免疫磁珠分离技术(IMB)及应用
免疫磁性微球技术专题

免疫磁性微球技术专题技术简介:免疫磁性微球(Immunomagnetic Microspheres,IMMS),或称免疫磁珠(Immunomagnetic Beads,IMB)是免疫学和超顺磁性磁珠结合而发展起来的一类新型材料。
免疫磁珠是包被有抗体或具有抗体结合功能的超顺磁性微球,当它与含有靶物质的样品混合孵育时,可与靶物质特异性地结合而形成具有磁响应性的复合物,此复合物可被磁场滞留,从而与样品中其他杂质分离。
免疫磁性分离简便易行,分离纯度高,保留靶物质活性,且高效、快速、低毒,可广泛应用于细胞分离和提纯、免疫检测、免疫纯化、免疫沉淀等领域。
核心原理:磁性材料在高温条件下,或是磁性颗粒的粒度很小时,其磁性很容易随周围的磁场改变而改变,磁体的极性也呈现出随意性,难以保持稳定的磁性能,这种现象就是超顺磁效应。
超顺磁性磁珠能在外部磁场的作用下迅速聚集,当磁场撤离后即可重新分散而不带有剩磁,这种特性使其作为一种新型的分离纯化基质被广泛用于生物活性物质的分离纯化技术上。
理想的磁珠具有均匀的球形、由具有超顺磁性的铁质核心及高分子保护外壳,大小从50~10000nm 不等。
表面常带有化学功能的基团,如-OH、-NH2、 -COOH和-CONO2等,使得磁珠几乎可以偶联任何具有生物活性的蛋白。
磁珠与多数生物高分子如多聚糖、蛋白质等具有良好的生物相容性。
在生物工程,特别是在生物医学领域应用,具有良好的生物相容性是非常重要的。
免疫磁珠用于细胞分离和提纯:在临床医学和基础医学研究领域,经常需要对各种需要的特定种类的细胞进行分离,流式细胞分选技术是一种目前使用较多的细胞分选方法,其原理是用荧光标记抗体的细胞受光激发后在电场中运动方向会发生改变,藉此来将抗体阴性细胞分开,但该方法存在费用高、分离时间长,细胞处理量小等缺陷。
应用免疫磁珠分离细胞是细胞分选的一大突破,该方法方便、快速、分离细胞的纯度高,具有较好的生物活性。
使用免疫磁珠进行分离细胞有两种方式;直接从细胞混合液中分离出靶细胞的方法,称为阳性分离;用免疫磁珠去除无关细胞,使靶细胞得以纯化的方法称为阴性分离。
氨基磁珠 免疫磁珠的技术及应用

氨基磁珠免疫磁珠的技术及应用一、磁珠的概念磁珠是由磁性微粒与各种含活性功能基团的材料复合而成的具有一定磁性及特殊表面结构的粒子。
磁珠的研究始于20世纪70年代,国内在20世纪80年代以来日渐活跃,磁珠表面通过共聚合和表面改性,可被修饰上多种活性功能基团,如羧基、醛基、氨基等,可以共价结合酶、细胞、抗体、蛋白质等多种生物活性物质。
二、氨基磁珠与免疫磁珠氨基磁珠即为表面修饰有氨基官能团且具有超顺磁性的磁性微粒,是一种被广泛应用的功能性生物磁珠,主要用于免疫磁珠的制备。
在一定条件下,氨基磁珠通过交联试剂(如戊二醛等)的介导,可与蛋白配体(如抗原、抗体等)、寡核苷酸探针等生物分子共价偶联,这类偶联有生物配体的氨基磁珠即为免疫磁珠。
免疫磁珠具有固相化试剂特有的优点以及免疫学反应的高度专一性,被广泛的应用于免疫吸附、免疫分离及免疫检测。
近年来,食品安全已成为世界范围的公共问题,由微生物引起的食源性疾病在食品安全事件中占很大比例并有上升趋势,如日本大肠杆菌O157:H7污染、印度奶粉金黄葡萄球菌肠毒素事件、法国李斯特菌中毒以及美国沙门氏菌属污染等,检测及预防这类病菌是人类共同要面对的问题。
因此,可通过免疫磁珠与这些病菌的特异性抗原结合,形成抗原--抗体复合物,在外加磁场的作用下,使特异性抗原与其它物质分离,从而进行检测与分析,在提高检测准确度的同时,减少操作时间,提高效率。
三、免疫磁珠的优点1.耗时短,整个过程仅需12个小时左右,传统方法需要3-4天。
2.操作简便,只需利用外加的磁场即可操作。
3.成本低,不需要使用昂贵的仪器设备。
4.灵敏度高,可进行痕量检测。
5.自动化操作,可配合仪器进行自动化操作,提高效率。
