高中数学放缩法公式

合集下载

高中数学优秀讲义微专题57 放缩法证明数列不等式

高中数学优秀讲义微专题57  放缩法证明数列不等式

微专题57 放缩法证明数列不等式一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。

本节通过一些例子来介绍利用放缩法证明不等式的技巧1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 ) (2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和:若()()()121,2,,n a f a f a f n >>>L ,则:()()()1212n a a a f f f n +++>+++L L (3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数 注:这两条性质均要注意条件与结论的不等号方向均相同 2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:12nn a a S n +=⋅,n a kn m =+(关于n 的一次函数或常值函数) ② 等比数列求和公式:()()1111n n a q S q q -=≠-,n n a k q =⋅(关于n 的指数类函数)③ 错位相减:通项公式为“等差⨯等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项 (2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

高中理科数学解题方法篇(不等式放缩)

高中理科数学解题方法篇(不等式放缩)

数列型不等式放缩技巧八法一 利用重要不等式放缩1.均值不等式法例1 设.)1(3221+++⋅+⋅=n n S n 求证.2)1(2)1(2+<<+n S n n n解析 此数列的通项为.,,2,1,)1(n k k k a k =+=2121)1(+=++<+<k k k k k k ,)21(11∑∑==+<<∴nk n nk k S k , 即.2)1(22)1(2)1(2+<++<<+n n n n S n n n注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式2b a ab +≤,若放成1)1(+<+k k k 则得2)1(2)3)(1()1(21+>++=+<∑=n n n k S nk n ,就放过“度”了!②根据所证不等式的结构特征来选取所需要的重要不等式,这里na a na a a a a a n n n nn n22111111++≤++≤≤++ 其中,3,2=n 等的各式及其变式公式均可供选用。

例 2 已知函数bx a x f 211)(⋅+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121)()2()1(1-+>++++n n n f f f (02年全国联赛山东预赛题) 简析 )2211()()1()0(22114111414)(⨯->++⇒≠∙->+-=+=n f f x x f xx x x .2121)21211(41)2211()2211(112-+=+++-=⨯-++⨯-++-n n n n n 例3 已知b a ,为正数,且111=+ba ,试证:对每一个*∈N n ,1222)(+-≥--+n n n n nb a b a .(88年全国联赛题)简析 由111=+b a 得b a ab +=,又42)11)((≥++=++a bb a b a b a ,故4≥+=b a ab ,而nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+-- 110)(, 令n n n b a b a n f --+=)()(,则)(n f =1111----++++n n n r r n r n n nab C b a C b a C ,因为in n i n C C -=,倒序相加得)(2n f =)()()(111111b a ab C b a b a C ab b a C n n n n r n r r r n r n n n n -------+++++++ ,而1211112422+------=⋅≥≥+==+==+n nnnn n rn rrrn n n b a b a ab b a b a ab b a ,则)(2n f =))(22())((11r r n r n r n r r n r n r n n r n n b a b a b a b a C C C -----+-=+++++ ⋅-≥)22(n 12+n ,所以)(n f ⋅-≥)22(n n 2,即对每一个*∈N n ,1222)(+-≥--+n n n n n b a b a .例4 求证),1(221321N n n n C C C C n n nnnn∈>⋅>++++- .简析 不等式左边=++++nn n n n C C C C 32112222112-++++=-n nn n n 122221-⋅⋅⋅⋅⋅> =212-⋅n n ,原结论成立.2.利用有用结论例5 求证.12)1211()511)(311)(11(+>-++++n n 简析 本题可以利用的有用结论主要有:法1 利用假分数的一个性质)0,0(>>>++>m a b ma mb ab 可得>-⋅⋅122563412n n =+⋅⋅n n 212674523 )12(212654321+⋅-⋅⋅n nn⇒12)122563412(2+>-⋅⋅n n n 即.12)1211()511)(311)(11(+>-++++n n法 2 利用贝努利不等式)0,1,2,(1)1(≠->≥∈+>+*x x n N n nx x n 的一个特例12121)1211(2-⋅+>-+k k (此处121,2-==k x n )得 =-+∏⇒-+>-+=)1211(121212111k k k k n k .1212121+=-+∏=n k k n k 注:例5是1985年上海高考试题,以此题为主干添“枝”加“叶”而编拟成1998年全国高考文科试题;进行升维处理并加参数而成理科姊妹题。

