学海导航高三数学人教B版文科第一轮总复习训练4.25解三角形的实际应用(含答案详析)

合集下载

高中数学解三角形应用举例(有答案)

高中数学解三角形应用举例(有答案)

解三角形应用举例一.选择题(共19小题)1.(2014•海南模拟)如图,已知A,B两点分别在河的两岸,某测量者在点A所在的河岸边另选定一点C,测得AC=50m,∠ACB=45°,∠CAB=105°,则A、B两点的距离为()A.m B.m C.m D.m2.(2014•海淀区二模)如图所示,为了测量某湖泊两侧A、B间的距离,李宁同学首先选定了与A、B 不共线的一点C,然后给出了三种测量方案:(△ABC的角A、B、C所对的边分别记为a、b、c):①测量A、C、b;②测量a、b、C;③测量A、B、a;则一定能确定A、B间距离的所有方案的序号为()A.①②B.②③C.①③D.①②③3.(2014•重庆一模)在O点测量到远处有一物体在做匀速直线运动,开始时该物体位于P点,一分钟后,其位置在Q点,且∠POQ=90°,再过两分钟后,该物体位于R点,且∠QOR=30°,则tan∠OPQ的值为()A.B.C.D.4.(2014•成都三模)在一条东西走向的水平公路的北侧远处有一座高塔,塔底与这条公路在同一水平面上,为了测量该塔的高度,测量人员在公路上选择了A、B两个观测点,在A处测得该塔底部C在西偏北α的方向上,在B处测得塔底C在西偏北β的方向上,并测得塔顶D的仰角为γ,已知AB=a,0<γ<β<α<,则此塔高CD为()B.tanγA.tanγC.D.tanγtanγ5.(2014•浙江模拟)如图,在铁路建设中,需要确定隧道两端的距离(单位:百米),已测得隧道两端点A,B到某一点C的距离分别为5和8,∠ACB=60°,则A,B之间的距离为()A.7B.10C.6D.86.(2014•房山区一模)如图,有一块锐角三角形的玻璃余料,欲加工成一个面积不小于800cm2的内接矩形玻璃(阴影部分),则其边长x(单位:cm)的取值范围是()A.[10,30]B.[25,32]C.[20,35]D.[20,40]7.(2014•濮阳一模)如图所示,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°相距10海里C处的乙船,乙船立即朝北偏东θ+30°角的方向沿直线前往B处营救,则sinθ的值为()A.B.C.D.8.(2014•成都三模)某公司要测量一水塔CD的高度,测量人员在该水塔所在的东西方向水平直线上选择A,B两个观测点,在A处测得该水塔顶端D的仰角为α,在B处测得该水塔顶端D的仰角为β,已知AB=a,0<β<α<,则水塔CD的高度为()A .B.C.D.9.(2014•怀化一模)在等腰Rt△ABC中,AB=AC=4,点P是边AB上异于A,B的一点,光线从点P 出发,经BC,CA反射后又回到原来的点P.若,则△PQR的周长等于()A.B.C.D.10.(2012•珠海一模)台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,则B城市处于危险区内的时间为()A.B.1小时C.D.2小时11.(2011•宝鸡模拟)一质点受到平面上的三个力F1,F2,F3(单位:牛顿)的作用而处于平衡状态.已知D成120°角,且y=g(x)的大小分别为1和2,则有()A.F1,F3成90°角B.F1,F3成150°角C.F2,F3成90°角D.F2,F3成60°角12.(2011•大连二模)已知A船在灯塔C北偏东75°且A到C的距离为3km,B船在灯塔C西偏北15o 且B到C的距离为km,则A,B两船的距离为()A.5km B.km C.4km D.km13.(2011•安徽模拟)如图,在山脚下A测得山顶P的仰角为α,沿倾斜角为β的斜坡向上走a米到达B,在B处测得山顶P的仰角为γ,则山高PQ为()A.B.C.D.14.(2010•武昌区模拟)某人朝正东方向走xkm后,向右转150°,然后朝新方向走3km,结果他离出发点恰好,那么x的值为()A.2或B.2C.D.315.(2010•江门一模)海事救护船A在基地的北偏东60°,与基地相距海里,渔船B被困海面,已知B距离基地100海里,而且在救护船A正西方,则渔船B与救护船A的距离是()A.100海里B.200海里C.100海里或200海里D.海里16.(2010•武汉模拟)飞机从甲地以北偏西15°的方向飞行1400km到达乙地,再从乙地以南偏东75°的方向飞行1400km到达丙地,那么丙地距甲地距离为()A.1400km B.700km C.700km D.1400km17.(2010•石家庄二模)如图,一条宽为a的直角走廊,现要设计一辆可通过该直角走廊的矩形面平板车,其宽为b(0<b<a).则该平板车长度的最大值为()A.B.C.D.18.(2009•韶关二模)北京2008年第29届奥运会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为米(如图所示),则旗杆的高度为()A.10米B.30米C.10米D.米19.(2009•温州一模)北京2008年第29届奥运会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,看台上第一排和最后一排的距离米(如图所示),旗杆底部与第一排在一个水平面上,已知国歌长度约为50秒,升旗手匀速升旗的速度为()A.(米/秒)B.(米/秒)C.(米/秒)D.(米/秒)二.填空题(共7小题)20.(2014•重庆模拟)如图,割线PBC经过圆心O,PB=OB=1,PB绕点O逆时针旋120°到OD,连PD 交圆O于点E,则PE=_________.21.(2014•南昌模拟)已知△ABC中,角A,B,C所对应的边的边长分别为a,b,c,外接圆半径是1,且满足条件2(sin2A﹣sin2C)=(sinA﹣sinB)b,则△ABC面积的最大值为_________.22.(2014•韶关二模)一只艘船以均匀的速度由A点向正北方向航行,如图,开始航行时,从A点观测灯塔C的方位角(从正北方向顺时针转到目标方向的水平角)为45°,行驶60海里后,船在B点观测灯塔C的方位角为75°,则A到C的距离是_________海里.23.(2014•潍坊二模)如图所示,位于东海某岛的雷达观测站A,发现其北偏东45°,与观测站A距离20海里的B处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A东偏北θ(0°<θ<45°)的C处,且cosθ=,已知A、C两处的距离为10海里,则该货船的船速为_________海里/小时.24.(2014•潍坊三模)如图,C、D是两个小区所在地,C、D到一条公路AB的垂直距离分别为CA=1km,DB=2km,A、B间的距离为3km,某公交公司要在A、B之间的某点N处建造一个公交站点,使得N对C、D两个小区的视角∠CND最大,则N处与A处的距离为_________km.25.(2014•台州一模)为了测量A,C两点间的距离,选取同一平面上B,D两点,测出四边形ABCD 各边的长度(单位:km)如图所示,且∠B+∠D=180°,则AC的长为_________km.m/s的速率,从路灯在地面上的射影点C处,沿某直线离开路灯,那么人影长度的变化速率v为_________m/s.三.解答题(共4小题)27.(2014•广州模拟)如图,某测量人员,为了测量西江北岸不能到达的两点A,B之间的距离,她在西江南岸找到一个点C,从C点可以观察到点A,B;找到一个点D,从D点可以观察到点A,C;找到一个点E,从E点可以观察到点B,C;并测量得到数据:∠ACD=90°,∠ADC=60°,∠ACB=15°,∠BCE=105°,∠CEB=45°,DC=CE=1(百米).(1)求△CDE的面积;(2)求A,B之间的距离.28.(2014•福建模拟)如图,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M、N (异于村庄A),要求PM=PN=MN=2(单位:千米).如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).29.(2010•福建)某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;(Ⅲ)是否存在v,使得小艇以v海里/小时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v的取值范围;若不存在,请说明理由.30.在平地上有A、B两点,A在山的正东,B在山的东南,且在A的西偏南65°距离为300米的地方,在A测得山顶的仰角是30°,求山高(精确到10米,sin70°=0.94).2014年12月27日高中数学解三角形应用举例参考答案与试题解析一.选择题(共19小题)1.(2014•海南模拟)如图,已知A,B两点分别在河的两岸,某测量者在点A所在的河岸边另选定一点C,测得AC=50m,∠ACB=45°,∠CAB=105°,则A、B两点的距离为()A.m B.m C.m D.m考点:解三角形的实际应用.专题:应用题;解三角形.分析:依题意在A,B,C三点构成的三角形中利用正弦定理,根据AC,∠ACB,B的值求得AB解答:解:由正弦定理得,∴AB===50,∴A,B两点的距离为50m,故选:D.点评:本题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.2.(2014•海淀区二模)如图所示,为了测量某湖泊两侧A、B间的距离,李宁同学首先选定了与A、B 不共线的一点C,然后给出了三种测量方案:(△ABC的角A、B、C所对的边分别记为a、b、c):①测量A、C、b;②测量a、b、C;③测量A、B、a;则一定能确定A、B间距离的所有方案的序号为()A.①②B.②③C.①③D.①②③考点:解三角形的实际应用.专题:应用题;解三角形.分析:根据图形,可以知道a,b可以测得,角A、B、C也可测得,利用测量的数据,求解A,B两点间的距离唯一即可.解答:解:对于①③可以利用正弦定理确定唯一的A,B两点间的距离.对于②直接利用余弦定理即可确定A,B两点间的距离.故选:D.点评:本题以实际问题为素材,考查解三角形的实际应用,解题的关键是分析哪些可测量,哪些不可直接测量,注意正弦定理的应用.3.(2014•重庆一模)在O点测量到远处有一物体在做匀速直线运动,开始时该物体位于P点,一分钟后,其位置在Q点,且∠POQ=90°,再过两分钟后,该物体位于R点,且∠QOR=30°,则tan∠OPQ的值为()A.B.C.D.考点:解三角形的实际应用.专题:计算题;解三角形.分析:根据题意设PQ=x,可得QR=x,∠POQ=90°,∠QOR=30°,∠OPQ+∠R=60°.算出∠R=60°﹣∠OPQ,分别在△ORQ、△OPQ中利用正弦定理,计算出OQ长,再建立关于∠OPQ的等式,解之即可求出tan∠OPQ的值.解答:解:根据题意,设PQ=x,则QR=2x,∵∠POQ=90°,∠QOR=30°,∴∠OPQ+∠R=60°,即∠R=60°﹣∠OPQ在△ORQ中,由正弦定理得∴OQ==2xsin(60°﹣∠OPQ)在△OPQ中,由正弦定理得OQ=×sin∠OPQ=xsin∠OPQ∴2xsin(60°﹣∠OPQ)=xsin∠OPQ∴2sin(60°﹣∠OPQ)=sin∠OPQ∴=sin∠OPQ整理得cos∠OPQ=2sin∠OPQ,所以tan∠OPQ==.故选:B点评:本题考查利用正弦定理解决实际问题,要把实际问题转化为数学问题,利用三角函数有关知识进行求解是解决本题的关键.4.(2014•成都三模)在一条东西走向的水平公路的北侧远处有一座高塔,塔底与这条公路在同一水平面上,为了测量该塔的高度,测量人员在公路上选择了A、B两个观测点,在A处测得该塔底部C在西偏北α的方向上,在B处测得塔底C在西偏北β的方向上,并测得塔顶D的仰角为γ,已知AB=a,0<γ<β<α<,则此塔高CD为()B.tanγA.tanγC.D.tanγtanγ考点:解三角形的实际应用.专题:计算题.分析:先求出BC,再求出CD即可.解答:解:在△ABC中,∠ACB=α﹣β,∠ACBA=π﹣α,AB=a,∴,∴BC=,∴CD=BCtanγ=tanγ.故选:B.点评:本题主要考查了解三角形的实际应用.考查了运用数学知识,建立数学模型解决实际问题的能力.5.(2014•浙江模拟)如图,在铁路建设中,需要确定隧道两端的距离(单位:百米),已测得隧道两端点A,B到某一点C的距离分别为5和8,∠ACB=60°,则A,B之间的距离为()A.7B.10C.6D.8考点:解三角形的实际应用.专题:解三角形.分析:由余弦定理和已知边和角求得AB的长度.解答:解:由余弦定理知AB===7,所以A,B之间的距离为7百米.故选:A.点评:本题主要考查了余弦定理的应用.已知两边和一个角,求边常用余弦定理来解决.6.(2014•房山区一模)如图,有一块锐角三角形的玻璃余料,欲加工成一个面积不小于800cm2的内接矩形玻璃(阴影部分),则其边长x(单位:cm)的取值范围是()A.[10,30]B.[25,32]C.[20,35]D.[20,40]考点:解三角形的实际应用.专题:应用题;解三角形.分析:设矩形的另一边长为ym,由相似三角形的性质可得:,(0<x<60).矩形的面积S=x(60﹣x),利用S≥800解出即可.解答:解:设矩形的另一边长为ym,由相似三角形的性质可得:,解得y=60﹣x,(0<x<60)∴矩形的面积S=x(60﹣x),∵矩形花园的面积不小于800m2,∴x(60﹣x)≥800,化为(x﹣20)(x﹣40)≤0,解得20≤x≤40.满足0<x<60.故其边长x(单位m)的取值范围是[20,40].故选:D.点评:本题考查了相似三角形的性质、三角形的面积计算公式、一元二次不等式的解法等基础知识与基本技能方法,属于中档题.7.(2014•濮阳一模)如图所示,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°相距10海里C处的乙船,乙船立即朝北偏东θ+30°角的方向沿直线前往B处营救,则sinθ的值为()A.B.C.D.考点:解三角形的实际应用.专题:应用题;解三角形.分析:连接BC,在三角形ABC中,利用余弦定理求出BC的长,再利用正弦定理求出sin∠ACB的值,即可求出sinθ的值.解答:解:连接BC,在△ABC中,AC=10海里,AB=20海里,∠CAB=120°根据余弦定理得:BC2=AC2+AB2﹣2AC•AB•cos∠CAB=100+400+200=700,∴BC=10海里,根据正弦定理得,即,∴sin∠ACB=,∴sinθ=.故选:A.点评:解三角形问题,通常要利用正弦定理、余弦定理,同时往往与三角函数知识相联系.8.(2014•成都三模)某公司要测量一水塔CD的高度,测量人员在该水塔所在的东西方向水平直线上选择A,B两个观测点,在A处测得该水塔顶端D的仰角为α,在B处测得该水塔顶端D的仰角为β,已知AB=a,0<β<α<,则水塔CD的高度为()A .B.C.D.