四、氨基磁珠现状目前,我国的氨基磁珠主要源于进口,不仅价格昂贵,而且售后较为困难。
在这里向大家推荐,洛阳惠尔纳米科技园自主研发的HRCZ-03 氨基磁珠,粒径均一,灵敏度高,稳定性好,可用于制作各类免疫磁珠,受到高校,科研机构的一致好评。
免疫磁珠的原理

免疫磁珠的原理免疫磁珠是一种被广泛应用于生物医学研究中的实验工具,它具有高度选择性和灵敏度。
本文将介绍免疫磁珠的原理及其在生物医学领域中的应用。
免疫磁珠的原理基于免疫学和磁性材料的特性。
免疫学是研究机体免疫系统的科学,其中免疫反应是一种特异性的生物化学反应,它可以识别并清除体内的病原体或异常细胞。
而磁性材料是指具有磁性的物质,可以受到外磁场的影响。
免疫磁珠的制备过程可以概括为以下几个步骤:首先,通过化学方法将磁性材料表面修饰上一层生物活性分子,例如抗体、抗原或核酸探针等。
这一步骤的目的是使磁珠具有特异性识别目标分子的能力。
其次,通过物理方法将磁珠分散在溶液中,形成磁性悬浮液。
最后,通过外加磁场的作用,使磁珠集聚在目标分子所在的区域,并用磁力将其分离出来。
免疫磁珠在生物医学领域中有着广泛的应用。
首先,它可以用于分离和富集特定的细胞或分子。
例如,在癌症诊断中,通过将抗体修饰在磁珠表面,可以选择性地富集患者体液中的肿瘤细胞,从而实现早期诊断和治疗监测。
其次,免疫磁珠还可以用于疾病标记和检测。
例如,在病毒感染的检测中,通过将病毒抗原修饰在磁珠表面,可以迅速、高效地检测出患者体液中的病毒颗粒。
此外,免疫磁珠还可以用于药物传递和靶向治疗。
通过将药物修饰在磁珠表面,可以实现药物的定向输送和释放,提高治疗效果并减少副作用。
总结起来,免疫磁珠是一种基于免疫学和磁性材料的实验工具。
它通过在磁性材料表面修饰生物活性分子,实现对特定细胞或分子的识别和富集。
免疫磁珠在生物医学领域中有着广泛的应用,包括细胞分离、疾病检测和药物传递等方面。
相信随着技术的不断进步和完善,免疫磁珠在科学研究和临床应用中将发挥更大的作用。
免疫磁珠分离阳性杂交瘤细胞株的可行性

免疫磁珠分离阳性杂交瘤细胞株的可行性1、免疫磁珠的性质免疫磁珠由三部分组成, 核心是金属小颗粒(Fe2O3、Fe3O4), 核心的外层包裹一层高分子材料(如聚苯乙烯、聚氯乙烯等),最外层是功能基层, 如氨基(-NH4)、竣基(-COOH)、羟基(-OH)。
磁珠是均匀、球形、具有超顺磁性及保护性壳的粒子。
大小和形状的均一性,可使靶物质迅速和有效地结合到磁珠上,它的球形结构可消除与不规则形状粒子有关的非特异性结合超顺磁性可使磁珠置于磁场时,显示其磁性,从磁场移出时,磁性消除、磁珠分散保护性壳可防止金属微粒漏出[1]。
根据磁珠功能基结合的免疫配基不同分为:包被一抗的磁珠、包被二抗的磁珠、未包被的磁珠和包被抗生物素的磁珠。
2、免疫磁珠分离技术的原理免疫磁珠的功能基团可结合活性蛋白质(如抗体、抗原),利用磁珠上的抗体或抗原与相应的抗原或抗体发生特异性结合,形成免疫磁珠-抗体-抗原的复合物,这种复合物在磁场的作用下,发生力学移动,使复合物与其它物质分离,达到分离纯化的目的[2]。
3、免疫磁珠的应用3.1 免疫检测在免疫检测中,免疫磁珠作为固相载体,磁珠上的抗体与抗原特异性结合,形成抗原-抗体-磁珠复合物,在磁场的作用下,使特异性抗原与其它物质分离,起到了提纯与富集的作用,克服了放射免疫和酶联免疫检测的缺点。
这种分离检测方法具有灵敏度高,特异性强等优点。
磁珠标记的氯霉素直接竞争ELISA方法比常规直接竞争ELISA检测灵敏度提高50倍,达到0.002ng/mL[3]。
此外,免疫磁珠在病原微生物的检测方面也起了重要的作用,例如,能快速、准确的检测水中弓形虫[4]的情况。
3.2 细胞分离早在20 世纪80 年代初期,Ugelstad 就提出用磁性微粒分离细胞,后由挪威Dynal 公司制成免疫磁珠出售,可用于各种细胞的分离。