高中数学 经典资料 第121课--导数中的不等式放缩

高中数学 经典资料  第121课--导数中的不等式放缩

第121课导数中不等式放缩基础知识:(1)在不等式放缩中,常见的函数不等式有①e 1x x ≥+;②1ln x x -≥.特别地,要注意在具体题目中灵活变形应用这些不等式.如利用上面①、②易得1ln 2x x +≥+,e ln 2x x >+,e sin 1x x ≥+等不等式.(2)与隐零点相关的放缩问题常用方法:利用隐零点问题中常用的代换技巧表达出()f x 的最大值(最小值)0()f x ,再由0x 的取值范围求出0()f x 的最大值(最小值),即得到0()()f x f x M ≤≤(0()()f x f x M ≥≥),进而证得题目中所证不等式.一、典型例题1.已知函数()23e x f x x =+,()91g x x =-.比较()f x 与()g x 的大小,并加以证明.答案:()()f xg x >解析:设()()()h x f x g x =-23e 91x x x =+-+,∵()3e 29x h x x ¢=+-为增函数,∴可设()00h x ¢=,∵()060h ¢=-<,()13e 70h ¢=->,∴()00,1x Î.当0x x >时,()0h x ¢>;当0x x <时,()0h x ¢<.∴()()0min h x h x =02003e 91x x x =+-+,又003e 290x x +-=,∴003e 29x x =-+,∴()2000min 2991h x x x x =-++-+2001110x x =-+()()00110x x =--.∵()00,1x Î,∴()()001100x x -->,∴()min 0h x >,()()f x g x >.2.已知函数()2e x f x x =-.(1)求曲线()f x 在1x =处的切线方程;(2)求证:当0x >时,()e 2e 1ln 1x x x x +--³+.答案:(1)()e 21y x =-+;(2)见解析解析:(1)()e 2x f x x ¢=-,由题设得()1e 2f ¢=-,()1e 1f =-,()f x 在1x =处的切线方程为()e 2 1.y x =-+(2)()e 2x f x x ¢=-,()e 2x f x =-,∴()f x ¢在()0,ln2上单调递减,在()ln2,+¥上单调递增,所以()()ln222ln20f x f ³=->,所以()f x 在[]0,1上单调递增,所以()()[]max 1e 1,0,1f x f x ==-Î.()f x 过点()1,e 1-,且()y f x =在1x =处的切线方程为()e 21y x =-+,故可猜测:当0,1x x >¹时,()f x 的图象恒在切线()e 21y x =-+的上方.下证:当0x >时,()()e 21f x x ³-+,设()()()e 21,0g x f x x x =--->,则()()()e 2e 2,e 2x x g x x g x =---=-,()g x ¢在()0,ln2上单调递减,在()ln2,+¥上单调递增,又()()03e 0,10,0ln21g g =->=<<,∴()ln20g ¢<,所以,存在()00,ln 2x Î,使得()00g x ¢=,所以,当()()00,1,x x Î+¥时,()0g x ¢>;当()0,1x x Î时,()0g x ¢<,故()g x 在()00,x 上单调递增,在()0,1x 上单调递减,在()1,+¥上单调递增,又()()010g g ==,∴()()2e e 210x g x x x =----³,当且仅当1x =时取等号,故()e 2e 1,0x x x x x +--³>.又ln 1x x ³+,即()e 2e 1ln 1x x x x +--³+,当1x =时,等号成立.二、课堂练习1.已知()e ln x f x x =-.(1)求()y f x =的导函数()y f x ¢=的零点个数;(2)求证:()2f x >.答案:(1)1个;(2)见解析解析:(1)()()1e ln e x x f x x f x x ¢=-Þ=-,设()1e x g x x=-,则()21e 0x g x x ¢=+>,()()1e x g x f x x¢==-在()0,+¥上递增,()11e 10,202f f=->=-<,存在()0000111,0e 02x x f x x ¢<<=Þ-=,所以()y f x =的导函数()y f x ¢=的零点个数为1个.(2)由(1)可知,()y f x =在()00,x 上递减,在()0,x +¥上递增,()()00000min 011e ln 2(1)2x f x f x x x x x ==-=+><<,所以()2f x >.2.已知函数()()23e 4cos 1x f x x ax x x =+++,()()e 1x g x m x =-+.(1)当1m ³时,求函数()g x 的极值;(2)若72a ³-,证明:当()0,1x Î时,()1f x x >+.答案:(1)见解析;(2)见解析解析:(1)()e x g x m ¢=-,由()0g x ¢=得ln x m =.由ln x m >得()0g x ¢>,ln x m <得()0g x ¢<,所以函数()g x 只有极小值()()ln ln 1ln g m m m m m m =-+=-.