考点:解三角形的实际应用.专题:应用题;解三角形.分析:设CD=x,求出AC,BC,利用a=BC﹣AC,即可求出水塔CD的高度.解答:解:设CD=x,则AC=,∵BC=,a=BC﹣AC,∴a=﹣,∴x==,故选:B.点评:本题考查解三角形的实际应用,考查学生的计算能力,求出AC,BC是关键.9.(2014•怀化一模)在等腰Rt△ABC中,AB=AC=4,点P是边AB上异于A,B的一点,光线从点P 出发,经BC,CA反射后又回到原来的点P.若,则△PQR的周长等于()A.B.C.D.考点:解三角形的实际应用.专题:综合题;解三角形.分析:建立坐标系,设点P的坐标,可得P关于直线BC的对称点P1的坐标,和P关于y轴的对称点P2的坐标,由P1,Q,R,P2四点共线可得△PQR的周长.解答:解:建立如图所示的坐标系:可得B(4,0),C(0,4),P(,0)故直线BC的方程为x+y=4,P关于y轴的对称点P2(﹣,0),设点P关于直线BC的对称点P1(x,y),满足,解得,即P1(4,),由光的反射原理可知P1,Q,R,P2四点共线,故△PQR的周长等于|P1P2|==.故选:A.点评:本题考查直线与点的对称问题,涉及直线方程的求解以及光的反射原理的应用,属中档题.10.(2012•珠海一模)台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,则B城市处于危险区内的时间为()A.B.1小时C.D.2小时考点:解三角形的实际应用.专题:计算题.分析:先以A为坐标原点,建立平面直角坐标系,进而可知B点坐标和台风中心移动的轨迹,求得点B 到射线的距离,进而求得答案.解答:解:如图,以A为坐标原点,建立平面直角坐标系,则B(40,0),台风中心移动的轨迹为射线y=x(x≥0),而点B到射线y=x的距离d==20<30,故l=2=20,故B城市处于危险区内的时间为1小时,故选B.点评:本题主要考查了解三角形的实际应用.通过建立直角坐标系把三角形问题转换成解析几何的问题,方便了问题的解决.11.(2011•宝鸡模拟)一质点受到平面上的三个力F1,F2,F3(单位:牛顿)的作用而处于平衡状态.已知D成120°角,且y=g(x)的大小分别为1和2,则有()A.F1,F3成90°角B.F1,F3成150°角C.F2,F3成90°角D.F2,F3成60°角考点:解三角形的实际应用;向量的模;向量在物理中的应用.分析:处于平衡状态即三个力合力为0,利用向量表示出等式,将等式变形平方,利用数量积公式求出,T通过三角形边的关系求出角.解答:解:由⇒⇒=+2||•||cos120°=由知,F1,F3成90°角,故选A.点评:本题考查向量的数量积公式、向量模的求法、及解三角形.12.(2011•大连二模)已知A船在灯塔C北偏东75°且A到C的距离为3km,B船在灯塔C西偏北15o 且B到C的距离为km,则A,B两船的距离为()A.5km B.km C.4km D.km考点:解三角形的实际应用.专题:计算题.分析:先画出简图求出角A的值,再由余弦定理可得到AB的值.解答:解:依题意可得简图,可知A=150°,根据余弦定理可得,AB2=BC2+AC2﹣2BC×ACcosC=16,∴AB=4.故选C.点评:本题主要考查余弦定理的应用.属基础题.主要在于能够准确的画出图形来.13.(2011•安徽模拟)如图,在山脚下A测得山顶P的仰角为α,沿倾斜角为β的斜坡向上走a米到达B,在B处测得山顶P的仰角为γ,则山高PQ为()A.B.C.D.考点:解三角形的实际应用.专题:计算题;应用题.分析:△PAB中,由正弦定理可得PB=,根据PQ=PC+CQ=PB•sinγ+asinβ通分化简可得结果.解答:解:△PAB中,∠PAB=α﹣β,∠BPA=(﹣α)﹣(﹣γ)=γ﹣α,∴=,即PB=.PQ=PC+CQ=PB•sinγ+asinβ=,故选B.点评:本题考查正弦定理的应用,直角三角形中的边角关系,求出PB=,是解题的关键.14.(2010•武昌区模拟)某人朝正东方向走xkm后,向右转150°,然后朝新方向走3km,结果他离出发点恰好,那么x的值为()A.2或B.2C.D.3考点:解三角形的实际应用.专题:计算题.分析:作出图象,三点之间正好组成了一个知两边与一角的三角形,由余弦定理建立关于x的方程即可求得x的值.解答:解:如图,AB=x,BC=3,AC=,∠ABC=30°.由余弦定理得3=x2+9﹣2×3×x×cos30°.解得x=2或x=故选A.点评:考查解三角形的知识,其特点从应用题中抽象出三角形.根据数据特点选择合适的定理建立方程求解.15.(2010•江门一模)海事救护船A在基地的北偏东60°,与基地相距海里,渔船B被困海面,已知B距离基地100海里,而且在救护船A正西方,则渔船B与救护船A的距离是()A.100海里B.200海里C.100海里或200海里D.海里考点:解三角形的实际应用.专题:计算题.分析:先根据正弦定理求得sinB的值,进而确定B的值,最后根据B的值,求得AB.解答:解:设基地为与O处,根据正弦定理可知=∴sinB=•OA==∴B=60°或120°当B=60°,∠BOA=90°,∠A=30°BA=2OB=200当B=120°,∠A=∠B=30°∴OB=AB=100故渔船B与救护船A的距离是100或200海里.故选C点评:本题主要考查了解三角形的实际应用.考查了学生转化和化归思想和逻辑思维的能力.16.(2010•武汉模拟)飞机从甲地以北偏西15°的方向飞行1400km到达乙地,再从乙地以南偏东75°的方向飞行1400km到达丙地,那么丙地距甲地距离为()A.1400km B.700km C.700km D.1400km考点:解三角形的实际应用.专题:计算题;数形结合.分析:设A,B,C分别对应甲、乙、丙三地,由B向x轴做垂线垂足为D,则∠BAD和∠DBC可知,进而求得∠ABC=60°判断出三角形为正三角形,进而求得AC.解答:解:依题意,设A,B,C分别对应甲、乙、丙三地,由B向x轴做垂线垂足为D,则∠BAD=75°,∠DBC=75°∴∠ABC=75°﹣15°=60°∴AB=BC=1400∴△ABC为正三角形∴AC=1400千米.故选A.点评:本题主要考查了解三角形的应用.要注意特殊三角形的运用.17.(2010•石家庄二模)如图,一条宽为a的直角走廊,现要设计一辆可通过该直角走廊的矩形面平板车,其宽为b(0<b<a).则该平板车长度的最大值为()A.B.C.D.考点:解三角形的实际应用.专题:应用题.分析:先设平板手推车的长度不能超过x米,此时平板车所形成的三角形:ADG为等腰直角三角形.连接EG与AD交于点F,利用ADG为等腰直角三角形即可求得平板手推车的长度解答:解:设平板车的长度的最大值为x由题意可得△ADG为等腰直角三角形,连接EG交AD于F,则EG== aFG=EG﹣EF=得△ADG为等腰直角三角形,AD=2AF=2FG=故选:C点评:本题主要考查了在实际问题中建立三角函数模型,解答的关键是由实际问题:要想顺利通过直角走廊,转化为数学问题:此时平板手推车所形成的三角形为等腰直角三角形18.(2009•韶关二模)北京2008年第29届奥运会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为米(如图所示),则旗杆的高度为()A.10米B.30米C.10米D.米考点:解三角形的实际应用.专题:计算题;数形结合.分析:先画出示意图,根据题意可求得∠AEC和∠ACE,则∠EAC可求,然后利用正弦定理求得AC,最后在Rt△ABC中利用AB=AC•sin∠ACB求得答案.解答:解:如图所示,依题意可知∠AEC=45°,∠ACE=180°﹣60°﹣15°=105°∴∠EAC=180°﹣45°﹣105°=30°由正弦定理可知=,∴AC=•sin∠CEA=20米∴在Rt△ABC中,AB=AC•sin∠ACB=20×=30米答:旗杆的高度为30米故选B.点评:本题主要考查了解三角形的实际应用.此类问题的解决关键是建立数学模型,把实际问题转化成数学问题,利用所学知识解决.19.(2009•温州一模)北京2008年第29届奥运会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,看台上第一排和最后一排的距离米(如图所示),旗杆底部与第一排在一个水平面上,已知国歌长度约为50秒,升旗手匀速升旗的速度为()A.(米/秒)B.(米/秒)C.(米/秒)D.(米/秒)考点:解三角形的实际应用.专题:计算题;应用题.分析:先根据题意可知∠DAB,∠ABD和∠ADB,AB,然后在△ABD利用正弦定理求得BD,进而在Rt△BCD求得CD,最后利用路程除以时间求得旗手升旗的速度.解答:解:由条件得△ABD中,∠DAB=45°,∠ABD=105°,∠ADB=30°,AB=10,由正弦定理得BD=•AB=20则在Rt△BCD中,CD=20×sin60°=30所以速度V==米/秒故选A.点评:本题主要考查了解三角形的实际应用.考查了学生分析问题和基本的推理能力,运算能力.二.填空题(共7小题)20.(2014•重庆模拟)如图,割线PBC经过圆心O,PB=OB=1,PB绕点O逆时针旋120°到OD,连PD 交圆O于点E,则PE=.考点:三角形中的几何计算.专题:计算题.分析:先由余弦定理求出PD,再根据割线定理即可求出PE,问题解决.解答:解:由余弦定理得,PD2=OD2+OP2﹣2OD•OPcos120°=1+4﹣2×1×2×(﹣)=7,所以PD=.根据割线定理PE•PD=PB•PC得,PE=1×3,所以PE=.故答案为.点评:已知三角形两边与夹角时,一定要想到余弦定理的运用,之后做题的思路也许会豁然开朗.21.(2014•南昌模拟)已知△ABC中,角A,B,C所对应的边的边长分别为a,b,c,外接圆半径是1,且满足条件2(sin2A﹣sin2C)=(sinA﹣sinB)b,则△ABC面积的最大值为.考点:三角形中的几何计算;三角函数中的恒等变换应用.专题:计算题.分析:把b=2sinB 代入已知等式并应用正弦定理得a2+b2﹣c2=ab,由余弦定理得cosC=,得到C=60°,由ab=a2+b2﹣3≥2ab﹣3 求得ab最大值为3,从而求得△ABC面积的最大值.解答:解:由正弦定理可得b=2RsinB=2sinB,代入已知等式得2sin2A﹣2sin2C=2sinAsinB﹣2sin2B,sin2A+sin2B﹣sin2C=sinAsinB,∴a2+b2﹣c2=ab,∴cosC==,∴C=60°.∵ab=a2+b2﹣c2=a2+b2﹣(2rsinC)2=a2+b2﹣3≥2ab﹣3,∴ab≤3 (当且仅当a=b时,取等号),∴△ABC面积为≤×3×=,故答案为.点评:本题考查正弦定理、余弦定理,基本不等式的应用,求出ab≤3是解题的难点.22.(2014•韶关二模)一只艘船以均匀的速度由A点向正北方向航行,如图,开始航行时,从A点观测灯塔C的方位角(从正北方向顺时针转到目标方向的水平角)为45°,行驶60海里后,船在B点观测灯塔C的方位角为75°,则A到C的距离是30(+)海里.考点:解三角形的实际应用.专题:应用题;解三角形.分析:由题意,∠ABC=105°,∠C=30°,AB=60海里,由正弦定理可得AC.解答:解:由题意,∠ABC=105°,∠C=30°,AB=60海里.由正弦定理可得AC==30(+)海里.故答案为:30(+).点评:本题考查正弦定理,考查学生的计算能力,属于基础题.23.(2014•潍坊二模)如图所示,位于东海某岛的雷达观测站A,发现其北偏东45°,与观测站A距离20海里的B处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A东偏北θ(0°<θ<45°)的C处,且cosθ=,已知A、C两处的距离为10海里,则该货船的船速为4海里/小时.考点:解三角形的实际应用.专题:解三角形.分析:根据余弦定理求出BC的长度即可得到结论.解答:解:∵cosθ=,∴sin=,由题意得∠BAC=45°﹣θ,即cos∠BAC=cos(45°﹣θ)=,∵AB=20,AC=10,∴由余弦定理得BC2=AB2+AC2﹣2AB•ACcos∠BAC,即BC2=(20)2+102﹣2×20×10×=800+100﹣560=340,即BC=,设船速为x,则=2,∴x=4(海里/小时),故答案为:4点评:本题主要考查解三角形的应用,根据条件求出cos∠BAC,以及利用余弦定理求出BC的长度是解决本题的关键.24.(2014•潍坊三模)如图,C、D是两个小区所在地,C、D到一条公路AB的垂直距离分别为CA=1km,DB=2km,A、B间的距离为3km,某公交公司要在A、B之间的某点N处建造一个公交站点,使得N对C、D两个小区的视角∠CND最大,则N处与A处的距离为2﹣3km.考点:解三角形的实际应用.专题:应用题;三角函数的求值.分析:设出NA的长度x,把∠CNA与∠DNB的正切值用含有x的代数式表示,最后把∠CND的正切值用含有x的代数式表示,换元后再利用基本不等式求最值,最后得到使N对C、D两个小区的视角∠CND最大时的x值,即可确定点N的位置.解答:解:设NA=x,∠CNA=α,∠DNB=β.依题意有tanα=,tanβ=,tan∠CND=tan[π﹣(α+β)]=﹣tan(α+β)=﹣=,令t=x+3,由0<x<3,得3<t<6,则=∵4≤t+<3+∴t=2,即x=2﹣3时取得最大角,故N处与A处的距离为(2﹣3)km.故答案为:2﹣3.点评:本题考查解三角形的实际应用,考查了利用基本不等式求最值,解答的关键是把实际问题转化为数学问题,是中档题.25.(2014•台州一模)为了测量A,C两点间的距离,选取同一平面上B,D两点,测出四边形ABCD 各边的长度(单位:km)如图所示,且∠B+∠D=180°,则AC的长为km.考点:解三角形的实际应用.专题:计算题;解三角形.分析:利用余弦定理,结合∠B+∠D=180°,即可求出AC的长.解答:解:由余弦定理可得AC2=22+32﹣2•2•3•cosD=13﹣12cosD,AC2=52+82﹣2•5•8•cosB=89﹣80cosB,∵∠B+∠D=180°,∴2AC2=13+89=102,∴AC=km.故答案为:点评:本题考查余弦定理,考查三角函数知识,正确运用余弦定理是关键.m/s的速率,从路灯在地面上的射影点C处,沿某直线离开路灯,那么人影长度的变化速率v为m/s.考点:解三角形的实际应用.专题:解三角形.分析:由题意画出几何图形,设出人从C点运动到B处路程、运动时间及人影长度,由三角形相似求出人影长度与运动路程间的关系式,把运动路程用运动速度和运动时间替换,求导后得答案.解答:解:如图,路灯距地平面的距离为DC,人的身高为EB.设人从C点运动到B处路程为x米,时间为t(单位:秒),AB为人影长度,设为y,∵BE∥CD,∴.∴,∴y=x,又∵x=t,∴y=x=t.则y′=,∴人影长度的变化速率为m/s.故答案为:.点评:本题考查了解三角形的实际应用,解答此题的关键是明确题意,把实际问题转化为数学问题,是。

