有源功率因数校正技术简介

合集下载

有源功率因数校正技术及控制方式分析

有源功率因数校正技术及控制方式分析

有源功率因数校正技术及控制方式分析摘要:本文深入探讨了有源功率因数校正技术及其控制方式,重点分析了不同类型的APFC电路的工作原理和性能特点,以及控制策略在改善系统性能中的作用。

通过对几种典型APFC电路的实验分析,本文展示了APFC在提高电力电子设备效率、减小谐波污染方面的巨大潜力。

关键词:有源功率因数校正;控制方式;电力电子一、引言随着电力电子技术的迅猛发展,大量非线性负载如开关电源、变频器等被广泛应用,导致电网中谐波含量增加,功率因数降低。

为了解决这一问题,有源功率因数校正技术(APFC)应运而生。

APFC技术不仅可以提高电力电子设备的功率因数,还能减小谐波对电网的污染。

二、有源功率因数校正技术原理及分类1.功率因数及有源功率因数校正的基本概念(1)功率因数是电力系统中非常重要的一个参数,它表示了电压和电流之间的相位差。

在电力系统中,功率因数的大小直接影响到系统的效率和稳定性。

当功率因数大于0时,表示电压超前电流,即正功率;当功率因数等于0时,表示电压和电流同相,即零功率;当功率因数小于0时,表示电压滞后电流,即负功率[1]。

(2)有源功率因数校正是一种电力电子学中的技术,它通过控制电源的相位差来调整系统的功率因数。

这种技术可以有效地提高系统的效率和稳定性,减少系统的损耗。

有源功率因数校正的基本原理是利用一个可控的电源,通过控制这个电源的相位差,来调整系统的功率因数[2]。

2.有源功率因数校正技术分类及其工作原理(1)APFC电路(AC-DC Power Factor Correction Circuit)是一种用于校正交流电压波形的电路,其作用是将交流电压转换成直流电压,以便于后续的电压调节和稳定。

APFC电路的分类有多种,根据不同的应用场景和需求,可以分为不同的类型。

(2)另外一种常见的APFC电路是电流控制型APFC电路。

电流控制型APFC电路的工作原理是通过对输入电流的控制来实现对输出电压的校正和调节。

现代逆变电源中有源功率因数校正技术的应用

现代逆变电源中有源功率因数校正技术的应用

现代逆变电源中有源功率因数校正技术的应用
一、引言
 由于对性能要求的不断提高,特别是当前“绿色”电源的呼声越来越高,现代逆变器系统对功率因数校正和电流谐波抑制提出的更高的要求。

本文对功率因数校正在现代逆变电源中的应用作了简要介绍。

分析比较了几种带有PFC功能的逆变器构成方案,分析结果表明带单级隔离型PFC电路的两级逆变器具有更高的可靠性,更高的效率和更低的成本。

 二、现代逆变电源系统的组成和结构
 随着各行各业控制技术的发展和对操作性能要求的提高,许多行业的用电设备都不是直接使用通用交流电网提供的交流电作为电能源,而是通过各种形式对其进行变换,从而得到各自所需的电能形式。

现代逆变系统就是一种通过整流和逆变组合电路,来实现逆变功能的电源系统。

逆变系统除了整流电路和逆变电路外,还要有控制电路、保护电路和辅助电路等。

现代逆变系统基本结构如图1所示。

 图1 逆变系统基本结构框图
 现代逆变系统各部分功能如下:
 1. 整流电路:整流电路就是利用整流开关器件,如半导体二极管、晶闸管(可控硅)和自关断开关器件等,将交流电变换为直流电。

除此之外,整流电路还应具有抑制电流谐波和功率因数调整功能。

 2. 逆变电路:逆变电路的功能是将直流电变换成交流电,即通过控制逆变电路的工作频率和输出时间比例,使逆变器的输出电压或电流的频率和幅值按照人们的意愿或设备工作的要求来灵活地变化。