(2)不等式等价于3214cos 1e xx x ax x x ++++>,由(1)得:e 1x x ³+,所以()22e 1x x ³+,所以211e 1x x x +<+,()0,1x Î,()3214cos 1e x x x ax x x ++++->()314cos 11x ax x x x +++-+34cos 1x x ax x x x =++++214cos 1x x x a x =++++令()214cos 1h x x x a x =++++,则()()2124sin 1h x x x x ¢=--+,令()24sin I x x x =-,则()()24cos 212cos I x x x ¢=-=-,当()0,1x Î时,π1cos cos1cos 32x >>=,所以12cos 0x -<,所以()0I x ¢<,所以()I x 在()0,1上为减函数,所以()()00I x I <=,则()0h x ¢<,所以()h x 在()0,1上为减函数,因此,()()314cos12h x h a >=++,因为π4cos14cos 23>=,而72a ³-,所以34cos102a ++>,所以()0h x >,而()0,1x Î,所以()1f x x >+.三、课后作业1.已知函数()()21ln f x x x x =-+,求证:当02x <£时,()12f x x >.答案:见解析解析:只需证:ln 1ln 2x x x x -->,令()ln g x x x =-,()ln 12x h x x =+,由()110g x x =-=¢解得:()1,x g x =在(0,1)递减,在(1,2]上递增,故()()min 11g x g ==,由()21ln x h x x -¢=可知:()h x 在(0,2]上递增,故()()()max min 1ln2212h x h g x +==<=,故()()h x g x <,即()12f x x >.2.设函数()e sin x f x a x b =++.若()f x 在0x =处的切线为10x y --=,求,a b 的值.并证明当(0,)x Î+¥时,()ln f x x >.答案:见解析解析:由()e sin x f x a x b =++得()e cos x f x a x ¢=+,且(0)1f b =+.由题意得0(0)e 1f a =¢+=,所以0a =.又()0,1b +在切线10x y --=上,所以0110b ---=,所以2b =-.所以()e 2x f x =-.先证e 21x x ->-,即e 10(0)x x x -->>,令()e 1(0)x g x x x =-->,则()e 10x g x ¢=->,所以()g x 在(0,)+¥是增函数.所以()(0)0g x g >=,即e 21x x ->-.①再证1ln x x -³,即1ln 0(0)x x x --³>,令()1ln x x x j =--,则11()1x x x x j -=-=¢,()0x j ¢=时,1x =,()0x j ¢>时,1x >,()0x j ¢<时,01x <<.所以()x j 在(0,1)上是减函数,在(1,)+¥上是增函数,所以min ()(1)0x j j ==.即1ln 0x x --³,所以1ln x x -³.②由①②得e 2ln x x ->,即()ln f x x >在(0,)+¥上成立.3.已知函数()()()e ln x f x x a x a x =-+++,a R Î.若函数()f x 在定义域上为单调增函数.(1)求a 最大整数值;(2)证明:23341e ln2ln ln ln 23e 1n n n +++++<-.答案:(1)2;(2)见解析解析:由题意知,()()e ln x f x x a ¢=-+,若函数()f x 在定义域上为单调增函数,则()0f x ¢³恒成立.(1)先证明e 1x x ³+.设()e 1x g x x =--,则()e 1x g x ¢=-,则函数()g x 在(),0-¥上单调递减,在()0,+¥上单调递增,∴()()00g x g ³=,即e 1x x ³+.同理可证ln 1x x £-∴()ln 21x x +£+,∴()e 1ln 2x x x ³+³+.当2a £时,()0f x ¢>恒成立.当3a ³时,()01ln 0f a ¢=-<,即()()e ln 0x f x x a ¢=-+³不恒成立.综上所述,a 的最大整数值为2.(2)(1)知,()e ln 2x x ³+,令1t x t -+=,∴111e ln 2ln t t t t t t-+-++³+=∴11e ln tt t t-++³.由此可知,当1t =时,0e ln2>.当2t =时,213e ln 2->,当3t =时,324e ln 3->, ,当t n =时,11e ln n n n n -++³.累加得0121e e e e n ---+++++>23341ln2ln ln ln 23nn n +++++ .又0121e e e e n ---+++++=111e e 11e 111e e n -<=---,∴2334ln2ln ln 23++1e ln e 1n n n +++<-.。