学海导航高三数学人教B版文科第一轮总复习训练3.17导数的综合应用(主要含优化问题)(含答案详析)

学海导航高三数学人教B版文科第一轮总复习训练3.17导数的综合应用(主要含优化问题)(含答案详析)

第17讲 导数的综合应用(主要含优化问题)1.某箱子的容积与底面边长x 的关系为V (x )=x 2·60-x2(0<x <60),则当箱子的容积最大时,箱子底面边长是( )A .30B .40C .50D .其他2.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a 、b ,若a <b ,则必有( )A .af (a )≤f (b )B .bf (b )≤f (a )C .bf (b )≤af (a )D .bf (a )≤af (b )3.欲制作一个容积为2π立方米的圆柱形储油罐(有盖),为能使所用的材料最省,它的底面半径和高分别为( )A .底面半径为0.5米,高为1米B .底面半径为1米,高为1米C .底面半径为1米,高为2米D .底面半径为2米,高为0.5米 4.某企业生产某种产品,固定成本为20000元,每生产一件产品,成本增加100元.已知总收益R (元)与年产量x (件)的关系式是R (x )=⎩⎪⎨⎪⎧400x -12x 2(0≤x ≤400)80000 (x >400),则总利润最大时,年产量是( )A .100件B .150件C .200件D .300件5.如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请按顺序写出与容器(1)、(2)、(3)、(4)对应的水的高度h 与时间t 的函数关系图象______________.6.已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5.若对任意a ∈[-1,1]都有g (x )<0成立,则实数x 的取值范围是____________.7.设函数f (x )=x -x 2+3ln x ,证明:当x >0时,f (x )≤2x -2.8.某工厂生产某种产品,每日的成本C (单位:元)与日产量x (单位:吨)满足函数关系式C =10000+20x ,每日的销售额R (单位:元)与日产量x 的函数关系式R =⎩⎪⎨⎪⎧-130x 3+ax 2+290x (0<x <120)20400 (x ≥120),已知每日的利润y =R -C ,且当x =30时,y =-100. (1)求a 的值;(2)当日产量为多少吨时,每日的利润可以达到最大?并求出最大值.9.某水渠的横截面如图所示,它的曲边是抛物线形,口宽AB=2 m,渠深OC=1.5 m,水面EF距AB为0.5 m.(1)求截面图中水面的宽度;(2)如果把水渠改造为横截面是等腰梯形,并要求渠深不变,不准往回填土,只能挖土,试求当截面梯形的下底边长为多少时,才能使挖出的土最少?第17讲 导数的综合应用(主要含优化问题)1.B 2.C 3.C 4.D 5.B 、A 、D 、C 6.(-23,1)7.解析:设g (x )=f (x )-(2x -2)=2-x -x 2+3ln x ,则g ′(x )=-1-2x +3x =-(x -1)(2x +3)x.当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0.所以g (x )在(0,1)上单调增加,在(1,+∞)上单调减少. 而g (1)=0,故当x >0时,g (x )≤0,即f (x )≤2x -2. 8.解析:(1)由题意可得y =⎩⎪⎨⎪⎧-130x 3+ax 2+270x -10000 (0<x <120)10400-20x (x ≥120).因为x =30时,y =-100,所以-100=-130×303+a ×302+270×30-10000,所以a =3.(2)当0<x <120时,y =-130x 3+3x 2+270x -10000,y ′=-110x 2+6x +270.由y ′=-110x 2+6x +270=0,可得x 1=90,x 2=-30(舍去).所以当x ∈(0,90)时,原函数是增函数, 当x ∈(90,120)时,原函数是减函数, 所以当x =90时,y 取得最大值14300.当x =120时,y =10400-20×120=8000,所以当日产量为90吨时,每日的利润可以达到最大值14300元.9.解析:建立坐标系,设抛物线方程为x 2=2p (y +32),以B 点坐标(1,0)代入抛物线方程得p =13,所以抛物线的方程为x 2=23(y +32).(1)把F 点的坐标(a ,-12)代入抛物线的方程得a =63,所以水面宽EF =263m.(2)设抛物线上的一点M (t ,32t 2-32)(t >0),因改造水渠不能填土只能挖土,还要求挖的土最少,所以只能沿过M 点与抛物线相切的切线挖土,由y =32x 2-32.得y ′=3x ,所以过点M 的切线的斜率为3t ,所以切线的方程为y =3t (x -t )+(32t 2-32),当y =0时,x 1=12(t +1t );当y =-32时,x 2=t2.所以截面的面积S =34(2t +1t )≥322.当且仅当2t =1t ,且t >0,即t =22时,截面的面积最小,此时下底的边长为22 m.。

学海导航高三数学人教B版文科第一轮总复习训练1.1集合的概念及运算(含答案详析)

学海导航高三数学人教B版文科第一轮总复习训练1.1集合的概念及运算(含答案详析)

第一单元集合与常用逻辑用语第1讲集合的概念及运算1.设集合P={3,log2a},Q={a,b},若P∩Q={0},则P∪Q=()A.{3,0} B.{3,0,1}C.{3,0,2} D.{3,0,1,2}2.若集合M是函数y=lg x的定义域,N是函数y=1-x的定义域,则M∩N等于()A.(0,1] B.(0,+∞)C.∅D.[1,+∞)3.若全集U={-1,0,1,2},P={x∈Z|x2<2},则∁U P=()A.{2} B.{0,2}C.{-1,2} D.{-1,0,2}4.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1 B.3C.4 D.85.设全集U=R,A={x|2x(x-2)<1},B={x|y=ln(1-x)},则下图中阴影部分表示的集合为()A.{x|x≥1} B.{x|1≤x<2}C.{x|0<x≤1} D.{x|x≤1} 6.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={3,6},则集合A*B的所有元素之和为.7.已知集合A中有10个元素,集合B中有6个元素,全集U中有18个元素,A∩B≠∅,设集合∁U(A∪B)中有x个元素,则x的取值范围是______________________.8.已知集合A={x|6x+1≥1,x∈R},B={x|x2-2x-m<0}.(1)当m=3时,求A∩(∁R B);(2)若A∩B={x|-1<x<4},求实数m的值.9.已知集合A={x∈R|ax2-3x+2=0,a∈R}.(1)若A是空集,求a的取值范围;(2)若A中只有一个元素,求a的值,并把这个元素写出来.学海导航·新课标高中总复习(第1轮)B·文科数学参考答案同步训练第一单元 集合与常用逻辑用语第1讲 集合的概念及运算1.B 2.A 3.A 4.C 5.B 6.21 7.{x|3≤x ≤8,x ∈N }8.解析:由6x +1≥1,得x -5x +1≤0,所以A ={x |-1<x ≤5}. (1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},所以A ∩(∁R B )={x |3≤x ≤5}.(2)因为A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},所以有42-2×4-m =0,解得m =8,此时B ={x |-2<x <4},符合题意,所以m =8.9.解析:集合A 是方程ax 2-3x +2=0在实数范围内的解组成的集合.(1)A 是空集,即方程ax 2-3x +2=0无解,得⎩⎪⎨⎪⎧a ≠0Δ=(-3)2-8a <0,所以a >98. 即实数a 的取值范围是(98,+∞). (2)当a =0时,方程只有一解,方程的解为x =23; 当a ≠0且Δ=0,即a =98时,方程有两个相等的实数根,A 中只有一个元素43. 所以当a =0或a =98时,A 中只有一个元素,分别是23和43.。

学海导航高三数学人教B版文科第一轮总复习训练8.43合情推理与演绎推理(含答案详析)

学海导航高三数学人教B版文科第一轮总复习训练8.43合情推理与演绎推理(含答案详析)

第八单元推理与证明第43讲合情推理与演绎推理1.某同学在电脑上打下了一串黑白圆,如图所示,○○○●●○○○●●○○○…,按这种规律往下排,那么第36个圆的颜色应是()A.白色B.黑色C.白色可能性大D.黑色可能性大2.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈C,则a-b=0⇒a=b”;②“若a,b,c,d∈R,则复数a+b i=c+d i⇒a=c,b=d”类比推出“若a,b,c,d ∈Q,则a+b2=c+d2⇒a=c,b=d”;③“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”.其中类比得到的结论正确的个数是()A.0 B.1C.2 D.33.观察图中各正方形图案,每条边上有n(n≥2)个圆点,第n个图案中圆点的个数是a n,按此规律推断出所有圆点总和S n与n的关系式为()A.S n=2n2-2n B.S n=2n2C.S n=4n2-3n D.S n=2n2+2n4.△ABC中,若sin A·sin B<cos A·cos B,则该三角形是()A.直角三角形B.钝角三角形C.锐角三角形D.以上都不可能5.数学与文学之间存在着许多奇妙的联系.诗中有回文诗,如:“云边月影沙边雁,水外天光山外树”,倒过来读,便是“树外山光天外水,雁边沙影月边云”,其意境和韵味读来真是一种享受!数学中也有回文数,如:88,454,7337,43534等都是回文数,无论从左往右读,还是从右往左读,都是同一个数,称这样的数为“回文数”,读起来还真有趣!二位的回文数有11,22,33,44,55,66,77,88,99,共9个;三位的回文数有101,111,121,131,…,969,979,989,999,共90个;四位的回文数有1001,1111,1221,…,9669,9779,9889,9999,共90个;由此推测:10位的回文数总共有________个.6.观察下列等式:13=1,13+23=9,13+23+33=36,13+23+33+43=100,……猜想:13+23+33+…+n3=____________________(n∈N*).7.如图所示:有三根针和套在一根针上的n个金属片,按下列规则,把金属片从一根针上全部移到另一根针上.(1)每次只能移动一个金属片;(2)在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.将n个金属片从1号针移到3号针最少需要移动的次数记为f(n).则:①f(3)=______;②f(n)=________.8.在一容器内装有浓度为r %的溶液a 升,注入浓度为p %的溶液14a 升,搅匀后再倒出溶液14a 升,这叫一次操作.设第n 次操作后容器内溶液的浓度为b n (每次注入的溶液浓度都是p %).计算b 1,b 2,b 3,并归纳出b n 的计算公式.9.某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求f (5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1的值.第八单元 推理与证明第43讲 合情推理与演绎推理1.A 由题干图知,图形是三白二黑的圆周而复始相继排列,是一个周期为5的三白二黑的圆列,因为36÷5=7余1,所以第36个圆应与第1个圆颜色相同,即白色.2.C 因为虚数不能比较大小,所以③错误,故选C.3.A 事实上由合情推理的本质:由特殊到一般,当n =2时有S 2=4,分别代入即可淘汰B ,C ,D 三选项,从而选A.也可以观察各个正方形图案可知圆点个数可视为首项为4,公差为4的等差数列,因此所有圆点总和即为等差数列前n -1项和,即S n =(n -1)×4+(n -1)(n -2)2×4=2n 2-2n . 4.B 因为sin A ·sin B <cos A ·cos B ,所以cos(A +B )>0,所以cos(π-C )>0,所以cos C <0,所以C 为钝角,故△ABC 为钝角三角形.5.90000 一、二位回文数有9个,三、四位回文数有90个,五、六位回文数有900个,七、八位回文数有9000个,九、十位回文数有90000个.6.[n (n +1)2]2 由已知的四个等式可以得出右式等于左式各底数和的平方, 故13+23+33+…+n 3=(1+2+3+…+n )2=[n (n +1)2]2. 7.7 2n -1 n =1时,直接由1号针移到3号针,f (1)=1;n =2时,先把较小的移到2号针,把较大的移到3号针,再把较小的移到3号针,f (2)=3;n =3时,按照1→3;1→2;3→2;1→3;2→1;2→3;1→3顺序处理,f (3)=7. 归纳推理为f (n )=2n -1.8.解析:b 1=a ·r 100+a 4·p 100a +a 4=1100(45r +15p ); b 2=ab 1+a 4·p 100a +a 4=1100[(45)2·r +15p +452p ]; b 3=a ·b 2+a 4·p 100a +a 4=1100[(45)3·r +15p +452p +4253p ]. 所以归纳得b n =1100[(45)n ·r +15p +452p +…+4n -15n p ]. 9.解析:(1)f (5)=41.(2)因为f (2)-f (1)=4=4×1,f (3)-f (2)=8=4×2,f (4)-f (3)=12=4×3,f (5)-f (4)=16=4×4,所以f (n +1)-f (n )=4n .由f (n +1)-f (n )=4n ⇒f (n +1)=f (n )+4n ⇒f (n )=f (n -1)+4(n -1)=f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3)=……=f (1)+4(n -1)+4(n -2)+4(n -3)+…+4 =2n 2-2n +1.(3)当n ≥2时,1f (n )-1=12n (n -1)=12(1n -1-1n), 所以1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1=1+12(1-12+12-13+13-14+…+1n -1-1n) =1+12(1-1n) =32-12n .。