使用IMB 进行分离细胞有两种方式:直接从细胞混合液中分离出靶细胞的方法,称为阳性分离;用免疫磁珠去除无关细胞,使靶细胞得以纯化的方法,称为阴性分离。
免疫磁珠分离技术及其在食源性致病菌检测中应用的进展

免疫磁珠分离技术及其在食源性致病菌检测中应用的进展刘细霞;涂俊铭【期刊名称】《中国抗生素杂志》【年(卷),期】2014(039)012【摘要】免疫磁珠分离技术(Immunomagnetic beads separation techniques,IMBS)是利用磁珠上包被的特异性抗体与抗原发生亲和反应,从复杂的样品组份中分离目标抗原.再利用磁珠的磁响应性,实现对目标抗原的富集.该技术灵敏度高、特异性强、分离富集速度快、适用范围广.再结合最新的快速检测技术,使食源性致病菌的检测时间从传统的几天缩短到几小时,在食源性致病菌检测中得到广泛的应用.本文从免疫磁珠分离技术的原理,食源性致病菌免疫磁珠的类型,免疫磁珠分离技术在食源性致病菌检测中应用的进展几个方面进行综述.【总页数】5页(P956-960)【作者】刘细霞;涂俊铭【作者单位】湖北师范学院生命科学学院食用野生植物保育与利用湖北省重点实验室,黄石435002;湖北师范学院生命科学学院食用野生植物保育与利用湖北省重点实验室,黄石435002【正文语种】中文【中图分类】R15【相关文献】1.环介导等温扩增技术在典型食源性致病菌检测中的应用进展 [J], 梁玉林;刘秀;丁梦璇;刘远远;尹建军2.磁性纳米材料在食源性致病菌分离中应用的研究进展 [J], 黄小林;许恒毅;熊勇华;曲锋;杨林3.免疫层析试纸条技术及其在食源性致病菌检测中应用的研究进展 [J], 李怀明;许恒毅;熊勇华4.基于纳米材料的可视化比色检测技术在食源性致病菌检测中的应用研究进展 [J], 周静;田风玉;焦必宁;何悦5.免疫磁分离技术在食源性致病菌快速检测中的研究进展 [J], 曹潇; 赵力超; 陈洵; 谢会; 张竟丰; 刘卓坤; 王丽因版权原因,仅展示原文概要,查看原文内容请购买。
浅论免疫磁珠技术在肿瘤学领域的应用

浅论免疫磁珠技术在肿瘤学领域的应用【摘要】免疫磁珠是免疫微球的一种,它是包被有单克隆抗体的球型磁性微粒,可特异性地与靶物质结合使之具有磁响应性,可以保证被分离靶细胞的形态和功能的完整,具有灵敏度高、特异性高、检测速度快、重复性好、操作简单和不需要昂贵的仪器设备等优点,本文就该技术应用于肿瘤细胞的分离、富集与检测以及肿瘤的生物学研究和磁导向治疗、免疫磁性净化等领域的研究进展作一综述。
【关键词】免疫磁珠技术; 循环肿瘤细胞; 免疫磁性净化; 综述[Abstract] Immunomagnetic beads, a kind of immunomagnetic microspheres, are the spherical magnetic particles coated with monoclonal antibodies, which can specifically combine with the target material and get magnetic responsiveness and ensure themorphological and functional integrity of the separated target cells. The higher sensitivity and specificity, rapid detection, well repeatability, easier operation and less expensive equipment requirement make this technique more popular. Immunomagnetic beads have gradually been applied to the separation, enrichment and detection of tumor cells, as well as to tumorous biological research and targeted therapy, immunomagnetic purification and other fields.