高考数学数列放缩法技巧全总结计划材料

高考数学数列放缩法技巧全总结计划材料

实用文档高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩n2n5 1例1.(1)求k14k 21的值;(2)求证:k1k3. 2211解析:(1)因为4n21(2n1)(2n1)2n12n1,所以21n4k21112n12n1421111125n214n22n12n1(2)因为,所以k1k21 452n2n133 1121奇巧积累:(1)n24n24n212n2n1(2)Cn11Cn2n1)n(n)n(n1)n(n1) r1!11(3)r1Cnnrr!(nr)!r!r(r)1r2)1n11211)(n213n4)(n1n(5)2n(2n1)2n1n(6)( 1) 12(n1)11(7)(8)2n2n2n(2n) n1 (2n 3) 2n1111(9)k(n1k) n 1k k nn(n 1k)knk(10)(11)(12)n 1 112( 2n 1n )2 22n2n1 2n11 1(n1)! n!(n1)!(11)n n222n2n2n2n1 1(n2)(2n 1)2(2n 1)(2n 1) (2n 1)(2n2) (2n 1)(2n11) 2n1 12n111111n3n n 2n (n 1)(n1)n (n 1)n (n 1) n 1n111n1n 111n 1n 12nn 1n1(13)(14)2 n122n (31)2n33(2n1)2n2n12n12n32n13k2111nn1(n2) k!(k)!(k2)!(k1)!(k2)!n(n(15)1)文案大全实用文档21j212j2i j1( 15)j ij)(i212)i21j2n2)例2.(1)求证:32521)2(2n2(2n1) 1111(2)求证:416364n24n113135135(2n1)2n1(3)求证:22462462n2(1)1112(n)(4)求证:23111n11111解析:(1)因为(2n1)22n1)(2n1)2n12n1所以i(2i1)21()1()22n132n1,1111111( 2)416364n4(122n2)(11)13(2n1)1(3)先运用分式放缩法证明出后就可以得到答案1n进行裂项,n 22n 最12(n1n)211(4)首先nn,所以容易经过裂项得到2(n11)1n1232(2n12n1)22212n1112n再证nn 而由均值不等式知道这是显然成立的,2 211112( 2n 11)所以23n6n111例3.求证:(n1)(2n 1)9n21411214n 21 2n12n11 11 1125 解析:一方面:因为n 412 2n12n11所以k1k23533,111111 n另一方面:4922334 n(n1)n1n1n6n6n111 1当31(1)当1149n 2n时,nn (2n1)n时,(n)(2n1),6n11,当n2时,(n1)(2n1)49n2n 11所以综上有(n1)(2n1) 49例4.(2021年全国一卷)设函数f(x)xxlnx 数列a n 满足11a n1f (a n )..文案大全实用文档设b(a1,1),整数k≥a1bb.a1lnb.证明:a k1解析:由数学归纳法可以证明an是递增数列,故假设存在正整数mk,使a m,那么a k1ak b,kmb(mk)a1a mb1am lna ma1lna ma1lnb0a k1a k a k lna ka1a m lnam假设,那么由知,m1kam lna mk(a1lnb)因为m1,于是ak1a1k|a1lnb|a1(ba1)b例5.n,mN,x1,S1m2m3m n m m1(m1)S(n1)m1.,求证:解析:首先可以证明:(1x)nnxm1n m1(n1)m1(n1)m1(n2)m11m1[k m1(k1)m1]1所以要证nm1(m1)S(n1)m1只要证:nn[ k m1(k1)m1](m1)km(n1)m11(n1)m1nm1nm1(n1)m12m11m1[(k1)m1k m1]k111[ k m1(k1)m1](m1)km[(k1)m1k m1]故只要证k1k11,即等价于k m1(k1)m1(m1)k m k1)m1km,即等价于1m11m11k(1)1k(1而正是成立的,所以原命题成立.