单相有源功率因数校正电路的设计与实现

单相有源功率因数校正电路的设计与实现

单相有源功率因数校正电路的设计与实现引言在电力系统中,功率因数是衡量电路有用功率和视在功率之间关系的一个重要参数。

功率因数不高会导致电网负荷增加、能源浪费等问题。

为了解决这些问题,我们需要设计和实现一个单相有源功率因数校正电路。

本文将详细介绍单相有源功率因数校正电路的设计原理、实现方法以及相关注意事项。

设计原理单相有源功率因数校正电路主要通过引入合适的补偿电流来改善系统的功率因数。

其基本原理是利用控制器对负载端的电流进行采样,并通过控制信号驱动逆变器输出合适的补偿电流。

具体来说,该校正电路包含以下几个主要组成部分:1.采集模块:用于采集负载端的电流信号。

2.控制模块:通过对采集到的信号进行处理,生成控制信号。

3.逆变器模块:将控制信号转换为逆变器输出的补偿电流。

4.滤波模块:对逆变器输出进行滤波处理,以确保补偿电流的稳定性。

5.反馈模块:将逆变器输出的补偿电流反馈到负载端,实现功率因数校正闭环控制。

设计步骤步骤一:采集模块设计采集模块主要用于采集负载端的电流信号。

常用的采集方法有两种:传感器式采集和非传感器式采集。

1.传感器式采集:通过电流互感器或霍尔传感器等,将负载端的交流电流转化为低频信号。

然后通过滤波和放大电路,将信号处理成微弱但具有较高精度的直流电压信号。

2.非传感器式采集:利用测量负载端两个相邻导线之间的压差来计算负载端的电流值。

这种方法不需要直接接触负载线路,可以减少对系统的干扰。

步骤二:控制模块设计控制模块主要对采集到的负载端电流信号进行处理,并生成相应的控制信号。

主要包括以下几个步骤:1.信号放大与滤波:对采集到的低频信号进行放大和滤波处理,以提高信号质量和减小干扰。

2.采样与比较:将处理后的信号与参考信号进行比较,得到误差信号。

3.控制算法:利用控制算法(如PID控制)对误差信号进行处理,生成控制信号。

步骤三:逆变器模块设计逆变器模块主要将控制模块生成的控制信号转换为逆变器输出的补偿电流。

有源PFC校正基本原理解析_图文

有源PFC校正基本原理解析_图文

PFC开关电源功率因数校正原理PFC开关电源功率因数校正原理一、什么是功率因数补偿,什么是功率因数校正:功率因数的定义为有功功率与视在功率的比值.功率因素补偿:这项技术主要是针对因具有感性负载的交流用电器具的电压和电流不同相(图1而引起的供电效率低下,提出的改进方法(由于感性负载的电流滞后所加电压,电压和电流的相位不同,使供电线路的负担加重,导致供电线路效率下降,这就要求在感性用电器具上并联一个性质相反的电抗元件.用以调整该用电器具的电压、电流相位特性.例如:当时要求所使用的40W日光灯必须并联一个4.75μF的电容器.用电容器并联在感性负载的两端,利用电容上电流超前电压的特性,用以补偿电感上电流滞后电压的特性,使总的特性接近于阻性,从而改善效率低下的方法叫做功率因数补偿(交流电的功率因数可以用电源电压与负载电流两者相位角的余弦函数值cosφ表示。

图1 在具有感性负载中供电线路中电压和电流的波形常规开关电源功率因数低是由于开关电源都是在整流后,用一个大容量的滤波电容使输出电压平滑,因此负载特性呈现容性.这就造成了交流220V在整流后,由于滤波电容的充、放电作用,在其两端的直流电压上出现略呈锯齿波的纹波.滤波电容上电压的最小值远非为零,与其最大值(纹波峰值相差并不多.图2 全波整流电压和AC输入电流波形因为根据整流二极管的单向导电性,只有在AC线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止.也就是说,在AC线路电压的每个半周期内,只是在其峰值附近,二极管才会导通.虽然AC输入电压仍大体保持正弦波波形,但AC输入电流却呈高幅值的尖峰脉冲,如图2所示.这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降.在正半个周期内(180º,整流二极管的导通角大大小于180º,甚至只有30º~70º.由于要保证负载功率的要求,在极窄的导通角期间,会产生极大的导通电流,使供电电路中的供电电流呈脉冲状态.它不仅降低了供电的效率,更为严重的是,它在供电线路容量不足或电路负载较大时,会产生严重的交流电压波形畸变(图3,并产生多次谐波,从而干扰了其它用电器具的正常工作(这就是电磁干扰-EMI和电磁兼容-EMC问题。