[Key words] immunomagnetic beads; circulating tumor cells; immunomagnetic purification; review免疫磁珠(immunomagnetic bead, IMB)技术是近年来国内外研究的一种新的免疫学技术。
免疫磁珠纯化蛋白的原理
免疫磁珠纯化蛋白的原理免疫磁珠(Immunomagnetic Bead,IMB)技术是一种利用特定性抗体偶联在磁性珠子表面,通过抗原抗体的非共价结合及磁性珠能够吸附在磁场作用下实现快速、高效及特异性纯化目标蛋白的技术。
这种技术的主要原理是基于抗原和抗体相互作用的原理。
1.免疫复合物的形成免疫磁珠通常是从大肠杆菌酸生产工艺中制备出的磁性颗粒,表面覆盖有可选择某个目标蛋白的特异性抗体。
在蛋白的样品中,这些特异性抗体可以与目标抗原进行结合形成免疫复合物。
2.免疫磁珠的捕获将免疫磁珠加入蛋白样品中,磁性作用会使免疫磁珠快速从样品中被吸附,而目标蛋白结合在免疫磁珠表面的特异性抗体上,形成免疫复合物。
3.洗涤通过旋转磁体或磁珠分离器将免疫复合物从未结合的物质中分离出来,并先后进行多次洗涤以去除非特异物质,减少背景干扰。
4.洗脱将诱导免疫复合物大幅度变形或破裂或降解的缓冲溶液添加到磁珠上,使得免疫磁珠上已捕获目标蛋白质离开免疫磁珠,从而得到纯净的目标蛋白样品。
免疫磁珠纯化蛋白是目前最广泛使用的纯化技术之一,具有以下优点:1、具有高选择性免疫磁珠可以与目标蛋白高度特异性地结合,减少了背景干扰,并最大程度上使目标蛋白净化能够得到升级。
2、易于蛋白高效、快速纯化采用免疫磁珠纯化技术可以轻松地处理大量的样本,并能够快速提取出高纯度的目标蛋白样品。
3、广泛应用范围免疫磁珠技术的应用范围非常广泛,可以应用于蛋白质、抗体、病毒、激素、细胞因子及其它不同种类的分子的纯化和富集。
免疫磁珠纯化蛋白已成为目前重要的实验手段之一,其应用范围已涉及到许多领域,如基因组学、蛋白质组学、生物制药等等。
例如,目标蛋白质的纯化可以用于表达纯化蛋白、生物分子分离、分析和定量测定、抗体制备、生物学研究、诊断检测及疫苗生产等。
在药物研发和生产过程中,也可以应用免疫磁珠技术对生物药物进行纯化和快速纯化。
此外,免疫磁珠技术还可以用于疾病诊断之类的测试。
免疫磁珠技术及其在食品微生物检测中的应用
免疫磁珠技术及其在食品微生物检测中的应用随着食品安全问题的不断突出,食品微生物检测成为了食品安全控制的重要环节。
传统的微生物检测方法存在着操作繁琐、检测时间长、检测灵敏度低等问题,难以满足现代食品安全监管的需求。
而免疫磁珠技术作为一种新兴的微生物检测方法,具有操作简单、检测时间短、检测灵敏度高等优点,被广泛应用于食品微生物检测中。
一、免疫磁珠技术的原理免疫磁珠技术是将磁性微珠与抗体结合,形成一种具有特异性的生物活性物质,对目标分子进行捕获和富集,从而实现对目标分子的快速检测。
其主要原理是利用磁性微珠的磁性特性,通过外加磁场的作用将目标分子富集于磁珠表面,再通过洗涤等步骤去除非特异性结合物质,最终通过检测磁珠上的信号来确定目标分子的存在与否。
二、免疫磁珠技术在食品微生物检测中的应用1.快速检测食品中的致病菌免疫磁珠技术可以用于快速检测食品中的致病菌,如大肠杆菌、沙门氏菌等。
通过将磁珠与特异性抗体结合,对目标菌进行富集和捕获,从而实现对食品中致病菌的快速检测。
该方法具有操作简单、检测时间短、检测灵敏度高等优点,能够大大提高食品检测的效率和准确性。
2.检测食品中的过敏原免疫磁珠技术也可以用于检测食品中的过敏原,如花生过敏原、鸡蛋过敏原等。