例6.a n4n2n,Tn2na n,求证:T1T2T3na122.解析:Tn314(14n)2(12n)4 4422)1412341)2(12 Tn2n2n2n32n2n11n1n12n1)2(12n)4n1422n1432222321所以4n33n312(22n1)(2n1)22n12n11T 1T2T3313Tn3372n12n112从而2n (n2k1,k)1117.x1xn2k,k)x2x34x4x52(n11)(nN*)例n1(n求证4x2n x2n1 1文案大全实用文档证明:因为1111124x2n x2n14(2n1)(2n1)44n2144n22n2n,122) n1,所以2(n1 2n4x2n x2n12n nn1112(n11)(nN*)所以4x2 x3 4x4x5 4x2nx2n1 二、函数放缩ln2ln3ln 4ln3n3n5n6(nN*).例8.求证:2343n6解析:先构造函数有lnxlnx1ln2ln3ln4ln3n n111x11x,从而2343n3133n)11111111111caus e233n234567892n2n1n533993n13n15n669182723n13n6 ln2ln3ln4ln3n15n n5n6所以2343n 362,ln 2ln3lnn2n2n1(n)例9.求证:(1)23n2(n1)解析:构造函数f(x)lnxlnnlnn2lnn21111x得到nn2再进行裂项n2n2n(n1)求和后可以得到答,,,案函数构造形式:lnxx1,lnn1(2)11ln(n1)111例10.求证:232n解析:提示:ln(n1)lnn2nn1nnln2 n11nn1函数构造形式:lnxx,lnxy当然此题的证明还可以运用积分放缩如图,取函数f(x)1ED x,F CA Bilnx|nlnn ln(ni)n-iSABC F首先x,从而,i文案大全实用文档1lnnln (n1),取i1有,n11 l n3 l n211ln(n1)lnn ,相加后可以得到:所以有2 l n2,3 ,⋯,nlnnln(n1),n111ln (n1)3n1S ABD E1,从而有nii另一方面ii1l nn ln(n1),取i1有,n1l nx|nlnnl n(ni)n所以有ln(n1)1 11 1 11 l n(n1)112n,所以上有2 3n 1 2例11.求:1 1)(11)(11)e和1 )(11) (11解析构造函数后即可明2!3!n!98132n.:2n3ln[n (n1)1]3例12.求:(112)1 23)[1 n (n 1)] 解析 2:,以得到答案l n(x1 )31ln(1x)3x)(加命)函数构造形式(x0)x1x1 ln2ln3ln4lnnn(n)(nN*,n1)例13.明:3451解析:构造函数f(x)ln(x1)(x)1(x1)求可以得到:,f'(x)112x''0有x2,x1x1,令f(x)0有1x2,令f(x)所以f(x)f(2)0,所以ln(x1)2,令xn21有,lnn2n21lnn n1n2ln3ln4lnnn(n1)(nN*,n)所以n12,所以345n14例14.a11,a n1(11n)a n.明a ne2.n2n1)a n111)a n解析:a n1(1n(n1)n(n1),11lna n1ln(1n(n1)2n)lna n然后两取自然数,可以得到文案大全实用文档然后运用ln(1)x和裂项可以得到答案)放缩思路:a nlna n1ln(11lna n(1n2n2n a nn2n nlna n11 22n。