功率因数校正(PFC)技术综述

功率因数校正(PFC)技术综述

功率因数校正(PFC)技术综述摘要:消除电网谐波污染,提高功率因数是电力电子领域研究的一个重大且很有实际价值的课题。

本文介绍了电网谐波污染问题和谐波抑制的方法;指出了功率因数校正的目的和意义;回顾了功率因数校正技术的发展概况、研究现状和未来的发展方向。

1 引言高效无污染地利用电能是目前世界各国普遍关注的问题。

根据统计,实际应用中有70%以上的电能要经过电力电子装置进行转换才能被利用,而在电力电子换流装置中,整流器约占90%,且大多数采用了不控或相控整流,功率因数低,向电网注入大量高次谐波,极大地浪费了电能。

电力系统谐波的来源主要是电网中的电力电子设备,随着此类设备装置的广泛应用,给公用电网造成严重污染,谐波和无功问题成为电器工程领域关注的焦点问题。

为了减轻电力污染的危害程度,许多国家纷纷制定了相应的标准,如国际电工委员会的谐波标准IEEE555-2和IEC-1000-3-2等,这些都有力地促进了学术界和工程界对谐波抑制的研究。

解决谐波污染的主要途径有两条:一是对电网实施谐波补偿,二是对电力电子设备自身进行改进。

前者包括对电力系统的无源滤波和有源滤波(APF),后者包括对电力电子装置的无源和有源功率因数校正,相比而言,后者是积极的方法。

电力电子装置的有源功率因数校正(APFC或PFC)从上个世纪80年代中后期以来逐渐成为电力电子技术领域研究的热点。

功率因数,是对电能进行安全有效利用的衡量标准之一。

从最初的因为大量感性负载投入电网带来的无功损耗,到后来的因为各种非线性整流装置投入电网带来的谐波污染,再到现在的电力电子装置尤其是开关电源的广泛使用而带来的大量谐波对电网的危害,功率因数校正技术走过了从无功功率补偿到无源、有源滤波、再到有源功率因数校正和单位功率因数变换技术的发展历程。

功率因数校正技术的发展,成为电力电子技术发展日益重要的组成部分,并成为电力电子技术进一步发展的重要支撑。

目前,单相功率因数校正技术的研究比较多,在电路拓扑和控制方面都相当成熟,而三相功率因数校正的研究则相对较晚较少。

MC33262有源功率因数校正技术(APFC)

MC33262有源功率因数校正技术(APFC)

有源功率因数校正技术(APFC)在开关电源中的应用研究近年来,开关电源因效率高,成本低,而在各个领域获得了广泛的应用。

但是采用传统的非控整流开关电源,由于输入阻抗呈容性,网侧输入电压和输入电流间存在较大相位差,加上输入电流严重非正弦,并呈脉冲状,故功率因数极低,谐波分量很高,给电力系统带来了严重的谐波污染。

为此,国际电工委员会早在90年代初就制定了IEC1000-3-2标准,严格限定设备的功率因数必须接近于1,提高开关电源的功率因数已经成为国内电源厂商的当务之急。

由于输入端有整流元件和滤波电容,单相AC/DC开关电源及大部分整流电源供电的电子设备,其电网侧功率因数仅为0.65左右。

采用有源功率校正技术后可提高到0.95~0.99,既治理了电网的谐波污染,又提高了开关电源的整体效率。

有源功率因数校正主要是在整流滤波和DC/DC功率级之间串入一个有源PFC作为前置级,用于提高功率因数和实现DC/DC级输入的预稳,用作PFC电路的功率级基本上是升压型Boost变换器,它具有效率高、电路简单、适用电源功率高等优点。