高考数学文科解三角形最全讲解含答案解析

高考数学文科解三角形最全讲解含答案解析

第六单元 解三角形教材复习课“解三角形”相关基础知识一课过1.正弦定理a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径. 由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ; (2)a =2R sin A ,b =2R sin B ,c =2R sin C . 2.余弦定理a 2=b 2+c 2-2bc cos_A , b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos_C .余弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .[小题速通]1.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =2 3,cos A =32,且b <c ,则b =( )A .3B .2 2C .2D. 3解析:选C 由a 2=b 2+c 2-2bc cos A ,得4=b 2+12-6b ,解得b =2或4,∵b <c ,∴b =2.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b 2+c 2-a 2=bc ,则角A 的大小为( )A .30°B .60°C .120°D .150°解析:选B 由余弦定理可得b 2+c 2-a 2=2bc cos A ,又因为b 2+c 2-a 2=bc ,所以cos A =12,则A =60°.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a sin A +b sin B <c sin C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:选C 根据正弦定理可得a 2+b 2<c 2.由余弦定理得cos C =a 2+b 2-c 22ab <0,所以角C 是钝角,故选C.4.(2018·郑州质量预测)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且(b -c )(sin B +sin C )=(a -3c )sin A ,则角B 的大小为( )A .30°B .45°C .60°D .120°解析:选A 由正弦定理及(b -c )(sin B +sin C )=(a -3c )·sin A ,得(b -c )(b +c )=(a -3c )a ,即b 2-c 2=a 2-3ac ,所以a 2+c 2-b 2=3ac ,又因为cos B =a 2+c 2-b 22ac,所以cos B =32,所以B =30°. 5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b cos C +3b sin C -a =0,则B =________.解析:由正弦定理可得sin B cos C +3sin B sin C =sin A =sin(B +C )=sin B cos C +sin C cos B ,则3sin B sin C =sin C cos B ,又sin C ≠0,所以tan B =33,则B =30°. 答案:30°[清易错]1.由正弦定理解已知三角形的两边和其中一边的对角求另一边的对角时易忽视解的判断.2.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制. 1.在△ABC 中,若a =18,b =24,A =45°,则此三角形解的情况是( ) A .无解 B .两解 C .一解D .不确定解析:选B ∵a sin A =b sin B ,∴sin B =b a sin A =2418sin 45°=223.又∵a <b ,∴B 有两个解, 即此三角形有两解.2.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b=________.解析:在△ABC 中,∵sin B =12,0<B <π,∴B =π6或B =5π6.又∵B +C <π,C =π6,∴B =π6,∴A =2π3.∵a sin A =b sin B ,∴b =a sin B sin A=1. 答案:13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =7,b =8,c =13,则角C 的大小为________.解析:∵在△ABC 中,a =7,b =8,c =13,∴由余弦定理可得cos C =a 2+b 2-c 22ab =72+82-1322×7×8=-12,∵C ∈(0,π),∴C =2π3. 答案:2π3设△ABC 的边为a ,b ,c ,所对的三个角为A ,B ,C ,其面积为S . (1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =12ac sin B =12ab sin C .(3)S =12r (a +b +c )(r 为△ABC 内切圆的半径).[小题速通]1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若a =1,b =3,B =60°,则△ABC 的面积为( )A.12B.32C .1D. 3解析:选B 在△ABC 中,由正弦定理可得sin A =a sin B b =12,则A =30°,所以C =90°,则△ABC 的面积S =12ab sin C =12×1×3×1=32.2.在△ABC 中,A =60°,AB =2,且△ABC 的面积为32,则BC 的长为( ) A.32B. 3 C .2 3D .2解析:选B 由题意S △ABC =12·AB ·AC ·sin A =32,则AC =1,由余弦定理可得BC =4+1-2×2×1×cos 60°= 3.3.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知72=52+BC 2-2×5×BC ×cos 120°, 即49=25+BC 2+5BC ,解得BC =3.故S △ABC =12AB ·BC sin B =12×5×3×32=1534.答案:15344.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.解析:由cos A =-14,得sin A =154,所以△ABC 的面积为12bc sin A =12bc ×154=315,解得bc =24,又b -c =2,所以a 2=b 2+c 2-2bc cos A =(b -c )2+2bc -2bc cos A =22+2×24-2×24×⎝⎛⎭⎫-14=64,解得a =8. 答案:8[清易错]应用三角形面积公式S =12ab sin C =12ac sin B =12bc sin A 时,注意公式中的角应为两边的夹角.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,c =23,A =30°,则△ABC 的面积为________.解析:∵a =2,c =23,A =30°, ∴由正弦定理得sin C =c ·sin A a =32,∴C =60°或120°, ∴B =90°或30°,则S △ABC =12ac sin B =23或 3.答案:23或 31.仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).2.方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②). 3.方向角相对于某一正方向的水平角.(1)北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③); (2)北偏西α,即由指北方向逆时针旋转α到达目标方向; (3)南偏西等其他方向角类似.4.坡角与坡度(1)坡角:坡面与水平面所成的二面角(如图④,角θ为坡角);(2)坡度:坡面的铅直高度与水平长度之比(如图④,i 为坡度).坡度又称为坡比. [小题速通]1.(2018·潍坊调研)海面上有A ,B ,C 三个灯塔,AB =10 n mile ,从A 望C 和B 成60°视角,从B 望C 和A 成75°视角,则BC =( )A .10 3 n mile B.1063 n mileC .5 2 n mileD .5 6 n mile解析:选D 如图,在△ABC 中,C =180°-60°-75°=45°,又A =60°,由正弦定理,得AB sin C =BC sin A ,即10sin 45°=BC sin 60°,解得BC =5 6. 2.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析:如图,OM =AO ·tan 45°=30(m), ON =AO ·tan 30°=33×30=103(m), 在△MON 中,由余弦定理得, MN =900+300-2×30×103×32=300=103(m). 答案:10 33.如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°的方向,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°的方向,且与它相距8 2 n mile.则此船的航速是________n mile/h.解析:设航速为v n mile/h ,在△ABS 中AB =12v ,BS =82,∠BSA =45°,由正弦定理得82sin 30°=12v sin 45°,则v =32.答案:32[清易错]易混淆方位角与方向角概念:方位角是指北方向线按顺时针转到目标方向线之间的水平夹角,而方向角是正北或正南方向线与目标方向线所成的锐角.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析:选B 如图所示,∠ACB =90°, 又AC =BC , ∴∠CBA =45°, 而β=30°,∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°.一、选择题1.已知△ABC 中,sin A ∶sin B ∶sin C =1∶1∶3,则此三角形的最大内角为( ) A .60° B .90° C .120°D .135°解析:选C ∵sin A ∶sin B ∶sin C =1∶1∶3, ∴a ∶b ∶c =1∶1∶3,设a =m ,则b =m ,c =3m . ∴cos C =a 2+b 2-c 22ab =m 2+m 2-3m 22m 2=-12, ∴C =120°.2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若c =2a ,b =4,cos B =14.则c 的值为( )A .4B .2C .5D .6解析:选A ∵c =2a ,b =4,cos B =14,∴由余弦定理得b 2=a 2+c 2-2ac cos B , 即16=14c 2+c 2-14c 2=c 2,解得c =4.4.已知△ABC 中,内角A ,B ,C 所对边分别为a ,b ,c ,若A =π3,b =2a cos B ,c =1,则△ABC 的面积等于( )A.32B.34C.36D.38解析:选B 由正弦定理得sin B =2sin A cos B ,故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π3,又A =B =π3,则△ABC 是正三角形,所以S △ABC =12bc sin A =12×1×1×32=34.5.(2018·湖南四校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(a 2+b 2-c 2)tan C =ab ,则角C 的大小为( )A.π6或5π6B.π3或2π3C.π6D.2π3解析:选A 由题意知,a 2+b 2-c 22ab =12tan C ⇒cos C =cos C 2sin C ,sin C =12,又C ∈(0,π),∴C =π6或5π6.6.已知A ,B 两地间的距离为10 km ,B ,C 两地间的距离为20 km ,现测得∠ABC =120°,则A ,C 两地间的距离为( )A .10 kmB .10 3 kmC .10 5 kmD .107 km解析:选D 如图所示,由余弦定理可得,AC 2=100+400-2×10×20×cos 120°=700,∴AC =107(km).7.(2018·贵州质检)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3 B.932 C.332D .3 3解析:选C ∵c 2=(a -b )2+6, ∴c 2=a 2+b 2-2ab +6.①∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.8.一艘海轮从A 处出发,以每小时40 n mile 的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .10 2 n mileB .10 3 n mileC .20 3 n mileD .20 2 n mile解析:选A 画出示意图如图所示,易知,在△ABC 中,AB =20,∠CAB =30°,∠ACB =45°,根据正弦定理得BC sin 30°=ABsin 45°,解得BC =10 2.故B ,C 两点间的距离是10 2 n mile. 二、填空题9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,cos C =-14,3sin A=2sin B ,则c =________.解析:因为3sin A =2sin B ,所以由正弦定理可得3a =2b ,则b =3,由余弦定理可得c 2=a 2+b 2-2ab cos C =4+9-2×2×3×⎝⎛⎭⎫-14=16,则c =4. 答案:410.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若角A ,B ,C 成等差数列,且边a ,b ,c 成等比数列,则△ABC 的形状为________.解析:∵在△ABC 中,角A ,B ,C 成等差数列, ∴2B =A +C ,由三角形内角和定理,可得B =π3,又∵边a ,b ,c 成等比数列,∴b 2=ac , 由余弦定理可得b 2=a 2+c 2-2ac cos B , ∴ac =a 2+c 2-ac ,即a 2+c 2-2ac =0, 故(a -c )2=0,可得a =c , 所以△ABC 的形状为等边三角形. 答案:等边三角形11.已知△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围为________.解析:由AC =b =2,要使三角形有两解,就是要使以C 为圆心,以2为半径的圆与AB 有两个交点,当A =90°时,圆与AB 相切,只有一解;当A =45°时,交于B 点,也就是只有一解,所以要使三角形有两解,需满足45°<A <90°,即22<sin A <1,由正弦定理可得a =x =b sin Asin B=22sin A ,所以2<x <2 2. 答案:(2,22)12.如图,航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的飞行高度为10 000 m ,速度为50 m/s.某一时刻飞机看山顶的俯角为15°,经过420 s 后看山顶的俯角为45°,则山顶的海拔高度为________m .(取2=1.4,3=1.7)解析:如图,作CD 垂直于AB 的延长线于点D ,由题意知∠A =15°,∠DBC =45°,∴∠ACB =30°,AB =50×420=21 000(m).又在△ABC 中,BC sin A =ABsin ∠ACB ,∴BC =21 00012×sin 15°=10 500(6-2).∵CD ⊥AD ,∴CD =BC ·sin ∠DBC =10 500(6-2)×22=10 500(3-1)=7 350. 故山顶的海拔高度h =10 000-7 350=2 650(m). 答案:2 650 三、解答题13.(2017·山东高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知b =3,AB ―→AC ―→=-6,S △ABC =3,求A 和a .解:因为AB ―→·AC ―→=-6, 所以bc cos A =-6, 又S △ABC =3, 所以bc sin A =6,因此tan A =-1,又0<A <π, 所以A =3π4. 又b =3,所以c =2 2.由余弦定理a 2=b 2+c 2-2bc cos A , 得a 2=9+8-2×3×22×⎝⎛⎭⎫-22=29, 所以a =29.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2b cos C =a cos C +c cos A . (1)求角C 的大小;(2)若b =2,c =7,求a 及△ABC 的面积. 