754期【导数】三种函数拟合放缩比较——泰勒展开、帕德逼近、洛朗级数

754期【导数】三种函数拟合放缩比较——泰勒展开、帕德逼近、洛朗级数

754期【导数】三种函数拟合放缩比较——泰勒展开、帕德逼近、洛朗级数为什么不等式恒成立问题是各大模拟题乃至高考题长盛不衰的命题方向?原因之一就是不等式恒成立问题在高等数学下有太多的命题背景,比如现在同学们已经非常熟悉的泰勒展开。

一个初等函数稍微展开几项就是一个极好的不等式,例如e x≥x+1等等。

但是现在模拟题中由泰勒展开为基础的不等式似乎已经用尽了,因为泰勒展开有其局限性——只能在收敛域内将要展开的函数展开成多项式函数,拟合放缩精度有限。

因此现在命题人也着眼于精度更高的函数拟合逼近方法,并以此为命题背景,比如将函数展开成分式函数的帕德逼近、洛朗级数等等这一篇就来关注一下泰勒展开、帕德逼近、洛朗级数这三种函数拟合放缩的比较一、泰勒展开(Taylor Expansion)(一)切线拟合e x≥x+1, lnx≤x−1, e x≥ex⋯ (1)像上面这样的不等式背后有一个共同的特征,具体而言:将具凹凸性的超越函数用其某点处的切线拟合.例如由函数f(x)=e x的凸性及点(0,f(0)),(1,f(1))处的切线,可得第一、第三个不等式;由函数f(x)=lnx的凹性及点(1,f(1))处的切线,可以得到第二个不等式等.像这样的拟合方法,我个人称为切线拟合.这几个不等式就是在切点处对函数的一阶拟合。

切线拟合的一大优势在于对切点附近的拟合程度相当好.这不仅是因为切点在原来的函数上,更是因为它拟合了函数在切点处的变化趋势,即拟合了函数在切点处的导数值.正是这一点,切线拟合及切线放缩在高中范围研究函数中有较广泛的应用.当然,结合图象可以看出,这种拟合方式是很粗糙.为此,还需要找到一种更精确的拟合方法.而切线拟合的拟合方法给了启示我们:既然用一阶导数逼近就可以在切点附近达到一定的精度,那多导几次,让拟合函数在某点处的任意阶导数与原函数的同阶导数相等,精度可能会更高.这正是泰勒展开的思想:构造一个各项系数待定的多项式,并使它在某点处的任意阶导数与原函数的同阶导数相等.为什么泰勒选择的是多项式函数,而不是分式函数,原因之一就是多项式求导相对容易,便于操作,并没有考虑精度问题。

高中数学常用证明方法归纳(比较法、综合法、分析法、反证法、数学归纳法、放缩法)

高中数学常用证明方法归纳(比较法、综合法、分析法、反证法、数学归纳法、放缩法)

高中数学常用证明方法(比较法、综合法、分析法、反证法、数学归纳法、放缩法)江西省永丰中学陈保进高中数学证明题是学生学习的一个难点,学生对基本的数学证明方法不熟悉,证明题过程书写不规范,条理不清晰,为此有必要归纳一些常见的数学证明方法。