开关电源同时是一个重要的电磁干扰源,所以减少和抑制开关电源的电磁发射成为3C认证中的关键,也是开关电源设计中的重要课题。

开关电源中的功率开关管在高频下的通、断过程产生大幅度的电压和电流跳变,从而产生强大的电磁骚扰。

滤波是压缩干扰频谱的基本手段,抗EMI滤波器是EMC技术的基础元器件之一。

在开关电源的滤波器设计中,磁性元件中电感的材料选取及电感取值的设定,对于开关电源的电磁兼容设计至关重要。

APFC控制技术原理APFC技术主要采用一个变换器串入整流滤波与DC/DC变换器之间,通过特殊的控制,一方面强迫输入电流跟随输入电压,从而实现单位功率因数;另一方面反馈输出电压使之稳定,从而使DC/DC变换器的输入实现预稳。

功率因数补偿控制专用芯片MC33262的电流控制方式是峰值电流控制方式。

它的基本思想是采用一个正弦基准电流作为上限,由输出检测信号经误差放大后与输入全波电压的检测信号相乘获得,下限则为零。

第8章 有源功率因数校正技术

第8章 有源功率因数校正技术
现代电力电子学
第8章 有源功率因数校正技术
第8章 有源功率因数校正技术 8.1 单相有源功率因数校正原理
8.2 CCM单相BOOST功率因数校正变换器
8.3 DCM单相BOOST功率因数校正变换器 8.4 其他单相功率因数校正变换技术 8.5 三相PFC原理 8.6 本章小结
8.1 单相有源功率因数校正原理 8.1.1 电阻负载模拟
8.3.1 CRM单相BOOST功率因数校正变换器电路分析
8.3.1 CRM单相BOOST功率因数校正变换器电路分析
8.3.1 CRM单相BOOST功率因数校正变换器电路分析
图8-26 开关频率极小值与 输入电压有效值的关系
8.3.1 CRM单相BOOST功率因数校正变换器电路分析
8.3.1 CRM单相BOOST功率因数校正变换器电路分析
8.4.3 窗口控制功率因数校正变换电路
图8-37 窗口功率因数校正变换电路实现方式
8.5 三相PFC原理 8.5.1 三相单开关Boost PFC电路的控制
8.5.2 三相六开关PFC电路的控制
8.5.3 其他三相PFC电路
8.5 三相PFC原理
图8-38
三相单开关Boost PFC电路
8.5.1 三相单开关Boost PFC电路的控制 1.工作原理
8.3.2 CRM单相BOOST功率因数校正变换器的控制
图8-27 CRM单相BOOST功率因数校正 变换器的控制框图
8.4 其他单相功率因数校正变换技术 8.4.1 无桥型功率因数校正变换电路
8.4.2 低频开关功率因数校正变换电路
8.4.3 窗口控制功率因数校正变换电路
8.4.1 无桥型功率因数校正变换电路
8.2.2 CCM单相BOOST功率因数校正变换器的控制

有源功率因数校正

有源功率因数校正

有源功率因数校正
• 根据APFC拓扑分类
• 降压式 • 升/降压式 • 反激式 • 升压式
有源功率因数校正
• 降压式
这种电路的主要优点是:开关管所受的最大电压为输人电压的最大值,因此 开关管的电压应力较小;当后级短路时,可以利用开关管实现输出短路保护。 该电路的主要缺点是:由于只有在输人电压高于输出电压时,该电路才能工 作,所以在每个正弦周期中,该电路有一段因输人电压低而不能正常工作,输出 电压较低,在相同功率等级时,后级DC/DC变换器电流应力较大;开关管门极驱动 信号地与输出地不同,驱动较复杂,加之输人电流断续,功率因数不可能提高很 多,因此很少被采用。
有源功率因数校正
•Байду номын сангаас升降压式
该电路的优点是:既可对输人电压升压又可以降压,因此在整个输入正弦周期都可以 连续工作;该电路输出电压选择范围较大,可根据一级的不同要求设计;利用开关管可实现 输出短路保护。 该电路的主要缺点有:开关管所受的电压为输入电压与输出电压之和,因此开关管的 电压应力较大;由于在每个开关周期中,只有在开关管导通时才有输入电流,因此峰值电流 较大;开关管门极驱动信号地与输出地不同,驱动比较复杂;输出电压极性与输入电压极性 相反,后级逆变电路较难设计,因此也采用得较少。
有源功率因数校正
• 有源功率因数校正(APFC)电路是在整流器和负载之间接入 一个DC/DC开关变换器,应用电压电流反馈技术,使输入端 电流波形跟随输入正弦电压波形,从而使输入电流的波形 也接近正弦波,以达到提高功率因数的目的.由于在此电路 中使用了有源器件,所以称为有源功率因数校正电路。
图1 有源功率因数校正原理
有源功率因数校正
有源功率因数校 正
小组成员:徐勇、常惜阳、付美真、王启龙、王嘉 炜、陈玉民、管红立、瞿林飞、田小龙、王彦刚
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有源功率因数校正技术简介摘要:随着电力电子装置的使用,电网中的谐波含量越来越多,功率因数校正技术在近些年来成为研究热点,可分为有源功率校正和无源功率校正。