解:(1)∵2b cos C =a cos C +c cos A ,∴由正弦定理可得2sin B cos C =sin A cos C +cos A sin C ,即2sin B cos C =sin(A +C )=sin B.又sin B ≠0,∴cos C =12,C =π3.(2)∵b =2,c =7,C =π3,∴由余弦定理可得7=a 2+4-2×a ×2×12,即a 2-2a -3=0, 解得a =3或-1(舍去),∴△ABC 的面积S =12ab sin C =12×3×2×32=332.高考研究课(一)正、余弦定理的3个基础点——边角、形状和面积 [全国卷5年命题分析][典例] ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝⎛⎭⎫2A +π4的值. [解] (1)在△ABC 中,因为a >b , 故由sin B =35,可得cos B =45.由已知及余弦定理,得b 2=a 2+c 2-2ac cos B =13, 所以b =13.由正弦定理a sin A =b sin B ,得sin A =a sin B b =31313.所以b 的值为13,sin A 的值为31313. (2)由(1)及a <c ,得cos A =21313,所以sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513. 故sin ⎝⎛⎭⎫2A +π4=sin 2A cos π4+cos 2A sin π4=22×⎝⎛⎭⎫1213-513=7226. [方法技巧]应用正、余弦定理的解题策略(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.[即时演练]1.(2017·山东高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A解析:选A 由题意可知sin B +2sin B cos C =sin A cos C +sin(A +C ),即2sin B cos C =sin A cos C ,又cos C ≠0,故2sin B =sin A ,由正弦定理可知a =2b .2.(2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.解析:法一:由2b cos B =a cos C +c cos A 及正弦定理,得 2sin B cos B =sin A cos C +sin C cos A =sin(A +C )=sin B >0, 因此cos B =12.又0<B <π,所以B =π3.法二:由2b cos B =a cos C +c cos A 及余弦定理,得 2b ·a 2+c 2-b 22ac =a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc ,整理得,a 2+c 2-b 2=ac , 所以2ac cos B =ac >0,cos B =12.又0<B <π,所以B =π3.答案:π33.(2018·成都二诊)如图,在平面四边形ABCD 中,已知A =π2,B =2π3,AB =6.在AB 边上取点E ,使得BE =1,连接EC ,ED .若∠CED =2π3,EC =7.(1)求sin ∠BCE 的值; (2)求CD 的长.解:(1)在△BEC 中,由正弦定理,知BE sin ∠BCE =CEsin B .∵B =2π3,BE =1,CE =7,∴sin ∠BCE =BE ·sin B CE =327=2114.(2)∵∠CED =B =2π3,∴∠DEA =∠BCE ,∴cos ∠DEA =1-sin 2∠DEA =1-sin 2∠BCE =1-328=5714.∵A =π2,∴△AED 为直角三角形,又AE =5,∴ED =AE cos ∠DEA =55714=27.在△CED 中,CD 2=CE 2=+DE 2-2CE ·DE ·cos ∠CED =7+28-2×7×27×⎝⎛⎭⎫-12=49.∴CD =7.+b )sin(A -B )=(a -b )·sin(A +B )”,试判断三角形的形状.[解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ), ∴b 2[sin(A +B )+sin(A -B )]=a 2[sin(A +B )-sin(A -B )], ∴2sin A cos B ·b 2=2cos A sin B ·a 2,即a 2cos A sin B =b 2sin A cos B. 法一:用“边化角”解题由正弦定理得a =2R sin A ,b =2R sin B , ∴sin 2A cos A sin B =sin 2B sin A cos B , 又sin A ·sin B ≠0,∴sin A cos A =sin B cos B , ∴sin 2A =sin 2B .在△ABC 中,0<2A <2π,0<2B <2π, ∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 法二:用“角化边”解题 由正弦定理、余弦定理得:a 2b ·b 2+c 2-a 22bc =b 2a ·a 2+c 2-b 22ac , ∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2), ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0或a 2+b 2-c 2=0. 即a =b 或a 2+b 2=c 2.∴△ABC 为等腰三角形或直角三角形. [方法技巧]判断三角形形状的2种方法(1)“边化角”利用正弦、余弦定理把已知条件转化为只含内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论.(2)“角化边”利用正弦、余弦定理把已知条件转化为只含边的关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.[提醒] 在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.[即时演练]1.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:选B 依据题设条件的特点,由正弦定理, 得sin B cos C +cos B sin C =sin 2A ,有sin(B +C )=sin 2A , 从而sin(B +C )=sin A =sin 2A ,解得sin A =1, ∴A =π2,∴△ABC 是直角三角形.2.在△ABC 中,“2a sin A =(2b +c )sin B +(2c +b )sin C ,且sin B +sin C =1”,试判断△ABC 的形状.解:由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc ,由余弦定理得,cos A =-12,sin A =32,则sin 2A =sin 2B +sin 2C +sin B sin C . 又sin B +sin C =1,所以sin B sin C =14,解得sin B =sin C =12.因为0<B <π2,0<C <π2,故B =C =π6,所以△ABC 是等腰钝角三角形.[典例] (2017·a ,b ,c ,已知sin(A +C )=8sin 2B2.(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .[解] (1)由题设及A +B +C =π得sin B =8sin 2B2,即sin B =4(1-cos B ), 故17cos 2B -32cos B +15=0, 解得cos B =1517或cos B =1(舍去).(2)由cos B =1517,得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172. 由余弦定理及a +c =6得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B )=36-2×172×⎝⎛⎭⎫1+1517=4. 所以b =2. [方法技巧]三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. [即时演练]1.(2018·太原一模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若A =60°,b =1,S △ABC =3,则c 等于( )A .1B .2C .3D .4解析:选D ∵S △ABC =12bc sin A ,∴3=12×1×c ×32,∴c =4.2.(2018·陕西四校联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos A =13. (1)求cos 2B +C2+cos 2A 的值;(2)若a =3,求△ABC 面积的最大值. 解:(1)cos 2B +C2+cos 2A =1+cos (B +C )2+2cos 2A -1=12-cos A 2+2cos 2A -1 =12-12×13+2×⎝⎛⎭⎫132-1 =-49.(2)由余弦定理可得(3)2=b 2+c 2-2bc cos A =b 2+c 2-23bc ≥2bc -23bc =43bc ,所以bc ≤94,当且仅当b =c =32时,bc 有最大值94.又cos A =13,A ∈(0,π),所以sin A =1-cos 2A =1-⎝⎛⎭⎫132=223,于是△ABC 面积的最大值为12×94×223=324.1.(2016·全国卷Ⅲ)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A.31010B.1010 C .-1010D .-31010解析:选C 法一:设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c , 则由题意得S △ABC =12a ·13a =12ac sin B ,∴c =23a .由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+29a 2-2×a ×23a ×22=59a 2,∴b =53a .∴cos A =b 2+c 2-a 22bc =59a 2+29a 2-a 22×53a ×23a=-1010.法二:如图,AD 为△ABC 中BC 边上的高.设BC =a ,由题意知AD =13BC =13a ,B =π4,易知BD =AD =13a ,DC =23a .在Rt △ABD 中,由勾股定理得, AB =⎝⎛⎭⎫13a 2+⎝⎛⎭⎫13a 2=23a .同理,在Rt △ACD 中,AC = ⎝⎛⎭⎫13a 2+⎝⎛⎭⎫23a 2=53a . ∴cos A =59a 2+29a 2-a 22×53a ×23a=-1010.2.(2017·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.解析:由正弦定理,得sin B =b sin Cc =6sin 60°3=22, 因为0°<B <180°,所以B =45°或135°. 因为b <c ,所以B <C ,故B =45°, 所以A =180°-60°-45°=75°.答案:75°3.(2016·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C=513,a =1,则b =________. 解析:因为A ,C 为△ABC 的内角,且cos A =45,cos C =513,所以sin A =35,sin C =1213,所以sin B =sin(π-A -C )=sin(A +C ) =sin A cos C +cos A sin C =35×513+45×1213=6365.又a =1,所以由正弦定理得b =a sin B sin A =6365×53=2113.答案:21134.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解:(1)由题设得12ac sin B =a 23sin A ,即12c sin B =a 3sin A. 由正弦定理得12sin C sin B =sin A 3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3.由题设得12bc sin A =a 23sin A,即bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9, 得b +c =33.故△ABC 的周长为3+33.5.(2017·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin A +3cos A=0,a =27,b =2.(1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 解:(1)由已知可得tan A =-3,所以A =2π3.在△ABC 中,由余弦定理得28=4+c 2-4c cos 2π3, 即c 2+2c -24=0. 解得c =4(负值舍去). (2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6.故△ABD 的面积与△ACD 的面积的比值为 12AB ·AD ·sin π612AC ·AD =1.又△ABC 的面积为12×4×2×sin 2π3=23,所以△ABD 的面积为 3.6.(2016·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解:(1)由已知及正弦定理得2cos C (sin A cos B +sin B cos A )=sin C , 即2cos C sin(A +B )=sin C , 故2sin C cos C =sin C .因为sin C ≠0,可得cos C =12,所以C =π3.(2)由已知得12ab sin C =332.又C =π3,所以ab =6.由已知及余弦定理得a 2+b 2-2ab cos C =7, 故a 2+b 2=13,从而(a +b )2=25. 所以△ABC 的周长为5+7.7.(2015·全国卷Ⅱ)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (1)求sin Bsin C; (2)若∠BAC =60°,求B . 解:(1)由正弦定理,得AD sin B =BD sin ∠BAD ,AD sin C =DCsin ∠CAD . 因为AD 平分∠BAC ,BD =2DC , 所以sin B sin C =DC BD =12.(2)因为C =180°-(∠BAC +B ),∠BAC =60°, 所以sin C =sin(∠BAC +B )=32cos B +12sin B. 由(1)知2sin B =sin C ,所以tan B =33, 所以B =30°.8.(2013·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B.(1)求B ;(2)若b =2,求△ABC 面积的最大值.解:(1)由已知及正弦定理得sin A =sin B cos C +sin C sin B . ① 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C . ② 由①②和C ∈(0,π)得sin B =cos B. 又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2ac cos π4.又a 2+c 2≥2ac ,故ac ≤42-2, 当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为24×42-2=2+1.一、选择题1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =1,b =3,A =30°,若B 为锐角,则A ∶B ∶C =( )A .1∶1∶3B .1∶2∶3C .1∶3∶2D .1∶4∶1解析:选B 因为a =1,b =3,A =30°,B 为锐角,所以由正弦定理可得sin B =b sin Aa =32,则B =60°,所以C =90°,则A ∶B ∶C =1∶2∶3. 2.如果将直角三角形三边增加相同的长度,则新三角形一定是( ) A .锐角三角形 B .钝角三角形 C .直角三角形D .根据增加的长度确定三角形的形状解析:选A 设原来直角三角形的三边长是a ,b ,c 且a 2=b 2+c 2,在原来的三角形三条边长的基础上都加上相同的长度,设为d ,原来的斜边仍然是最长的边,故cos A =(b +d )2+(c +d )2-(a +d )22(b +d )(c +d )=2bd +2cd +d 2-2ad2(b +d )(c +d )>0,所以新三角形中最大的角是一个锐角,故选A.3.