通过将磁珠与特异性抗体结合,对目标过敏原进行富集和捕获,从而实现对食品中过敏原的快速检测。
该方法具有检测灵敏度高、检测时间短、操作简单等优点,能够有效地避免食品中的过敏反应。
3.检测食品中的添加剂免疫磁珠技术还可以用于检测食品中的添加剂,如防腐剂、色素等。
通过将磁珠与特异性抗体结合,对目标添加剂进行富集和捕获,从而实现对食品中添加剂的快速检测。
该方法具有检测灵敏度高、检测时间短、操作简单等优点,能够有效地保障食品的安全性和质量。
三、结语免疫磁珠技术作为一种新兴的微生物检测方法,具有操作简单、检测时间短、检测灵敏度高等优点,被广泛应用于食品微生物检测中。
随着技术的不断发展和完善,相信免疫磁珠技术将会在食品安全监管中发挥更加重要的作用,为人们的健康保驾护航。
免疫磁珠技术在肿瘤学领域的应用(一)
免疫磁珠技术在肿瘤学领域的应用(一)【摘要】免疫磁珠是免疫微球的一种,它是包被有单克隆抗体的球型磁性微粒,可特异性地与靶物质结合使之具有磁响应性,可以保证被分离靶细胞的形态和功能的完整,具有灵敏度高、特异性高、检测速度快、重复性好、操作简单和不需要昂贵的仪器设备等优点,本文就该技术应用于肿瘤细胞的分离、富集与检测以及肿瘤的生物学研究和磁导向治疗、免疫磁性净化等领域的研究进展作一综述。
【关键词】免疫磁珠技术;循环肿瘤细胞;免疫磁性净化;综述Abstract]Immunomagneticbeads,akindofimmunomagneticmicrospheres,ar ethesphericalmagneticparticlescoatedwithmonoclonalantibodies,whichca nspecificallycombinewiththetargetmaterialandgetmagneticresponsiveness andensurethemorphologicalandfunctionalintegrityoftheseparatedtargetcel ls.Thehighersensitivityandspecificity,rapiddetection,wellrepeatability,easier operationandlessexpensiveequipmentrequirementmakethistechniquemor epopular.Immunomagneticbeadshavegraduallybeenappliedtotheseparatio n,enrichmentanddetectionoftumorcells,aswellastotumorousbiologicalrese archandtargetedtherapy,immunomagneticpurificationandotherfields. Keywords]immunomagneticbeads;circulatingtumorcells;immunomagnetic purification;review免疫磁珠(immunomagneticbead,IMB)技术是近年来国内外研究的一种新的免疫学技术。
免疫磁珠分选法
免疫磁珠分选法免疫磁珠分选法是一种常用的实验方法,用于寻找或分离特定的细胞、蛋白或其他分子。
它利用可在磁场中负性反应的小磁珠,将两种分子结合在一起,然后将其分离出来。
这是一种非常有用的技术,因为它可以高度选择性地寻找或净化分子。
在本文中,我们将分步骤地介绍免疫磁珠分选法的原理和应用。
1. 原理免疫磁珠分选法的基本原理是利用特异性抗体与目标分子结合,然后将磁珠与抗体-抗原复合物结合在一起。
当磁珠的磁场被施加时,它们将吸附在磁板或磁架上,然后将剩余的液体通过离心或其他分离技术移除。
这种方法可以用于寻找或净化细胞、蛋白或其他分子。
2. 步骤(1)准备反应物质。
首先需要准备磁珠、抗体和目标分子。