其中,有源功率校正装置具有体积小、效率高等优点,本文对有源功率校正技术在buck、boost、buck-boost、flyback以及软开关等电路拓扑中的应用做了简单的介绍。

关键词:有源功率因数校正、buck、boost、buck-boost、软开关1引言近20年来电力电子技术得到了飞速的发展,已广泛应用到电力、冶金、化工、煤炭、通讯、家电等领域。

电力电子装置多数通过整流器与电力网接口,经典的整流器是由二极管或晶闸管组成的一个非线性电路,在电网中产生大量电流谐波和无功污染了电网,成为电力公害。

电力电子装置已成为电网最主要的谐波源之一。

20世纪90年代以来,世界上许多国家和国际组织都对电力电子产品的功率因数及谐波成分作了限制。

为了使电力电子产品的功率因数及谐波成分满足上述的规定和标准,可在整流桥和滤波电容之间加一级用于功率因数校正的功率变换电路,使输入电流为正弦波,从而提高功率因数,这就是有源功率因数校正技术。

有源功率因数校正(Active Power Factor Correction,简称APFC)技术由于变换器工作在高频开关状态,而具有体积小、重量轻、效率较高、输人电压范围宽、THD小和功率因数高等优点,因此在现代电力电子技术中得到了广泛的应用。

2 有源功率因数校正的基本原理APFC又称为有源开关型补偿法,现今得到推广的APFC是DC/DC变换型电流整形方法,由于其主体为高频DC/DC变换器,所以也称为高频APFC。

高频APFC的基本思想是:将输入交流电压进行全波整流,然后对全波直流电压进行DC/DC变换,通过适当控制,使输入电流平均值自动跟踪全波直流电压的基准,且保持输出电压稳定,从而实现恒压输出和单位功率因数。

图1有源功率因数校正原理框图图1为这种电路的原理框图,其中,整流器为单相桥式不可控整流器,主电路采用DC/DC 变换电路,控制电路内部包含有一个电压误差放大器、一个电流误差放大器、一个模拟乘法器和一个固定频率的PWM控制器。

可以看出,调节器采用了电压、电流双闭环控制方式,电流反馈网络的取样信号是升压变换器的电感电流,电压反馈网络的取样信号是调节器的输出电压。

现对这种电路的工作原理加以分析:单相220V、50HZ交流电经过桥式整流后得到100HZ的单相双半波正弦电压信号,此电压波形作为PFC控制器的输入电流的参考波形,输入到乘法器,为了保证输出电压恒定,将输出电压通过电压反馈网络也引入乘法器,经过乘法器运算后,作为电流波形的参考值,并与实际取样的电流进行比较后,通过PWM控制器产生PWM驱动信号,控制升压变换器的输出电流和电压。

由于采用了闭环控制,将升压变换器的实际电流通过反馈网络引入电流误差放大器,保证了升压变换器的电流能够准确跟踪经过乘法器运算所规定的电流值。

假定PFC的整个控制环节都是理想的,则输入电流波形就能够完全跟踪电压波形的变化,这样从电源输入端来看,电路的负载为纯粹的线性电阻,电路的功率因数等于1,实现了功率因数校正的功能。