(2018·太原模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 2+c 2-a 2=3bc ,且b =3a ,则下列关系一定不成立的是( )A .a =cB .b =cC .2a =cD .a 2+b 2=c 2解析:选B 由余弦定理,得cos A =b 2+c 2-a 22bc =3bc 2bc =32,则A =30°.又b =3a ,由正弦定理得sin B =3sin A =3sin 30°=32,所以B =60°或120°.当B =60°时,△ABC 为直角三角形,且2a =c ,可知C 、D 成立;当B =120°时,C =30°,所以A =C ,即a =c ,可知A 成立,故选B.4.在直角梯形ABCD 中,AB ∥CD ,∠ABC =90°,AB =2BC =2CD ,则cos ∠DAC =( )A.1010 B.31010C.55D.255解析:选B 如图所示,设CD =a ,则易知AC =5a ,AD =2a ,在△ACD 中,CD 2=AD 2+AC 2-2AD ×AC ×cos ∠DAC ,∴a 2=(2a )2+(5a )2-2×2a ×5a ×cos ∠DAC ,∴cos ∠DAC =31010. 5.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34B.43 C .-43D .-34解析:选C 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab , 则由面积公式与余弦定理,得ab sin C =2ab cos C +2ab , 即sin C -2cos C =2,所以(sin C -2cos C )2=4, 即sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去).6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足b 2+c 2-a 2=bc ,AB ―→·BC ―→>0,a =32,则b +c 的取值范围是( ) A.⎝⎛⎭⎫1,32 B.⎝⎛⎭⎫32,32C.⎝⎛⎭⎫12,32D.⎝⎛⎦⎤12,32解析:选B 在△ABC 中,b 2+c 2-a 2=bc , 由余弦定理可得cos A =b 2+c 2-a 22bc =bc 2bc =12,∵A 是△ABC 的内角,∴A =60°. ∵a =32, ∴由正弦定理得a sin A =b sin B =c sin C =c sin (120°-B )=1, ∴b +c =sin B +sin(120°-B )=32sin B +32cos B=3sin(B +30°).∵AB ―→·BC ―→=|AB ―→|·|BC ―→|·cos(π-B )>0, ∴cos B <0,B 为钝角,∴90°<B <120°,120°<B +30°<150°,故sin(B +30°)∈⎝⎛⎭⎫12,32, ∴b +c =3sin(B +30°)∈⎝⎛⎭⎫32,32. 二、填空题7.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2c cos B =2a +b ,若△ABC 的面积S =32c ,则ab 的最小值为________. 解析:将2c cos B =2a +b 中的边化为角可得2sin C cos B =2sin A +sin B =2sin C cos B +2sin B cos C +sin B .则2sin B cos C +sin B =0,因为sin B ≠0,所以cos C =-12,则C =120°,所以S =12ab sin 120°=32c ,则c =12ab .由余弦定理可得⎝⎛⎭⎫12ab 2=a 2+b 2-2ab cos C ≥3ab ,则ab ≥12,当且仅当a =b =23时取等号,所以ab 的最小值为12.答案:128.(2017·浙江高考)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.解析:在△ABC 中,AB =AC =4,BC =2, 由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ·BC=42+22-422×4×2=14, 则sin ∠ABC =sin ∠CBD =154, 所以S △BDC =12BD ·BC sin ∠CBD =12×2×2×154=152.因为BD =BC =2,所以∠CDB =12∠ABC ,则cos ∠CDB = cos ∠ABC +12=104.答案:1521049.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.解析:因为a =2,且(2+b )(sin A -sin B )=(c -b )sin C , 所以(a +b )(sin A -sin B )=(c -b )sin C . 由正弦定理得b 2+c 2-bc =4,又因为b 2+c 2≥2bc ,所以bc ≤4,当且仅当b =c =2时取等号,此时三角形为等边三角形,所以S =12bc sin 60°≤12×4×32=3,故△ABC 的面积的最大值为 3. 答案: 3 三、解答题10.(2017·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin A =4b sin B ,ac =5(a 2-b 2-c 2).(1)求cos A 的值; (2)求sin(2B -A )的值. 解:(1)由a sin A =4b sin B ,及a sin A =bsin B,得a =2b . 由ac =5(a 2-b 2-c 2)及余弦定理, 得cos A =b 2+c 2-a 22bc =-55ac ac =-55.(2)由(1),可得sin A =255,代入a sin A =4b sin B ,得sin B =a sin A 4b =55. 由(1)知,A 为钝角,所以cos B =1-sin 2B =255. 于是sin 2B =2sin B cos B =45,cos 2B =1-2sin 2B =35,故sin(2B -A )=sin 2B cos A -cos2B sin A=45×⎝⎛⎭⎫-55-35×255=-255. 11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a sin B =3b cos A . (1)求角A 的大小;(2)若a =7,b =2,求△ABC 的面积.解:(1)因为a sin B =3b cos A ,由正弦定理得sin A sin B =3sin B cos A . 又sin B ≠0,从而tan A = 3. 由于0<A <π,所以A =π3.(2)法一:由余弦定理a 2=b 2+c 2-2bc cos A ,及a =7,b =2,A =π3,得7=4+c 2-2c ,即c 2-2c -3=0. 因为c >0,所以c =3.故△ABC 的面积S =12bc sin A =332.法二:由正弦定理,得7sinπ3=2sin B ,从而sin B =217,又由a >b ,知A >B ,所以cos B =277. 故sin C =sin(A +B )=sin ⎝⎛⎭⎫B +π3=sin B cos π3+cos B sin π3=32114. 所以△ABC 的面积S =12ab sin C =332.12.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,sin B ·(a cos B +b cos A )=3c cos B.(1)求B ;(2)若b =23,△ABC 的面积为23,求△ABC 的周长. 解:(1)由正弦定理得,sin B (sin A cos B +sin B cos A )=3sin C cos B , ∴sin B sin(A +B )=3sin C cos B , ∴sin B sin C =3sin C cos B.∵sin C ≠0,∴sin B =3cos B ,即tan B = 3. ∵B ∈(0,π),∴B =π3.(2)∵S △ABC =12ac sin B =34ac =23,∴ac =8.根据余弦定理得,b 2=a 2+c 2-2ac cos B , ∴12=a 2+c 2-8,即a 2+c 2=20, ∴a +c =(a +c )2=a 2+2ac +c 2=6, ∴△ABC 的周长为6+2 3.1.在平面五边形ABCDE 中,已知∠A =120°,∠B =90°,∠C =120°,∠E =90°,AB =3,AE =3,当五边形ABCDE 的面积S ∈⎣⎡⎭⎫63,3334时,则BC 的取值范围为________. 解析:因为AB =3,AE =3,且∠A =120°,由余弦定理可得BE =AB 2+AE 2-2AB ·AE ·cos A =33,且∠ABE =∠AEB =30°. 又∠B =90°,∠E =90°,所以∠DEB =∠EBC =60°. 又∠C =120°,所以四边形BCDE 是等腰梯形. 易得三角形ABE 的面积为934,所以四边形BCDE 的面积的取值范围是⎣⎡⎭⎫1534,63. 在等腰梯形BCDE 中,令BC =x ,则CD =33-x ,且梯形的高为3x2, 故梯形BCDE 的面积为12·(33+33-x )·3x 2,即15≤(63-x )x <24, 解得3≤x <23或43<x ≤5 3. 答案:[3,23)∪(43,53]2.如图,有一直径为8 m 的半圆形空地,现计划种植果树,但需要有辅助光照.半圆周上的C 处恰有一可旋转光源满足果树生长的需要,该光源照射范围是∠ECF =π6,点E ,F 在直径AB 上,且∠ABC =π6.(1)若CE =13,求AE 的长;(2)设∠ACE =α,求该空地种植果树的最大面积. 解:(1)由已知得△ABC 为直角三角形, 因为AB =8,∠ABC =π6,所以∠BAC =π3,AC =4.在△ACE 中,由余弦定理得,CE 2=AC 2+AE 2-2AC ·AE cos A ,且CE =13, 所以13=16+AE 2-4AE , 解得AE =1或AE =3.(2)因为∠ACB =π2,∠ECF =π6,所以∠ACE =α∈⎣⎡⎦⎤0,π3, 所以∠AFC =π-∠BAC -∠ACF =π-π3-⎝⎛⎭⎫α+π6=π2-α, 在△ACF 中,由正弦定理得CF sin ∠BAC =AC sin ∠AFC =AC sin ⎝⎛⎭⎫π2-α=AC cos α,所以CF =23cos α,在△ACE 中,由正弦定理得CE sin ∠BAC =AC sin ∠AEC =ACsin ⎝⎛⎭⎫π3+α,所以CE =23sin ⎝⎛⎭⎫π3+α,所以S △ECF =12CE ·CF sin ∠ECF =3sin ⎝⎛⎭⎫π3+αcos α=122sin ⎝⎛⎭⎫2α+π3+3.因为α∈⎣⎡⎦⎤0,π3,所以π3≤2α+π3≤π, 所以0≤sin ⎝⎛⎭⎫2α+π3≤1, 所以当sin ⎝⎛⎭⎫2α+π3=0,即α=π3时,S △ECF 取得最大值为4 3. 即该空地种植果树的最大面积为4 3 m 2. 高考研究课(二)正、余弦定理的3个应用点——高度、距离和角度 [全国卷5年命题分析]考点 考查频度 考查角度 高度问题 5年1考 测量山高问题距离问题 未考查 角度问题未考查测量高度问题[典例] 如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.[解析] 由题意,在△ABC 中,∠BAC =30°, ∠ABC =180°-75°=105°,故∠ACB =45°. 又AB =600 m ,故由正弦定理得600sin 45°=BC sin 30°, 解得BC =300 2 m. 在Rt △BCD 中, CD =BC ·tan 30°=3002×33=100 6(m). [答案] 100 6 [方法技巧]利用正、余弦定理求解高度问题应注意的3个方面(1)在处理有关高度问题时,要理解仰角、俯角(它是在铅垂面上所成的角)、方向(位)角(它是在水平面上所成的角)是关键.(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题. [即时演练]1.要测量底部不能到达的电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,则电视塔的高度为( )A .10 2 mB .20 mC .20 3 mD .40 m解析:选D 设电视塔的高度为x m ,则BC =x ,BD =3x .在△BCD 中,根据余弦定理得3x 2=x 2+402-2×40x ×cos 120°,即x 2-20x -800=0,解得x =40或x =-20(舍去).故电视塔的高度为40 m.2.如图,为测得河岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D ,测得∠BDC =45°,则塔AB 的高是________m.解析:在△BCD 中,CD =10,∠BDC =45°, ∠BCD =15°+90°=105°,∠DBC =30°, 由正弦定理得,BC sin 45°=CDsin 30°, 所以BC =CD sin 45°sin 30°=10 2.在Rt △ABC 中,tan 60°=ABBC ,AB =BC tan 60°=106(m). 答案:10 6测量距离问题[典例]侧,且B 点不可到达,要测出A ,B 的距离,其方法在A 所在的岸边选定一点C ,可以测出A ,C 的距离m ,再借助仪器,测出∠ACB =α,∠CAB =β,在△ABC 中,运用正弦定理就可以求出AB .若测出AC =60 m ,∠BAC =75°,∠BCA =45°,则A ,B 两点间的距离为________m. [解析] ∵∠ABC =180°-75°-45°=60°, ∴由正弦定理得,AB sin C =ACsin B,∴AB =AC ·sin C sin B =60×sin 45°sin 60°=206(m).即A ,B 两点间的距离为20 6 m. [答案] 20 6 [方法技巧]求距离问题的2个注意事项(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理. [即时演练]1.如图所示,要测量一水塘两侧A ,B 两点间的距离,其方法先选定适当的位置C ,用经纬仪测出角α,再分别测出AC ,BC 的长b ,a ,则可求出A ,B 两点间的距离.即AB =a 2+b 2-2ab cos α.若测得CA =400 m ,CB =600 m ,∠ACB =60°,则AB 的长为________m. 解析:在△ABC 中,由余弦定理得 AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB ,∴AB 2=4002+6002-2×400×600cos 60°=280 000. ∴AB =200 7 (m).即A ,B 两点间的距离为200 7 m. 答案:200 72.隔河看两目标A 与B ,但不能到达,在岸边选取相距 3 km 的C ,D 两点,同时,测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.解:在△ACD 中,∠ACD =120°, ∠CAD =∠ADC =30°,所以AC =CD = 3.在△BCD 中,∠BCD =45°,∠BDC =75°,∠CBD =60°,由正弦定理知BC =3sin 75°sin 60°=6+22. 在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos ∠ACB =(3)2+⎝⎛⎭⎪⎫6+222-2×3×6+22×cos 75°=3+2+3-3=5,所以AB = 5 , 所以A ,B 两目标之间的距离为 5 km.角度问题[典例] (2018·南昌模拟)如图所示,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°相距10海里C 处的乙船,乙船立即朝北偏东θ+30°角的方向沿直线前往B 处营救,则sin θ的值为( )A.217 B.22C.32D.5714[解析] 如图,连接BC ,在△ABC 中,AC =10,AB =20,∠BAC=120°,由余弦定理,得BC 2=AC 2+AB 2-2AB ·AC ·cos 120°=700,∴BC =107, 再由正弦定理,得BC sin ∠BAC =ABsin θ,∴sin θ=217. [答案] A [方法技巧]解决测量角度问题的3个注意点(1)明确方向角的含义.(2)分析题意,分清已知与所求,再根据题意正确画出示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用. [即时演练]1.如图,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°解析:选D 由条件及图可知,∠A =∠B =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 南偏西80°.2.如图,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,求cos θ的值.。

