量,有 2 02 2 02 2sin 4R Q d R Q E O επθθεππ - =-=? 方向沿y 负方向 解:由于电荷分布具有球对称性,因此采用高斯定理 d S E ???v ò在球体内: 2 225 10 00 1 44'4'd '5r k E r kr r r r πππεε?= = ? 球内的电场强度: 3 10 5kr E ε= 0< r

h I B B πμ439301= = 方向垂直于纸面向里,与电流成右手螺旋关系。 4.解: 建立如图所示坐标系。在矩形平面内任取一点P ,距I 1为x , 则距I 2为(d -x ),两电流在P 点处的磁感应强度分别为 x I B P πμ21 01= )(2202x d I B P -=πμ 由于B P1, B P2方向相同,均垂直于纸面向外,故, ) (22201021x d I x I B B B P P P -+= +=πμπμ (1) 在离两导线相同距离A 点处,2 d x = ,且21I I =,所以 50010422 22-?==? = d I d I B A πμπμ T (2) 取矩形面积的法线方向垂直纸面向外,通过该面积的磁通量为: 6 121102010102.2ln )(22d 211 -+?=+=??? ????-+=?=Φ??r r r l I ldx x d I x I S B r r r πμπμπμ?? Wb

大学物理下册知识点总结材料(期末)

大学物理下册 学院: : 班级: 第一部分:气体动理论与热力学基础一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 第一部分:气体动理论与热力学基础 第二部分:静电场 第三部分:稳恒磁场 第四部分:电磁感应 第五部分:常见简单公式总结与量子物理基础

中心位置:3(平动自由度) 直线方位:2(转动自由度) 共5个 3. 气体分子的自由度 单原子分子 (如氦、氖分子)3i =;刚性双原子分子5i =;刚性多原子分子6i = 4. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 12 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为:2 k i kT ε= 五. 理想气体的能(所有分子热运动动能之和) 1.1mol 理想气体2 i E RT = 5. 一定量理想气体()2i m E RT M νν' == 九、气体分子速率分布律(函数) 速率分布曲线峰值对应的速率 v p 称为最可几速率,表征速率分布在 v p ~ v p + d v 中的分子数,比其它速率的都多,它可由对速率分布函数求极值而得。即 十、三个统计速率: a. 平均速率 M RT M RT m kT dv v vf N vdN v 60.188)(0 === == ??∞ ∞ ππ b. 方均根速率 M RT M k T v dv v f v N dN v v 73.13)(20 2 2 2 == ? = = ??∞ C. 最概然速率:与分布函数f(v)的极大值相对应的速率称为最概然速率,其物理意义为:在平衡态条件下,理想气体分子速率分布在p v 附近的单位速率区间的分子数占气体总分子数的百分比最大。 M RT M RT m kT v p 41.1220=== 三种速率的比较: 各种速率的统计平均值: 理想气体的麦克斯韦速率分布函数 十一、分子的平均碰撞次数及平均自由程: 一个分子单位时间里受到平均碰撞次数叫平均碰撞次数表示为 Z ,一个分子连续两次碰撞之间经历的平均自由路程叫平均自由程。表示为 λ 平均碰撞次数 Z 的导出: 热力学基础主要容 一、能 分子热运动的动能(平动、转动、振动)和分子间相互作用势能的总和。能是状态的单值函数。 对于理想气体,忽略分子间的作用 ,则 平衡态下气体能: 二、热量 系统与外界(有温差时)传递热运动能量的一种量度。热量是过程量。 )(12T T mc Q -=)(12T T Mc M m -=) (12T T C M m K -= 摩尔热容量:( Ck =Mc ) 1mol 物质温度升高1K 所吸收(或放出)的热量。 Ck 与过程有关。 系统在某一过程吸收(放出)的热量为: )(12T T C M m Q K k -= 系统吸热或放热会使系统的能发生变化。若传热过程“无限缓慢”,或保持系统与外界无穷小温差,可看成准静态传热过程。 准静态过程中功的计算: 元功: 41 .1:60.1:73.1::2=p v v v Z v = λn v d Z 2 2π=p d kT 22πλ= n d Z v 221πλ= = kT mv e v kT m v f 22232 )2(4)(-=ππ?∞ ?=0 )(dv v f v v ? ∞ ?= 22)(dv v f v v ∑∑+i pi i ki E E E =内) (T E E E k =理 =RT i M m E 2 =PdV PSdl l d F dA ==?=