1.比较法比较法包括作差比较、作商比较,比如要证a >b ,只需证a -b >0;若b >0,要证a >b ,只需证a b >1。

例1:已知b a ,是正数,用比较法证明:b a a b b a +≥+22证明:0))((11)(()(222222222≥-+=--=-+-=+-+ab b a b a a b b a a a b b b a b a a b b a 所以b a ab b a +≥+222.综合法(由因导果法)利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出要证明的结论成立。

例2:已知.9111111,,≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+∈+b a b a R b a 求证:证明:由ab b a 2≥+,1=+b a ,得41≤ab ,111111211 11111189119.a b a b a b ab ab ab ab a b +⎛⎫⎛⎫⎛⎫⎛⎫++=+++=++=+≥+=∴++≥ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭而3.分析法(执果索因法)从要证明的结论出发,逐步寻求使它成立的充分条件,直到把要证明的结论归结为一个显然成立的条件(已知条件、定理、定义、公理等)为止。

书写格式:要证……只需证……即证……例3:若a ,b ∈(1,+∞),证明:a +b <1+ab .证明:要证a +b <1+ab ,只需证(a +b )2<(1+ab )2,只需证a +b -1-ab <0,即证(a -1)(1-b )<0.因为a >1,b >1,所以a -1>0,1-b <0,即(a -1)(1-b )<0成立,所以原不等式成立.4.反证法当命题从正面出发不好证明时,可以从反面入手,用反证法,正所谓"正难则反"。

高中数学导数切线放缩法

高中数学导数切线放缩法
《高中数学导数切线放缩法》
一、定义
导数切线放缩法是一种将数学函数的导数按一定的比例缩放后,然后在y方向上放缩的一种常用方法。

二、原理
利用放缩法,可以把目标函数的导数放大,使得曲线的斜率变大,从而达到快速收敛的效果。

放缩前,函数的导数变换前后的变化比较慢,放缩后,函数的导数变换前后的变化较快,从而实现快速收敛。

三、应用
1.高中数学作业中,利用导数切线放缩法可以快速的求出函数的单调性、极值点以及图像的放大和缩小等。

2.在机器学习中,利用导数切线放缩法可以实现快速的权重调整,从而提升算法的学习速率。

- 1 -。

高中数学讲义:放缩法证明数列不等式

放缩法证明数列不等式一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。

本节通过一些例子来介绍利用放缩法证明不等式的技巧1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 )(2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和:若()()()121,2,,n a f a f a f n >>>L ,则:()()()1212n a a a f f f n +++>+++L L (3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数注:这两条性质均要注意条件与结论的不等号方向均相同2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点:① 等差数列求和公式:12nn a a S n +=×,n a kn m =+(关于n 的一次函数或常值函数)② 等比数列求和公式:()()1111n n a q S q q -=¹-,n n a k q =×(关于n 的指数类函数)③ 错位相减:通项公式为“等差´等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

高中数学必会知识点:导数中的同构与放缩

高中数学必会知识点:导数中的同构与放缩
在能成立与恒成立的命题中,有很大一部分题是命题者利用函数单调性构造出来的,如果我们能找到这个函数模型(即不等式两边对应的同一函数),无疑大大加快解决问题的速度.找到这个函数模型的方法,我们就称为同构法.如若F(x) ≥ 0能等价变形为f[g(x)] ≥f [(x)],然后利用f(x)的单调性,如递增,再转化为g(x) ≥ (x),这种方法我们就可以称为同构不等式(等号成立时,称为同构方程),简称同构法.
当然,用同构法解题,除了要有同构法的思想意识外,对观察能力、对代数式的变形能力的要求也是比较高的.正所谓,同构解题,观察第一!同构出马,谁与争锋!同构思想放光芒,转化之后天地宽!。