学海导航高三数学人教B版文科第一轮总复习训练2.12函数的图象与变换(含答案详析)

学海导航高三数学人教B版文科第一轮总复习训练2.12函数的图象与变换(含答案详析)

第12讲 函数的图象与变换1.函数y =x 12-1的图象关于x 轴对称的图象大致是( )2.为了得到函数y =log 2x -1的图象,可将函数y =log 2x 的图象上所有的点的( )A .纵坐标缩短到原来的12,横坐标不变,再向右平移1个单位长度 B .纵坐标缩短到原来的12,横坐标不变,再向左平移1个单位长度 C .横坐标伸长到原来的2倍,纵坐标不变,再向左平移1个单位长度D .横坐标伸长到原来的2倍,纵坐标不变,再向右平移1个单位长度3.函数y =(12)x +1的图象关于直线y =x 对称的图象大致是( )4.下列函数的图象,经过平移或翻折后不能与函数y =log 2x 的图象重合的函数是( )A .y =2xB .y =log 12x C .y =12·4x D .y =log 21x+1 5.设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图,则不等式f (x )<0的解集是______.6.使log 2(-x )<x +1成立的x 的取值范围为________.7.已知定义在区间[0,1]上的函数y=f(x)的图象如图所示,对于满足0<x1<x2<1的任意x1、x2给出下列结论:①f(x2)-f(x1)>x2-x1;②x2f(x1)>x1f(x2);③f(x1)+f(x2)2<f(x1+x22).其中正确结论的序号是________(把所有正确结论的序号都填上).8.已知函数f(x)=|x-3|+|x+1|.(1)作出y=f(x)的图象;(2)解不等式f(x)≤6.9.如下图所示,图1是定义在R上的二次函数f(x)的部分图象,图2是函数g(x)=log a(x +b)的部分图象.(1)分别求出函数f(x)和g(x)的解析式;(2)如果函数y=g(f(x))在区间[1,m)上单调递减,求m的取值范围.第12讲 函数的图象与变换1.B 2.A 3.A 4.C 5.(-2,0)∪(2,5] 6.(-1,0)7.②③8.解析:(1)f (x )=|x -3|+|x +1|=⎩⎪⎨⎪⎧ -2x +2 (x ≤-1)4 (-1<x ≤3)2x -2 (x >3).图象如下图所示.(2)(方法一)由f (x )≤6,得当x ≤-1时,-2x +2≤6,x ≥-2,所以-2≤x ≤-1.当-1<x ≤3时,4≤6成立;当x >3时,2x -2≤6,x ≤4,所以3<x ≤4.所以不等式f (x )≤6的解集为{x |-2≤x ≤4}.(方法二)数形结合.由下图可知,不等式f (x )≤6的解集为{x |-2≤x ≤4}.9.解析:(1)由题图1得,二次函数f (x )的顶点坐标为(1,2),故可设函数f (x )=a (x -1)2+2,又函数f (x )的图象过点(0,0),故a =-2,整理得f (x )=-2x 2+4x .由题图2得,函数g (x )=log a (x +b )的图象过点(0,0)和(1,1),故有⎩⎪⎨⎪⎧ log a b =0log a (1+b )=1,所以⎩⎪⎨⎪⎧ a =2b =1, 所以g (x )=log 2(x +1)(x >-1).(2)由(1)得y =g (f (x ))=log 2(-2x 2+4x +1)是由y =log 2t 和t =-2x 2+4x +1复合而成的函数,而y =log 2t 在定义域上单调递增,要使函数y =g (f (x ))在区间[1,m )上单调递减,必须t =-2x 2+4x +1在区间[1,m )上单调递减,且有t >0恒成立.由t =0得x =2±62,又t =-2x 2+4x +1的图象的对称轴为x =1,所以满足条件的m 的取值范围为1<m <2+62.。

学海导航高三数学人教B版文科第一轮总复习训练2.14函数模型及其应用(含答案详析)

第14讲 函数模型及其应用1.某工厂引进先进生产技术,产品产量从2012年1月到2013年8月的20个月间翻了两番,设月平均增长率为x ,则有( )A .(1+x )19=4B .(1+x )20=3C .(1+x )20=2D .(1+x )20=42.某工厂签订了供货合同后组织工人生产某货物,生产了一段时间后,由于订货商想再多订一些,但供货时间不变,该工厂便组织工人加班生产,能反映该工厂生产的货物数量y 与时间x 的函数图象大致是( )3.某产品的总成本y (万元)与产量x (台)之间的函数关系是y =3000+20x -0.1x 2(0<x<240,x ∈N *),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是( )A .100台B .120台C .150台D .180台4.有一批材料可以围成200米长的围墙,现用此材料在一边靠墙的地方围成一块矩形场地(如图),且内部用此材料隔成三个面积相等的矩形,则围成的矩形场地的最大面积为( )A .1000米2B .2000米2C .2500米2D .3000米25.某新品电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则销量y 与投放市场的月数x 之间的关系可写成 .6.某企业去年销售收入1000万元,年成本为年生产成本500万元和年广告成本200万元两部分,若利润的p %为国税,且年广告费超出年销售收入2%的部分也必须按p %征国税,其他不纳税.已知该企业去年共纳税120万元,则税率p %为 .7.某工厂生产某种产品的固定成本为2000万元,并且生产量每增加一单位产品,成本增加10万元,又知总收入R 是单位产量Q 的函数:R (Q )=40Q -120Q 2,则总利润L (Q )的最大值是________万元.8.汽车的最佳使用年限是使年均消耗费用最低的年限(年均消耗费用=年均成本费+年均维修费).设某种汽车的购车的总费用为50000元;使用中每年的保险费、养路费及汽油费合计为6000元;前x 年的总维修费y 满足y =ax 2+bx ,已知第一年的维修费用为1000元,前两年总维修费为3000元.求这种汽车的最佳使用年限.9.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图).(1)分别写出两种产品的收益与投资的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?第14讲 函数模型及其应用1.D 2.B 3.C 4.C 5.y =50·2x (x ∈N *) 6.25%7.25008.解析: 依题意,⎩⎪⎨⎪⎧ a +b =10004a +2b =3000,解得⎩⎪⎨⎪⎧ a =500b =500, 设使用x 年平均每年使用费用为t ,则t =1x(50000+6000x +500x 2+500x ) =6500+50000x+500x =6500+500(x +100x)≥6500+10000=16500, 当且仅当x =10时,等号成立.所以这种汽车的最佳使用年限为10年.9.解析:(1)令f (x )=k 1x ,g (x )=k 2x ,则f (1)=k 1=18,g (1)=k 2=12, 所以f (x )=18x (x ≥0),g (x )=12x (x ≥0). (2)设投资债券等稳健型产品x 万元,则投资股票等风险型产品20-x 万元, 则总收益为y =f (x )+g (x ), 即y =18x +1220-x (0≤x ≤20). 令t =20-x ,则x =20-t 2,所以y =-18t 2+12t +52(0≤t ≤25), 即y =-18(t -2)2+3. 所以当t =2,即x =16时,y 最大,所以当投资债券等稳健型产品16万元,股票等风险型产品4万元时,最大收益为3万元.。

2014版学海导航数学(理)总复习(第1轮)同步测控 第25讲 三角函数的模型及应用含答案

第25讲三角函数的模型及应用1.设向量a=(1,sin θ),b=(3sin θ,1),且a∥b,则cos 2θ等于( )A.-错误!B.-错误!C.错误!D。

错误!2.函数y=sin x(3sin x+4cos x)(x∈R)的最大值为M,最小正周期为T,则有序数对(M,T)为( )A.(5,π)B.(4,π)C.(-1,2π)D.(4,错误!)3.(2013·南通模拟)已知电流I(A)随时间t(s)变化的关系式是I=A sin ωt,t∈[0,+∞),设ω=100π,A=5,则电流I(A)首次达到峰值时t的值为()A.错误!B.错误!C。

错误!D。

错误!4。

设y=f(t)是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24。

下表是该港口某一天从0时至24时记录的时间t与水深y的关系。

t03691215182124y1215.112.19。

111.914。

911。

98。

912。

1经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+A sin (ωt+φ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )A.y=12+3sin π6t,t∈[0,24]B.y=12+3sin(错误!t+π),t∈[0,24]C.y=12+3sin错误!t,t∈[0,24]D.y=12+3sin(错误!t+错误!),t∈[0,24]5.已知等腰三角形ABC的腰长为底边长的2倍,则顶角A的正切值为__________.6。

某商品一年内每件出厂价在7千元的基础上,按月呈f(x)=A sin(ωx+φ)+B(A>0,ω〉0,|φ|<错误!)的模型波动(x为月份).已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定f(x)的解析式为____________________.7.化工厂主控制表盘高1 m,表盘底边距地面2 m,问值班人员坐在什么位置看表盘看得最清楚?(设值班人员坐在椅子上时,眼睛距地面1.2 m)8.在一个塔底的水平面上某点测得该塔顶的仰角为θ,由此点向塔底沿直线行走了30 m,测得塔顶的仰角为2θ,再向塔底前进10错误!m,又测得塔顶的仰角为4θ,则塔的高度为______m。

2024届新高考一轮复习北师大版 25 解三角形的实际应用 作业

课时规范练25 解三角形的实际应用基础巩固组1.(2023·山西临汾高三月考)某地对该地某湖泊进行治理,在治理前,需测量该湖泊的相关数据.如图所示,测得∠A=23°,∠C=120°,AC=60√3米,则A,B间的直线距离约为(参考数据sin37°≈0.6)()A.60米B.120米C.150米D.300米答案:C解析:由题设,∠B=180°-∠A-∠C=37°,在△ABC中,ACsinB =ABsinC,即60√3sin37°=√32,所以AB=90sin37°≈150米.故选C.2.如图为2022年北京冬奥会首钢滑雪大跳台示意图,为测量大跳台最高点P距地面的距离,小明同学在A点测得P的仰角为30°,∠ABO=120°,∠BAO=30°,AB=60(单位:m)(点A,B,O在同一水平地面上),则大跳台最高高度OP=()A.45 mB.45√2 mC.60 mD.60√3 m答案:C解析:在△ABO中,∠ABO=120°,∠BAO=30°,所以∠AOB=30°,又AB=60,由正弦定理,得ABsin∠AOB=AO sin∠ABO ,AO=ABsin∠ABOsin∠AOB=60×√3212=60√3.在Rt△APO中,tan30°=OPAO=60√3=√33,所以OP=60m.故选C.3.某渔轮在航行中不幸遇险,发出呼叫信号,我国海军舰艇在A处获悉后,立即测出该渔轮在北偏东45°,距离为10海里的C处,并测得渔轮正沿南偏东75°的方向,以9海里/时的速度向小岛靠拢,我国海军舰艇立即以21海里/时的速度前去营救,则舰艇靠近渔轮所需的时间为()A.12小时 B.23小时C.34小时 D.1小时答案:B解析:如图,设舰艇在B'处靠近渔轮,所需的时间为t小时,则AB'=21t,CB'=9t.在△AB'C中,根据余弦定理,得AB'2=AC2+B'C2-2AC·B'C cos120°,可得212t2=102+81t2+2×10×9t×12,整理得360t2-90t-100=0,解得t=23或t=-512(舍去),故舰艇靠近渔轮所需的时间为23小时,故选B.4.(2023·四川绵阳高三月考)甲船在A处,乙船在甲船北偏东60°方向的B处,甲船沿北偏东θ方向匀速行驶,乙船沿正北方向匀速行驶,且甲船的航速是乙船航速的√3倍,为使甲船与乙船能在某时刻相遇,则() A.15°<θ<30° B.θ=30°C.30°<θ<45°D.θ=45°答案:B解析:如图所示,设在点C处相遇,设BC=x,则AC=√3x,由题知∠ABC=120°,由正弦定理,得xsin(60°-θ)=√3xsin120°,解得sin(60°-θ)=12.因为0°<60°-θ<60°,所以60°-θ=30°,即θ=30°,故选B.5.(多选)(2023·福建福州高三期中)一艘轮船航行到A处时看灯塔B在A的北偏东75°,距离12√6海里,灯塔C在A的北偏西30°,距离为12√3海里,该轮船由A沿正北方向继续航行到D处时再看灯塔B在其南偏东60°方向,下面结论正确的有()A.AD=24B.CD=12C.∠CDA=60°或∠CDA=120°D.∠CDA=60°答案:ABD解析:如图,在△ABD中,B=45°,由正弦定理,得ADsin45°=ABsin60°,AD=12√6×√22√32=24,故A正确;在△ACD中,由余弦定理,得CD2=AC2+AD2-2×AC×AD×cos30°,因为AC=12√3,AD=24,所以CD=12,故B正确;由正弦定理,得CDsin30°=ACsin∠CDA,所以sin∠CDA=√32,故∠CDA=60°或者∠CDA=120°,因为AD>AC,故∠CDA为锐角,所以∠CDA=60°,故C不正确,D正确.故选ABD.6.(多选)(2023·安徽池州高三月考)如图所示,为了测量A,B处岛屿的距离,小明在D处观测,A,B分别在D处的北偏西15°、北偏东45°方向,再往正东方向行驶30海里至C处,观测B在C处的正北方向,A在C处的北偏西60°方向,则下列结论正确的是()A.∠CAD=60°B.A,D之间的距离为15√2海里C.A,B两处岛屿间的距离为15√6海里D.B,D之间的距离为30√3海里答案:BC解析:由题意可知CD=30,∠ADC=90°+15°=105°,∠BDC=45°,∠BCD=90°,∠ACD=90°-∠BCA=90°-60°=30°,所以∠CAD=180°-∠ADC-∠ACD=180°-105°-30°=45°≠60°,故A错误;∠ADB=15°+45°=60°,在△ACD中,由正弦定理,得ADsin30°=30sin45°,得AD=30×sin30°sin45°=15√2(海里),故B正确;在Rt△BCD中,因为∠BDC=45°,∠BCD=90°,所以BD=√2CD=30√2≠30√3(海里),故D错误;在△ABD中,由余弦定理,得AB=√AD2+BD2-2AD·BDcos∠ADB=√450+1800-2×15√2×30√2×12=15√6(海里),故C正确.故选BC.7.游客从某旅游景区的景点A处至景点C处有两条线路.线路1是从A沿直线步行到C,线路2是先从A沿直线步行到景点B处,然后从B沿直线步行到C.现有甲、乙两位游客从A处同时出发匀速步行,甲的速度是乙的速度的119倍,甲走线路2,乙走线路1,最后他们同时到达C处.经测量,AB=1 040 m,BC=500 m,则sin∠BAC等于.答案:513解析:依题意,设乙的速度为x m/s,则甲的速度为119x m/s,因为AB=1040m,BC=500m,所以ACx =1040+500119x ,解得AC=1260.在△ABC 中,由余弦定理,得cos ∠BAC=AB 2+AC 2-BC 22AB ·AC=10402+12602-50022×1040×1260=1213,所以sin ∠BAC=√1-cos 2∠BAC =√1-(1213) 2=513.8.(2023·辽宁营口高三月考)“鲅鱼公主”形象源于一个古老的传说,寓意深刻,美丽动人,象征和平,鲅鱼圈也因此得名,享誉中外.“鲅鱼公主”雕塑作为渤海明珠景区的重要组成部分,东与望儿山翘首相望、北与鱼跃龙腾雕塑交相辉映,是山海文化、鱼龙文化相互交融的经典力作,是鲅鱼圈的标志性建筑.高中生李明与同学进行研究性学习,为确定“鲅鱼公主”雕塑的高MN ,选择点A 和附近一楼顶C 作为测量观测点.从A 点测得M 点的仰角∠MAN=60°,C 点的仰角∠CAB=45°,∠MAC=75°,从C 点测得∠MCA=60°,已知楼高BC=40 m,则“鲅鱼公主”雕塑的高MN= m .答案:60解析:由题意可知CB ⊥AB ,MN ⊥AN ,由于BC=40m,∠CAB=45°,故AC=√2BC=40√2m,又因为∠MAC=75°,∠MCA=60°,所以∠CMA=180°-∠MCA-∠MAC=180°-60°-75°=45°,MA=sin ∠MCA ×ACsin∠CMA =sin60°×40√2sin45°=40√3m,又因为∠MAN=60°,故MN=MA ×sin ∠MAN=40√3×√32=60m . 综合提升组9.圭表是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标杆(称为“表”)和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭”).当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.如图是一个根据某市的地理位置设计的圭表的示意图,已知该市冬至正午太阳高度角(即∠ABC )约为32.5°,夏至正午太阳高度角(即∠ADC )约为79.5°,圭面上冬至线与夏至线之间的距离(即DB 的长)为14米,则表高(即AC 的长)约为( )其中tan 32.5°≈35,tan 79.5°≈275A.9.27米B.9.33米C.9.45米D.9.51米 答案:C解析:由题可知∠BAD=79.5°-32.5°=47°,BD=14,在△BAD 中,由正弦定理,得BDsin∠BAD =ADsin∠ABD ,即14sin47°=ADsin32.5°,则AD=14·sin32.5°sin47°.又在△ACD 中,ACAD=sin ∠ADC=sin79.5°, 所以AC=14·sin32.5°·sin79.5°sin47°=14·sin32.5°·sin79.5°sin (79.5°-32.5°)=14·sin32.5°·sin79.5°sin79.5°·cos32.5°-cos79.5°·sin32.5° =14·11tan32.5°-1tan79.5°≈14×153-527=9.45.10.(2022·山东济南三模)如图,某市拟建造一个扇形体育公园,其中∠AOB=π3,OA=OB=2千米.现需要在OA ,OB ,AB⏜上分别取一点D ,E ,F ,建造三条健走长廊DE ,DF ,EF ,若DF ⊥OA ,EF ⊥OB ,则DE+EF+FD 的最大值为 千米.答案:2+√3解析:因为在四边形DOEF 中,∠AOB=π3,∠FDO=π2,∠FEO=π2,所以∠DFE=2π3.在△DEF 中,由余弦定理,得DE 2=DF 2+EF 2-2DF ·EF ·cos 2π3,即DE 2=DF 2+EF 2+DF ·EF ,DE 2=(DF+EF )2-DF ·EF ,DF ·EF=(DF+EF )2-DE 2≤(DF+EF )24,当且仅当DF=EF=1时取等号,DE 2=DF 2+EF 2-2DF ·EF cos ∠DFE=1+1-2×1×1×-12=3,DE=√3,即DF+EF ≤2√33DE ,DF+EF+DE ≤2√33DE+DE=2+√3.创新应用组11.(2022·北京朝阳一模)某地进行老旧小区改造,有半径为60米,圆心角为π3的一块扇形空置地(如图),现欲从中规划出一块三角形绿地PQR ,其中P 在BC⏜上,PQ ⊥AB ,垂足为Q ,PR ⊥AC ,垂足为R ,设∠PAB=α∈0,π3,则PQ= (用α表示);当P 在BC ⏜上运动时,这块三角形绿地的最大面积是 .答案:60sin α米 225√3平方米 解析:在Rt △PAQ 中,∠PAB=α∈0,π3,AP=60米,∴PQ=AP sin α=60sin α(米).在Rt △PAR 中,可得PR=60sinπ3-α,由题可知∠QPR=2π3,∴△PQR 的面积为S △PQR =12·PQ ·PR ·sin ∠QPR=12×60sin α×60sinπ3-α×sin 2π3=900√3sin αsinπ3-α=450√3√32sin2α+12cos2α-12=450√3sin2α+π6-12,又α∈0,π3,∴2α+π6∈π6,5π6,∴当2α+π6=π2,即α=π6时,△PQR 的面积有最大值225√3平方米,即三角形绿地的最大面积是225√3平方米.。

