石墨烯和纳米碳材料的导热性能的研究

石墨烯和纳米碳材料的导热性能的研究
石墨烯和纳米碳材料的导热性能的研究

石墨烯和纳米碳材料的导热性能的研究

Alexander A. Balandin

近年来,在科学领域和工程领域,人们越来越多地去关注导热性能好的材料。散热技术已经成为电子工业持续发展的一个重要的话题,低维结构的材料在热传导方面显示出了优异的性能。就导热能力而言,碳的同素异构体及其衍生品占据了举足轻重的地位。在室温下的碳材料的导热系数跨越了一个非常大的围——超过了五个数量级——从导热系数最低的无定型碳到导热系数最高的石墨烯和碳纳米管。在这里,我回顾一下以石墨烯碳材料为热点的最近热性能的研究成果,碳纳米管和纳米级的碳材料在研究方面遇到了不同程度的难题。在二维晶体材料方面,尤其是石墨烯,人们非常关注尺寸对热传导的影响。我也描述了石墨烯和碳材料在电子传热机理上的应用前景。

实际生产应用和基础科学的发展表明了材料热性能研究的重要性。由于功耗散热水平的提高,导热技术已经成为电子工业持续发展的一个非常重要的热点。对导热性能非常好的材料的研究严重影响着下一代集成电路和3D 电子产品的设计进程。在光电子和光子设备领域我们也遇到了类似的需要导热处理的问题。另外,电热能量转换技术需要材料具有很强的抑制热扩散的能力。

材料的导热能力由其电子结构决定,所以一种材料热性能原理可以描述另外一种材料的热性能现象。材料热性能的变化只是在纳米尺度上变化。由于声子散射边界的增多或者声子色散的变化,纳米管和大多数晶体将不再传热。同时,对二维和一维晶体的热传导理论的研究解释了材料在优异的热传导性能的原因。二维晶体导热性能的差异意味着不像非晶体那样,它恢复材料的热平衡不能仅仅靠晶体的非简谐振动,因为这不但需要限制系统的尺寸,而且还需要掺杂进非晶体结构,这样才能符合热传导性能的物理意义。这些发现引发了在低维系统中对傅里叶定律的实用性的非议。

碳材料具有非常多的同素异构体,在热性能方面占据了举足轻重的低位(如图,1a )。碳材料不同的同素异构体的热传导率跨越了很大的一个围——五个数量级——非晶碳的热导率为0.01W . mK ?1,在室温条件下金刚石或者石墨烯的热导率为大约2000W

.