有源功率因数校正按主电路的形式来分,可分为单相硬开关校正电路、单相软开关校正电路和三相校正电路。

下面,对各自的工作原理加以分析,并指出其各自的优缺点。

3 单相硬开关有源校正主电路的分析非隔离型单相硬开关有源功率因数校正电路主要有升压型(Boost)、降压型(Buck)、升降压型(Buck-Boost)等,下面,对这几种电路的工作原理分别加以分析。

3.1 Boost-PFC主电路图2为升压型PFC主电路的原理图,这种电路的工作过程如下:图2Boost 型PFC主电路原理图当开关管Q导通时,电流IL流过电感线圈L,在电感线圈未饱和前,电流线性增加,电能以磁能的形式储存在电感线圈中,此时,电容C放电为负载提供能量;当开关管Q关断时,由于线圈中的磁能将改变线圈L两端的电压极性,以保持其电流IL不变。

这样,线圈L 转化成的电压VL与电源VIN串联,以高于输出电压向电容和负载供电。

这种电路的优点是输入电流完全连续,并且在整个输入电压的正弦周期都可以调制,因此可获得很高的功率因数;电感电流即为输入电流,容易调节;开关管门极驱动信号地与输出共地,驱动简单;输入电流连续,开关管的电流峰值较小,对输入电压变化适应性强,适用于网压变化特别大的场合。

其主要缺点为输出电压必须大于输入电压的最大值,所以输出电压比较高;不能利用开关管实现输出短路保护。

3.2 Buck-PFC主电路图3为降压型主电路的原理图,这种电路的工作过程如下:图3Buck型主电路原理图当开关管Q导通时,电流IL流过电感线圈,在电感线圈未饱和前,电流IL线性增加;当开关管Q关断时,由于线圈中的磁能将改变线圈两端的电压极性,以保持IL不变。

由于变换器输出电压小于电源电压,故称它为降压变换器。

这种电路的主要优点是开关管所受的最大电压为输入电压的最大值,因此开关管的电压应力比较小;后级短路时,可以利用开关管实现输出短路保护。

该电路的主要缺点是:由于输入电压大于输出电压,该电路才能工作,所以在每个输入正弦周期中,该电路有一段因输入电压低而不能正常工作,输出电压较低,相同功率等级时,后级DC/DC变换器电流应力较大,开关管门极驱动信号地与输出地不同,驱动比较复杂,输入电流断续,因此功率因数不可能提高很多。

3.3 Buck-Boost-PFC主电路图4为升降压型主电路的原理图,这种电路的工作过程如下:图4Buck-Boost 型主电路原理图当开关管Q导通时,电流IIN流过电感线圈,L储存能量,此时,电容C放电为负载提供能量;当开关Q断开时,IL有减小趋势,电感线圈产生的自感电势反向,二极管D正向偏压而导通,电感释放其储存的能量,向电容C和负载供电。

该电路的优点有:即可对输入电压升压,又可以降压,因此在整个输入正弦周期都可以连续工作;该电路输出电压选择范围较大,可根据后级的不同的要求设计;利用开关管可以实现输出短路保护。

该电路的主要缺点有:开关管所受的电压为输入电压与输出电压之和,因此开关管的电压应力较大;由于每个开关周中,只有在开关管导通时才有输入电流,因此峰值电流较大;开关管门极驱动信号地与输出地不同,驱动比较复杂;输出电压极性与输入电压极性相反,后级逆变电路较难设计。

上面介绍的非隔离型功率因数校正主电路,一般工作在电感电流连续模式,下面介绍的隔离型功率因数校正电路,工作在电感电流不连续模式,用一般的电压型控制,这种主电路拓扑主要适用于小功率应用场合。

3.4 Forward-PFC主电路图5为正激型主电路的原理图,这种电路的工作过程如下:图5Forward型主电路原理图当开关管Q导通时,二极管D1正偏压而导通,电网向负载提供能量,输出电感L储能。

当开关管Q关断时,电感L储存的能量通过续流二极管D2向负载释放。

这种电路的优点是功率级电路简单,缺点是要增加一个磁复位回路来释放正激期间电感中的储能。

3.5 Fly-back-PFC主电路图6为反激型主电路的原理图,工作过程如下:图6Fly-back型主电路原理图当开关管Q导通时,输入电压加到高频变压器B1的原边绕组上,由于变压器副边整流二极管D1反接,副边绕组没有电流流过,此时,电容C放电向负载提供能量。