大学物理电磁学考试试题及答案

大学电磁学习题1 一.选择题(每题3分) 1.如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为: (A) E =0,R Q U 04επ= . (B) E =0,r Q U 04επ= . (C) 204r Q E επ= ,r Q U 04επ= . (D) 204r Q E επ= ,R Q U 04επ=. [ ] 2.一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍. (C) 4倍. (D) 42倍. [ ]

3.在磁感强度为B ?的均匀磁场中作一半径为r 的半球面S ,S 边线所在 平面的法线方向单位矢量n ?与B ? 的夹角为? ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) ?r 2B . . (B) 2??r 2B . (C) -?r 2B sin ?. (D) -?r 2B cos ?. [ ] 4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为V ,则此导体的霍尔系数等于 (A) IB VDS . (B) DS IBV . (C) IBD VS . (D) BD IVS . (E) IB VD . [ ] 5.两根无限长载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的导线可以自由运动,则载流I 2的导线开始运动的趋势 ? y z x I 1 I 2

大学物理下期末知识点重点总结(考试专用)

1.相对论 1、力学相对性原理和伽利略坐标变换。(1)牛顿力学的一切规律在伽利略变换下其形式保持不变,亦即力学规律对于一切惯性参考系都是等价的。(2)伽利略坐标换算。 2、狭义相对论的基本原理与时空的相对性。(1)在所有的惯性系中物理定律的表达形式都相同。(2)在所有的惯性系中真空中的光速都具有相同的量值。(3)同时性与所选择的参考系有关。(4)时间膨胀。在某一惯性参考系中同一地点先后发生的两个事件的时间间隔。(5)长度收缩。在不同的惯性系中测量出的同一物体的长度差。 3、当速度足够快时,使用洛伦兹坐标变换和相对论速度变换。但是当运动速度远小于光速时,均使用伽利略变换。 4、光的多普勒效应。 当光源相对于观察者运动时,观察者接受到的频率不等于光源实际发出的频率。 5、狭义相对论揭示出电现象和磁现象并不是互相独立的,即表现为统一的电磁场。 2.气体动理论 一.理想气体状态方程: 112212 PV PV PV C =→=; m PV R T M ' = ; P nkT = 8.31J R k mol = ;231.3810J k k -=?; 2316.02210A N mol -=?;A R N k = 二. 理想气体压强公式 2 3kt p n ε= 分子平均平动动能 1 2kt m ε= 三. 理想气体温度公式 1322kt m kT ε== 四.能均分原理 自由度:确定一个物体在空间位置所需要的独立坐标数目。 气体分子的自由度 单原子分子 (如氦、氖分子)3i =;刚性双原子分子5i =;刚性多原子分子6i = 3. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等, 其值为1kT 4.一个分子的平均动能为:k i kT ε= 五. 理想气体的内能(所有分子热运动动能 之和) 1.1m ol 理想气体i E R T = 一定量理想气体 ()2i m E R T M ν ν' == 3.热力学 一.准静态过程(平衡过程) 系统从一个平衡态到另一个平衡态,中间经历的每一状态都可以近似看成平衡态过程。 二.热力学第一定律 Q E W =?+;dQ dE dW =+ 1.气体2 1 V V W Pdv = ? 2.,,Q E W ?符号规定 3. 2121()V m V m m m dE C dT E E C T T M M ''= -=- 或 V m i C R = 三.热力学第一定律在理想气体的等值过程和绝热过程中的应用 1. 等体过程 210()V m W Q E C T T ν=?? ? =?=-?? 2. 等压过程 212121()()()p m W p V V R T T Q E W C T T νν=-=-?? ? =?+=-?? C 2 ,1 2C p m p m V m V m i C C R R γ+=+=> 热容比= 3.等温过程 212211 0T T E E m V m p Q W R T ln R T ln M V M p -=? ? ''? ===?? 