可以选择将抗体共价结合到磁珠表面上,也可以选择先将抗体与目标分子结合,然后将其与磁珠结合。
(2)结合抗体-抗原复合物与磁珠。
将抗体-抗原复合物添加到磁珠中,使其结合在一起。
可以通过简单的振荡来促进结合。
(3)加入混合溶液。
将准备好的混合物加入磁珠中,让它们结合在一起。
在这个过程中,可以通过调整运动和分离速度来提高结合效率。
(4)使用磁场分离复合物。
当磁场被施加时,磁珠会被吸附在磁板或磁架上,使复合物分离出来。
可以使用离心或其他分离技术来分离剩余的液体。
(5)洗涤。
洗涤是为了去除非特异性的物质,提高纯度。
用化合物在磁性键合,滴加洗涤缓冲液在沉淀过程中进行洗涤与重复两次,大多数洗涤缓冲液中都含有盐或内源污染物淡化液。
(6)洗涤盘。
培养基作为洗涤和生物反应器,因此需要将挂在磁带上的松散浮游细胞从培养基中分离出来,并将其带到物质上。
(7)定量检测。
检测单个细胞或蛋白的浓度,确定其质量并确定其目标。
应用比色法、荧光法等确定各种条件。
3. 应用免疫磁珠分选法广泛应用于许多分子分析研究领域。
例如,它可以用于取样生物液体、寻找并纯化特定的蛋白、寻找和净化细胞、纯化核酸等。
它还可以与其他技术结合使用,例如PCR、微流控和质谱法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是将免疫学+细胞生物学+磁力学结合为一体,利用磁性微球表面功能基团
的专一亲和特性或多孔吸附特性吸附特定组分,然后用外力磁场作用将吸
附了特定物质的磁珠加以分离,再经过洗脱磁珠上吸附的目标物质的一种
新型分离技术,具有广泛的用途。
几种 DNA 分离方法的比较 Comparation of several DNA extraction methods
三 磁性微球的制备
磁性微球制备方法:共沉淀法、悬浮聚合 法、乳液聚合法、分散聚合法、包埋法及 原子转移自由基聚合法等。
1.共沉淀法
金属离子在碱性条件下与高分子共沉淀,一步反应生成磁性高分子微球的方法。 2Fe3++ Fe2++8OH→Fe3O4+4H2O
Pich[等先通过单体聚合反应得到PS-AAEM颗粒分散剂,再把配制好的Fe3+、Fe2+ 溶液加入聚苯乙烯(PS)-乙酰乙酸基甲基丙烯酸乙酯(AAEM)颗粒的分散剂中, 然后滴加NH3·H2O。Fe3O4 粒子在PS-AAEM 表面沉积,制得PS-AAEM为核心、 Fe3O4 粒子为壳层的磁性微球。微球的磁性能通过改变FeCl2 和FeCl3 的浓度或改变 PS-AAEM 核心的尺寸来控制。Xia 等把一定配比的FeCl2、FeCl3 与葡聚糖(dextran T-10)共混,然后滴加NH3·H2O,在超声连续作用下水浴加热,制得以Fe3O4 为 核、dextran 为壳的磁性微球。杨玉东等把一定配比的FeCl3·6H2O、FeCl2·6H2O 与配体(如二亚乙基三胺五乙酸(DTPA)或乙二氨四乙酸(EDTA)等)组成的 混合液体加入到75℃的葡聚糖T-10 溶液中,并快速滴加NH3·H2O,制备了葡聚糖 为壳、氧化铁为核的磁性微球。
导电聚合磁微球
聚合磁微球
对磁性微球的要求:粒径均匀、大小合适、比表面积大、 吸附力强、具有强的超顺磁性、悬浮均匀稳定性好、不易 聚集沉淀、表面具有多种活性基团、理化性质稳定、具有 较好生物相容性、对细胞、机体、活性物质损伤小。 由于环氧基、氯甲基功能基团非常活跃,不需连接其他活 性基团即可与生物配基(如抗体、抗原等)偶联,及其他 基团的微型磁珠在生物学、医学方面应用较为广泛。
免疫磁珠分离技术(IMB) 及在食品生分类及特点 3.磁性微球的制备 4.磁性微球分离技术 5.免疫磁株 6.免疫磁珠结构与性质 7.免疫磁株的特点 8.免疫磁珠的分类 9.免疫磁珠的制备 10.免疫磁珠分离技术 11.免疫磁珠技术的应用 12.免疫磁珠在食品安全检测中的应用 13.免疫磁珠与其它检测手段的联用 14.免疫磁珠技术在其他领域的应用 15.免疫磁珠技术的优缺点及发展望