当开关管Q关断时,绕组上的电压极性反向,二极管D1正偏导通,开关管导通期间储存在变压器中的能量通过二极管D1向负载释放。

这种电路的优点是功率级电路简单,具有过载保护功能。

4 单相软开关有源校正主电路的分析单相软开关有源校正主电路可分为零电流开关(ZCS)变换器、零电压开关(ZVS) 变换器、零电流转换(ZCT) 变换器、零电压转(ZVT)变换器、有源钳位ZVS变换器,下面对这几种电路的工作原理加以分析。

4.1 零电流开关ZCS-PFC主电路Buck型ZCS- PFC主电路如图7所示,这种电路的工作过程如下:图7Buck型ZCS-PFC主电路原理图初始时刻,主开关管S1在谐振电感Lr作用下零电流导通,电感电流iLr在输入电压Vin 的作用下线性上升,当iLr 等于输出电流I0 时,续流二极管D在零电流下自然关断;D关断之后,谐振电感Lr与谐振电容Cr开始谐振,经过半个谐振周期,Lr上电流iLr以谐振方式再次达到I0,谐振电容电压VCr上升到2Vin,此时由于S2处于关断状态,故iLr和Cr将保持在该值上,无法继续谐振。

此状态的持续时间由电路的PWM控制决定。

当需关断主开关管S1时,先开通辅助开关管S2(在Lr作用下零电流导通),Lr与Cr再次谐振,当iLr谐振到零时,D1导通,iLr继续反方向谐振并到零。

此期间,S1可在零电流零电压下完成关断过程。

此后,VCr在I 0作用下衰减到零,D自然导通。

S2可在此后至下一周期来之前以零电压零电流方式完成关断过程。

从上述分析来看:ZCS变换电路中所有开关管及二极管都是在零电压或零电流下完成通断的。

且主开关管电压应力低。

其缺点是主开关管电流应力大,续流二极管电压应力大,由于谐振电感在主功率能量的传递通路上,因此ZCS条件与输入电压、负载等有很大的关系。

4.2 零电压开关ZVS-PFC主电路Boost型ZVS -PFC主电路如图8所示,这种电路的工作过程如下:图8Boost型ZVS- PFC主电路原理图初始时刻,主开关管S1导通并流过负载电流I0。

当S1在谐振电容Cr作用下零电压关断后,输出电流迅速从S1转移到Cr 上,Cr两端电压VCr线性上升。

当VCr上升到输入电压Vin时,二极管D导通。

谐振电感Lr与谐振电容Cr开始谐振,电感电流iLr以谐振方式衰减,电容电压以谐振方式上升。

当iLr下降到零后,由于辅助开关管S2不导通,iLr将保持在零态,电容电压VCr达到最大值,并保持在该值上。

这个状态的持续时间由电路输出电压的PWM控制要求确定。

当需导通主开关管S1时,首先导通辅助开关管S2(在零电流下导通),Lr与Cr再次发生谐振。

当VCr谐振到零时,D1导通,iLr流过D1逐渐衰减到零。

在此期间,S1可以在零电压下导通。

另外,在D1导通后的任何时刻,S2都可以在零电流下关断,iLr过零后,将在输入电压的作用下线性上升,当iLr上升到时I0,续流二极管D自然关断,一个完整的开关周期结束。

从上述分析可以看出,在此电路中,所有的开关管及二极管都是在零电压或零电流条件下完成通断的。

另外,电路可以以PWM方式来调节输出电压。

主开关管电流应力低。

其缺点是:主开关管电压应力大,且与负载有关。

4.3 零电流转换ZCT-PFC主电路Boost型ZCT- PFC主电路如图9所示,这种电路的工作过程如下:图9Boost型ZCT -PFC主电路原理图在每次主开关管S1关断之前,首先应导通辅助开关管S2,使谐振网络谐振,当流过S1的电流谐振为零后,关断主开关管S1。

相关文档
最新文档