重点高中数学放缩法

重点高中数学放缩法

2

———————————————————————————————— 作者: ———————————————————————————————— 日期: 3

高考专题 放缩法 缩法是不等式证明中一种常用的方法,也是一种非常重要的方法。在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。但放缩的范围较难把握,常常出现放缩之后得不出结论或得出相反结论的现象。因此,使用放缩法时,如何确定放缩目标尤为重要。要想正确确定放缩目标,就必须根据欲证结论,抓住题目的特点。掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题目的类型,采用恰到好处的放缩方法,才能把题解活,从而培养和提高自己的思维和逻辑推理能力,分析问题和解决问题的能力。 数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩

例1.正数数列na的前n项的和nS,满足12nnaS,试求:

(1)数列na的通项公式; (2)设11nnnaab,数列nb的前n项的和为nB,求证:21nB 解:(1)由已知得2)1(4nnaS,2n时,211)1(4nnaS,作差得:1212224nnnnnaaaaa,所以0)2)((11nnnnaaaa,又因为na为正数数列,所以21nnaa,即na是公差为2的等差数列,由1211aS,得11a,所以12nan (2))121121(21)12)(12(111nnnnaabnnn,所以

21)12(2121)1211215131311(21nnnBn 注:一般先分析数列的通项公式.如果此数列的前n项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“放缩法”证明不等式的基本策略
1、添加或舍弃一些正项(或负项)
例1、已知*21().nnanN求证:*122311...().23nnaaannNaaa

证明: 111211111111.,1,2,...,,2122(21)23.222232kkkkkkkkakna
12
22311111111...(...)(1),2322223223nnn
naaannnaaa



*
12

2311...().232nnaaannnNaaa


若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的
值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,
利用不等式的传递性,达到证明的目的。本题在放缩时就舍去了22k,从而是使和式得
到化简.

2、先放缩再求和(或先求和再放缩)

例2、函数f(x)=xx414,求证:f(1)+f(2)+…+f(n)>n+)(2121*1Nnn.
证明:由f(n)= nn414=1-1111422nn
得f(1)+f(2)+…+f(n)>n22112211221121
)(2121)2141211(41*11Nnnnnn


.

此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进
行放缩,从而对左边可以进行求和. 若分子, 分母如果同时存在变量时, 要设法使其中之一
变为常量,分式的放缩对于分子分母均取正值的分式。如需放大,则只要把分子放大或分
母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。
3、逐项放大或缩小
例3、设)1(433221nnan求证:2)1(2)1(2nannn
证明:∵ nnnn2)1( 212)21()1(2nnnn
∴ 212)1(nnnn
∴ 2)12(31321nann, ∴2)1(2)1(2nannn
本题利用21(1)2nnnn,对na中每项都进行了放缩,从而得到可以求和的
数列,达到化简的目的。
4、固定一部分项,放缩另外的项;

例4、求证:2222111171234n
证明:21111(1)1nnnnn

22222
1111111115117
1()().1232231424nnnn

此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根
据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。

5、函数放缩
例5.求证:)(665333ln44ln33ln22ln*Nnnnnn.
解析:先构造函数有xxxxx11ln1ln,从而)313121(1333ln44ln33ln22lnnnnn
因为nnnn31121219181716151413121313121

653332327918993636
5111n
nnnn

所以6653651333ln44ln33ln22lnnnnnnn
6、裂项放缩
例6 求证:35112nkk.

解析:因为12112121444111222nnnnn,所以35321121121513121112nnknk
7、均值不等式放缩

例7.设.)1(3221nnSn求证.2)1(2)1(2nSnnn
解析: 此数列的通项为.,,2,1,)1(nkkkak
212
1)1(kkk
kkk
,)21(11nknnkkSk,

即.2)1(22)1(2)1(2nnnnSnnn

注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式2baab,若放成
1)1(kkk
则得2)1(2)3)(1()1(21nnnkSnkn,就放过“度”了!

②根据所证不等式的结构特征来选取所需要的重要不等式,这里

naan
aaaaaannnnnn22111111






其中,3,2n等的各式及其变式公式均可供选用。

8、二项放缩
nnnnnnCCC10
)11(2

,1210nCCnnn,

2
222210nn
CCC
nnn
n

)2)(1(2nnn
n

相关文档
最新文档