方法
传统法
鳌合树脂法
玻璃粉法
磁珠法
DNA 提取
酚 / 氯仿等 溶剂抽提
Chelex 100 树脂 吸附
玻璃粉吸附 离心分离
磁珠吸附 磁场分离
适用范围
大多数标本 DNA 提取纯化
培养及 各种临床标本
土壤标本
冰冻、陈旧组织
免疫亲和法
抗原抗体反应 磁场分离
冰冻、陈旧组织, 样本含量很少的标
本
方法评价
DNA 纯度高、含 量多,但较费时, 步骤繁琐,用有 机溶剂,有损操
免疫磁珠的性质
具有均匀性、超顺磁性及保护性外壳,由磁性载体微球和免疫 配基结合而成,表面具有专一亲和性和吸附作用。 免疫磁珠大小和形状具有均一性, 可使靶物质迅速有效地结合 到磁珠上,可使新生成复合物在磁场中具有相同磁响应性,且 行为一致。 磁珠球形结构可消除与不规则形状粒子间的非特异性结合,顺 磁性可使磁珠置于磁场时显示其磁性,并做定向移动, 从磁场 移出时磁性消除, 磁珠分散, 可方便地进行分离和磁性导向。 保护性壳可防止磁性内核漏出或被载液腐蚀; 免疫配基可专一性结合反应体系中相应的抗原、抗体、核酸等 生物活性物质。
2 聚合法制备磁性微球过程
异相聚合法包括分散聚合、乳液聚合、悬浮液聚合三种。该法是 将磁性粒子用表面改性剂、偶联剂、引发剂等处理后分散到含有 聚合物单体的溶剂中进行聚合反应。通常以磁性粒子为活性中心 进行单体聚合。
四 磁性微球分离技术(Magnetic Activated Cell Sorting)
作者健康。
可用于培养标本 和各种临床标本 细菌及部分病毒 核酸的提取。
方法简便,可用于 土壤中细菌芽孢
DNA 的提取,不能 彻底除去PCR抑制 剂。
简单、快速,整 个过程不到 2h , 可获得较纯
DNA 。 适于少 量样本。
DNA 纯度高,含量 多,适于样本含量 少标本,单克隆抗 体的制备是关键。
五 免疫磁珠
磁性核材料多为Fe、Co、 Pt 、Ni等金属及其氧化物。如Fe3O4、γ- Fe2O3、 Me Fe2O3(Me= Co、Mn、Ni)、 BaFe12O19、铁钴合金(Fe-Co和NiFe)。最常用的是Fe、 Fe2O3、 Fe3O4。其中Fe3O4 应用最多。 构成磁性微球的高分子材料有天然高分子和合成高分子物质。天然高分子有明 胶、球蛋白、牛血清白蛋白、聚赖氨酸、淀粉和多种聚糖如纤维素、葡聚糖、 琼脂糖、壳聚糖、果胶等。合成高分子材料有聚苯乙烯、聚乙烯亚胺、聚乙烯 醇、聚丙烯酸(酯)及其共聚物、聚酰胺类、聚苯胺及硅烷等。这些材料可单 独用,也可复合使用。 磁性微球表面可根据需要赋予不同的功能基 团(如-OH、-COOH、-CHO、 -NH2,—SH、—CONH2、—SO3H、—SiH3、—环氧基、—CHCl等),使其 表现具有疏水-亲水、非极性-极性、带正电荷-带负电荷等不同物理性质。同时 具有磁响应性,在外磁场作用下具有磁导向性。
一 磁性微球
是通过一定方法将磁性无机粒子与有机高分子结合 形成的具有一定磁性及特殊结构的体积在几纳米到 几十微米之间的复合微球。
高分子磁性微球表面具有众多表面功能基 团,同时 具有磁响应性,在外加磁场作用下具有磁导向功能。 目前已广泛用于生物医学、细胞学和分离工程等领 域。
二 磁性微球结构、分类及特点
免疫磁珠(IMB)也称免疫磁性微球, 是在磁性微球表面偶联上免疫配基的一 种磁性微球,是将磁性微球技术和免疫 学相结合的特殊磁性微球。
六 免疫磁珠的结构与性质
免疫磁珠核心为顺磁性粒子,核心外层包裹一层 高分子材料, 最外层是免疫配基。
免疫配基
免疫配基通过生物高分子的功能基团结合到磁性载体微球 上形成免疫磁珠。由于载体微球制备材料和方法不同,其 表现出的物理性质也不同, 从而可结合不同的免疫配基, 如抗原、抗体、凝集素、DNA 和RNA 等。配基必须具有 生物专一性的特点, 而且载体微球与配基结合要不影响或 改变配基原有的生物学特性, 保证磁珠的特殊识别功能。