绝热过程 210()V m Q W E C T T ν=?? ? =-?=--?? 绝热方程1P V C γ =, -1 2V T C γ= , 13P T C γγ--= 。 四.循环过程 特点:系统经历一个循环后,0E ?= 系 统 经 历 一 个 循 环 后 Q W =(代数和)(代数和) 正循环(顺时针)-----热机 逆循环(逆时针)-----致冷机 热机效率: 122111 1Q Q Q W Q Q Q η-= ==- 式中:1Q ------在一个循环中,系统从高温热源吸收的热量和; 2Q ------在一个循环中,系统向低温热源放 出的热量和; 12W Q Q =-------在一个循环中,系统对外 做的功(代数和)。 卡诺热机效率: 2 1 1c T η=- 式中: 1T ------高温热源温度;2T ------低温热源温度; 4. 制冷机的制冷系数: 22 12 Q = Q -Q = 定义:Q e W 卡诺制冷机的制冷系数:22 1212 Q T e Q Q T T == -- 五. 热力学第二定律 开尔文表述:从单一热源吸取热量使它完全变为有用功的循环过程是不存在的(热机效 率为100%是不可能的)。 克劳修斯表述:热量不能自动地从低温物体传到高温物体。 两种表述是等价的. 4.机械振动 一. 简谐运动 振动:描述物质运动状态的物理量在某一数值附近作周期性变化。 机械振动:物体在某一位置附近作周期性的往复运动。 简谐运动动力学特征:F kx =- 简谐运动运动学特征:2 a x ω=- 简谐运动方程: cos()x A t w j =+ 简谐 振动物体 的速度 : () sin dx v A t w w j ==-+ 加速度() 2 2cos d x a A t w w j ==-+ 速度的最大值m v A w =, 加速度的最大值2m a A w = 二. 振幅A : A 取决于振动系统的能量。 角(圆)频率 w :22T p w pn ==,取决于振动 系统的性质 对于弹簧振子 w 、对于单摆 ω相位——t w j +,它决定了振动系统的运动 状态(,x v ) 0t =的相位—初相 arc v tg x j w -= 四.简谐振动的能量 以弹簧振子为例: 222221111 k p E E E mv kx m A kA ω=+= +== 五.同方向同频率的谐振动的合成 设 ()111cos x A t ω?=+ ()222cos x A t ω?=+ 12cos()x x x A t ω?=+=+ 合成振动振幅与两分振动振幅关系为: A A 1 122 1122cos cos tg A A ???=+ 合振动的振幅与两个分振动的振幅以及它们之间的相位差有关。 () 20 12k k ?π?==±± 12A A A + )12 ??± 12A A A - 一21可以取任意值 1212 A A A A A -<<+ 5.机械波 一.波动的基本概念 1.机械波:机械振动在弹性介质中的传播。 2. 波线——沿波传播方向的有向线段。 波面——振动相位相同的点所构成的曲面 3.波的周期T :与质点的振动周期相同。 波长λ:振动的相位在一个周期内传播的距离。 波速u:振动相位传播的速度。波速与介质的性质有关 二. 简谐波 沿ox 轴正方向传播的平面简谐波的波动方 程 质点的振动速度 ] )(sin[?ωω+--=??=u x t A t y v 质点的振动加速度 2cos[()]v x a A t t u ωω??= =--+? 这是沿ox 轴负方向传播的平面简谐波的波 动 方 程 。 c o s [ ()]c o s [2()] x t x y A t A u T ω?π ? = -+=-+ cos 2()t x y A T π?λ?? =++???? 三.波的干涉 两列波 频率相同,振动方向相同,相位相同或相位差恒定,相遇区域内出现有的地方振动始终加强,有的地方振动始终减弱叫做波的干涉现象。 两列相干波加强和减弱的条件: (1) ()π π ???k r r 221 212±=---=?) ,2,1,0(???=k 时, 2 1A A A += (振幅最大,即振动加强) ()()π λ π???1221212+±=---=?k r r ) ,2,1,0(???=k 时, 2 1A A A -= (振幅最小,即振动减弱) (2)若12??=(波源初相相同)时,取 21r r δ=-称为波程差。 212r r k δλ =-=±) ,2,1,0(???=k 时, 2 1A A A +=(振动加强) () 1212λ δ+±=-=k r r ) ,2,1,0(???