高三数学解三角形试题答案及解析

高三数学解三角形试题答案及解析1.在△ABC中,,,则△ABC的面积为()A.3B.4C.6D.【答案】A【解析】由已知,所以,,三角形的面积为,故选.【考点】1.平面向量的数量积;2.三角形的面积.2.在中,内角所对的边分别为.已知,(1)求角的大小;(2)若,求的面积.【答案】(1);(2).【解析】(1)求角的大小,由已知,可利用降幂公式进行降幂,及倍角公式变形得,移项整理,,有两角和与差的三角函数关系,得,可得,从而可得;(2)求的面积,由已知,,且,可由正弦定理求出,可由求面积,故求出即可,由,,故由即可求出,从而得面积.(1)由题意得,,即,,由得,,又,得,即,所以;(2)由,,得,由,得,从而,故,所以的面积为.点评:本题主要考查诱导公式,两角和与差的三角函数公式,二倍角公式,正弦定理,余弦定理,三角形面积公式,等基础知识,同时考查运算求解能力.3.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10 m到位置D,测得∠BDC=45°,则塔AB的高是()A.10mB.10mC.10mD.10m【答案】D【解析】在△BCD中,CD=10,∠BDC=45°,∠BCD=15°+90°=105°,∠DBC=30°,由正弦定理知=,所以BC==10.在Rt△ABC中,tan60°=,所以AB=BCtan60°=10.4.在锐角△ABC中,角A,B所对的边长分别为a,b.若2a sin B=b,则角A等于() A.B.C.D.【答案】A【解析】在△ABC中,a=2R sin A,b=2R sin B(R为△ABC的外接圆半径).∵2a sin B=b,∴2sin A sin B=sin B.∴sin A=.又△ABC为锐角三角形,∴A=.5.如图,在坡度一定的山坡A处测得山顶上一建筑物CD的顶端C对于山坡的斜度为15°,向山顶前进100米到达B后,又测得C对于山坡的斜度为45°,若CD=50米,山坡对于地平面的坡角为θ,则cosθ=.【答案】-1【解析】在△ABC中,BC===50(-).在△BCD中,sin∠BDC===-1.又∵cosθ=sin∠BDC,∴cosθ=-1.6.在△ABC中,若0<tan A·tan B<1,那么△ABC一定是()A.锐角三角形B.钝角三角形C.直角三角形D.形状不确定【答案】B【解析】由0<tan A·tan B<1,可知tan A>0,tan B>0,即A,B为锐角.tan(A+B)=>0,即tan(π-C)=-tan C>0,所以tan C<0,所以C为钝角.所以△ABC为钝角三角形.7.在△ABC中,a2+b2+c2=2ab sin C,则△ABC的形状是()A.直角三角形B.锐角三角形C.钝角三角形D.正三角形【答案】D【解析】a2+b2+c2=a2+b2+a2+b2-2ab cos C=2ab sin C,即a2+b2=2ab sin,由于2ab≤a2+b2=2ab sin,故只能a=b且C+=,故三角形为正三角形.也可用特殊值的方法断定正三角形合适,排除其他情况8.在中,角A,B,C所对边分别为a,b,c,且向量,,满足(1)求角C的大小;(2)若成等差数列,且,求边的长【答案】(1);(2).【解析】求角的大小,由已知向量,,满足可得,,即,利用三角形的内角和为得,,可得,从而求得角的大小;(2)若成等差数列,且,求边的长,由成等差数列,可得,由正弦定理得,再由,得,再由得,由于,结合余弦定理可得边的长.试题解析:(1)由可得 2分即,又得而 4分即 ..6分(2)成等差数列由正弦定理可得 .①可得,,而,②由余弦定理可得③由①②③式可得 12分【考点】向量的数量积,解三角形.9.在△中,所对边分别为、、.若,则.【答案】【解析】三角形中问题在解决时要注意边角的互化,本题求角,可能把边化为角比较方便,同时把正切化为正弦余弦,由正弦定理可得,,所以有,即,在三角形中,于是有,,.【考点】解三角形.10.如图,在中,已知,是边上的一点,(Ⅰ)求的值;(Ⅱ)求的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第25讲 解三角形的实际应用
1.有一长为100米的斜坡,它的倾斜角为45°,现要把其倾斜角改为30°,而坡高不变,
则坡长需伸长( )
A.1002米 B.1003米
C.100(2-1)米 D.100(3-1)米

2.为测量某塔AB的高度,在一幢与塔AB相距20 m的楼顶测得塔顶A的仰角为30°,
测得塔基B的俯角为45°,那么塔AB的高度是( )

A.20(1+33) m

B.20(1+32) m
C.20(1+3) m
D.20(1-33) m

3.如图,设点A是单位圆上的一定点,动点P从A出发在圆上按逆时针方向转一周,
点P所旋转过的弧AP的长为l,弦AP的长为d,则函数d=f(l)的图象大致为( )

4.已知A、B两地的距离为10 km,B、C两地的距离为20 km,现测得∠ABC=120°,
则A、C两地的距离为( )
A.10 km B.3 km
C.105 km D.107 km
5.如图,在台湾“莫拉克”台风灾区的搜救现场,一条搜救狗沿正北方向行进x m发
现生命迹象,然后向右转105°,行进10 m发现另一生命迹象,这时它向右转135°回到出发
点,那么x=________m.

6.如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个观测点C
与D,测得∠BCD=15°,∠BDC=30°,CD=30 m,并在C测得塔顶A的仰角为60°,则
塔的高度__________m.

7.如图,两座相距60 m的建筑物AB、CD的高度分别为20 m、50 m,BD为水平面,
则从建筑物AB的顶端A看建筑物CD的张角∠CAD的大小是________.
8.如图某河段的两岸可视为平行,为了测量该河段的宽度,在河段的一岸边选取两点
A,B,观察对岸的点C,测得∠CAB=75°,∠CBA=45°,且AB=100 m.
(1)求sin 75°;
(2)求该河段的宽度.

9.如图,一船在海上由西向东航行,在A处测得某岛M的方位角为北偏东α角,前
进4 km后在B处测得该岛的方位角为北偏东β角.已知该岛周围3.5 km范围内有暗礁,现
该船继续东行.

(1)若α=2β=60°,问该船有无触礁危险?如果没有,请说明理由;如果有,那么该船
自B处向东航行多少千米开始有触礁危险?
(2)当α与β满足什么条件时,该船没有触礁危险?

第25讲 解三角形的实际应用
1.C 2.A 3.C 4.D 5.1063 6.156 7.45°
8.解析:(1)sin 75°=sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=12×22+32×22=
6+2
4
.

(2)因为∠CAB=75°,∠CBA=45°,
所以∠ACB=180°-∠CAB-∠CBA=60°,

由正弦定理得:ABsin ∠ACB=BCsin ∠CAB,

所以BC=ABsin 75°sin 60°,

如图过点B作BD垂直于对岸,垂足为D,则BD的长就是该河段的宽度.
在Rt△BDC,因为∠BCD=∠CBA=45°,sin ∠BCD=BDBC,

BD=BCsin 45°=ABsin 75°sin 60°·sin 45°

=100×6+2432×22
=256+233
=5031+33(m).
所以该河段的宽度5031+33 m.
9.解析: (1)作MC⊥AB,垂足为C.

由已知α=60°,β=30°,
所以∠ABM=120°,∠AMB=30°.
所以BM=AB=4,∠MBC=60°.
设该船自B向东航行至D点有触礁危险,
则MD=3.5 km.
在△MBC中,BM=4 km,BC=2 km,

MC=MB·sin ∠MBC=4×32=23(km),
所以CD=3.52-232=0.5(km),
所以BD=1.5(km).
所以该船自B向东航行1.5 km开始有触礁危险.
(2)设CM=x.

在△MAB中,由正弦定理得ABsin ∠AMB=BMsin ∠MAB,
即4sinα-β=BMcos α,则BM=4cos αsinα-β.
而x=BM·sin ∠MBC=BM·cos β=4cos αcos βsinα-β,
所以,当x>3.5,即4cos αcos βsinα-β>72,
即cos αcos βsinα-β>78时,该船没有触礁危险.

相关文档
最新文档