=k 时, 2 1A A A -=(振动减弱); 其他情况合振幅的数值在最大值12 A A +和最小值 12A A -之间。 6.光学 杨氏双缝干涉(分波阵面法干涉) 1、 x d d d r ===-=θθδtan sin r 12波程差 2、明纹位置: λ k D x d ± =),2,1,0k ( = 3、暗纹位置: 2 ) 12(λd D k x +±=),2,1,0( =k 4、相邻明(暗)纹间距 λd D x = ? 4、若用白光照射,则除了中央明纹(k=0级)是白色之外,其余明纹为彩色。 二、分振幅法干涉 1、薄膜干涉(若两束反射光中有一束发生半波损失,则光程差δ在原来的基础上再加上 2 λ ;若两束光都有半波损失或都没有,则无 需加上λ )以下结果发生在入射光垂直入射时 ?? ???=+==+ -=)(),2,1,0(12) (),2,1(2 sin 222122暗纹)(明纹 k k k k i n n d λλλ δ 2、劈尖干涉(出现的是平行直条纹) 1)明、暗条纹的条件: ?? ? ??=+==+=) (),2,1,0(2)12() (),2,1(2 2暗纹明纹 k k k k nd λλλδ 2)相邻明纹对应劈尖膜的厚度差为n 2e 1λ=-=??+k k k d d d )(图中为 3)相邻明(暗)纹间距为θλθ λn n L 2sin 2≈ = 3、牛顿环(同心环形条纹,明暗环条件同劈尖干涉) 1)明环和暗环的半径: ) () ,2,1,0()(),2,1(2)12(暗环明环 == =-=k n kR r k n R k r λ λ ③相邻明环、暗环所对应的膜厚度差为 n 21λ= -=?+k k k d d d 。 三、迈克尔逊干涉仪 1)可移动反射镜移动距离d 与通过某一参考点条纹数目N 的关系为 2 λ N d = 2)在某一光路中插入一折射率n,厚d 的透明介质薄片时,移动条纹数N 与n 、d 的关系为 21n λN d =-)( 五、夫琅禾费衍射 1、明纹条件:????? =+±==),2,1(2)12(sin 0 k k a λ??(中央明纹) 2、暗纹条件: ),2,1(sin =±=k k a λ? 3、中央明纹宽度(为1±级暗纹间距离): a 2sin 2tan 20f f f l λ??≈ == 其它暗纹宽度: 2 sin sin tan tan 111o k k k k k k l a f f f f f x x l == -=-=-=+++????? 4、半波带数: 明纹(又叫极大)为(2k+1);暗纹(又叫极小)为(2k )。 六、衍射光栅 1、光栅常数d=a(透光宽度)+b (不透光宽度)=单位长度内刻痕(夹缝)数的倒数 2、光栅方程 ) ,2,1,0(sin ) =±=+k k b a λ?( 明纹(满足光栅方程的明纹称为主极大明纹) k=0、1、2、3 称为0级、1级、2级、 3级 明纹 3、缺级 条 件 ??? ????±±±==+±±±==+±±±==++=????±=±=+主极大消失 、、如果、、如果、、如果( 1284449633364222k sin sin )k k a b a k k a b a k k a b a k b a k a k b a λ?λ?七、光的偏振 1、马吕斯定律α2 cos I =I ( α为入射偏振 光的振动方向与偏振片的偏振化方向间的夹角) 2、布儒斯特定律1 20an n n i t = , 0i 称为布儒斯特 角或起偏角。 当入射角为布儒斯特角时,反射光为垂直于入射面的线偏振光,并且该线偏振光与折射光线垂直。 7.量子力学 光电效应 光电效应方程W m h m += 2 1 νγ(式中γ表示光子 的频率,W 表示逸出功) 02 U 1e m m =ν(0U 表示遏止电压) h γ=W ( 0γ表示入射光最低频率/红限频率) 说明了光具有粒子性。 光的波粒二象性 能量: γεh = 动量:22c h m mc γ ε= = 光子动量: λγh c h mc p == = 二、康普顿效应 1、散射公式 2sin 22sin 22200θλθλλλc c m h == -=? 2、说明了光具有粒子性。 四、实物粒子的波粒二象性 1、德布罗意波 h = λ 测不准关系 2 ≥ ???x P x (一定的数值) 2、波函数 1)归一化波函数 x n a x n π ψsin 2)(= ( a x <<0) 概率密度为2 )(x n ψ? =a n dx x 0 2 1 )(ψ 粒子能 量 ) 321(2 2 、、== n h n E n 2)标准化条件 单值性,有限性,连续性

相关文档
最新文档