mK?1。ⅱ型金刚石的热导率在77K的温度下达到了10000W. mK?1,碳纳米管的热导率在室

温下达到了3000到3500 W. mK?1之间,超过了金刚石的热导率,成为热导率最高的材料。

在严格保证是2D晶体的第一次热传导的试验研究中,我们成功地进行了对石墨

烯的剥离以及对石墨烯优异电导率的检测。在系统的维数从2D变为3D时,高质量的薄

层石墨烯的商业化将会影响热性能变化的实验性研究。石墨烯16-19显露出比绝大多数

石墨还高的热性能参数,其第一次热性能的测试激发了人们对这种材料的热性能,更广

地说,是这种低维度晶体的导热能力研究的兴趣。越来越多的人开始加入到石墨烯的研究,但是却常常得到相反的结果,这就要求我们要重新慎重地检查我们以前的研究。像

这样着重对石墨烯研究的回顾检查是非常有必要的,这是因为这种材料提供了近期热性

能研究的突破点,并且它可能有助于去理解在低维度材料中的热传导机理。这些构想都

将值得我们对石墨烯研究的回顾,并且有助于我们研究碳的衍生物,比如石墨烯和碳纳

米管的热性能参数。

热传导的基础

在讨论纳米碳材料的详细性能之前,描述主要的热传导参数和概述纳米尺寸的影响

是非常必要的。热导率是从傅里叶变化中引进来的,q = ?KΔT,其中q是热通量,K是

导热系数,ΔT是温度梯度。在这个表达式中,K是一个常量,在温度变化围比较小时

才是有效的。在一个温度变化比较大的环境下,K是T的函数。在各向异性材料中,K

随晶体取向而变化,并由量表示。

固体材料的热量是靠声学声子和电子传导的——也就是晶格的离子核心的振动—

—这样以便于K

p + K

e

,其中K

p

和K

e

分别是声子和电子的贡献值。在金属中,K

e

是影响

自由热携带者浓度最主要的因素。在纯铜中——纯铜是最好的热传导材料——在室温下

其K ≈400WmK-1,K

p

的变化围在1-2%。对电导率的测量是根据Kiedemann–Franz定律,

我们得出了K

e 的大小,K

e

/(σ

T

) = π2k B2/(3e2),其中k

B

是玻尔兹曼常数,e是电子电荷。

碳材料的热导率通常是由声子决定的,甚至对于具有金属性能的石墨也是这样的。

图1.碳同素异构体及其衍生品的热性能参数

a图所示数据来源于文献资料中的平均值。图上的轴不是按比例绘制的。b是块状碳的同素异构体导热系数关于T的函数。这些图是参照被广泛接受的参考29得到的。那个曲线菱形图是电绝缘的第二种型号的菱形图;多晶石墨其实是一种AGOT石墨,AGOT是高纯度的桥搭石墨;热解石墨是一种类似于HOPG的高质量石墨。我们要注意热解石墨和无取向的多晶石墨在K中的不同。热解石墨的K值决定了在室温下块状石墨的2000ΩmK-1的极限。在比较低的温度下,K与Tγ成正比,其中γ的变化幅度比较大,γ的值受石墨的质量和微晶尺寸的影响。

由晶格振动引起的高效率的传热是因为有非常强的sp2键导致的,然而,K

e

在混合材料当中可能会是非常重要的一个参数。

声子的导热系数可表示为K

p =Σ

j

∫C

j

(ω)v j2 (ω)τ

j

dω.其中j是声子的极化

分支,也就是说它是两个横向声子分支和一个纵向声子分支;v是声子群速度,也即在很多固体当中被描述为声音的大概速度;τ是声子弛豫时间,

ω是声子频率,C 是热容。声子的平均自由程(Λ)在Λ=τυ时,是和弛豫时间有关的。在弛豫时间的近似值中,各种限制Λ的散射机制是附加上去的——也就是说τ?1 = Στi ?1

,其中i 表示了散射过程。在一些典型的固体当中,声子携带了大量的热,并被其他声子、晶格缺陷、杂质、传导电子和表面所散射。一个关于K p 的更简单的方程K p = (1/3) C p υΛ,这个方程来自原气体分子运动理论,其中C p 是具体的热容。

区分扩散和弹道声子输送机制是非常重要的。如果试样的尺寸L 比Λ大,那么热传导可以被描述为热扩散,也就是说声子被多次散射。当L< Λ时,热传导称为弹道传热。傅里叶定律已经假设出热扩散传导。当热导率被晶格的非简谐振动所限制的时候,它的值将是一个常数。当晶格的势能高于从平衡位置发生位移的二阶离子的势能时,晶格的振动就是非简谐振动。当材料是没有缺陷的全晶体时,材料所固有的K 值就会达到极限值,并且声子只能被其他声子散射,这样的散射是靠非简谐振动才能产生。非谐声子的相互作用导致在三维空间中k 的值是有限值,我们可以用翻转理论描述准则中相互作用。晶体非谐度是由Gruneisen 参数γ表征的,这样我们就可以看到散射率为22时Umklapp 过程的样子。当导热系数被外在因素影响的时候,其值将是一个变量,比如受粗糙边界声子或者声子缺陷散射的影响。

在纳米结构中,K 的值可以通过边界散射来减小,其值大概表示为1/τB = (υ/D)((1?p)/(1+p))。其中τB 是声子周期,1/τB 是声子散射频率,D 是纳米结构或者是

晶粒大小,p 是镜面反射参数,这个参数被定义为边界镜面散射的概率。动量守恒的镜

面散射(p=1)不增加热阻。只有粗糙边界的弥散性声子散射(p=0)才限制Λ的大小,并且也改变了动能。我们可以从表面的粗糙度中得出p 值或者把它当做一个实验数据的拟合参数。当边界散射占主要影响因素并且K p ~ C p υΛ ~ C p υ2τB ~ C p υD 时,K 和D

成正比关系。在D << Λ的纳米结构中,在由约束而导致的u 的变化的情况下和对复杂的尺寸的依赖性的情况下,声子的散射可以被修正。C p 是由声子的密度所决定的,这就

导致了在3D 、2D 、1D 的系统中C p (T )的值很容易受影响,并在低的T 值下(参考22、

27)其值被反应在K (T )中。比如,在低的T 值的块状晶粒中,K (T )和T 3成正比关系,而在2D 系统中和T 2成正比关系。

块状碳的同素异构体

让我们回顾一下块状碳的同素异构体——石墨、金刚石、无定形碳的热性能,它们

的相关参数就为我们研究石墨烯和碳纳米管提供了某些参照。这也有助于区别普通质量

的材料在低维态新出现的物理结构。很难发现有其他材料的K值像石墨这样被严格地去

研究的,其中一个原因是核工业的需要。具有讽刺意义的是,关于石墨的数据有时候很

难被检测出来,因为关于石墨的研究是上个世纪做的,而且又被出版在一个非常局限的

行业中。相应地,现代的研究者总有一个困惑,他们搞不清楚高质量的石墨的基底平面

K的值是多少。如图1b,图中表示出了两种类型的高纯度石墨(sp2键)、金刚石(sp3)和非晶碳(无序的sp2和sp3的混合物)的K值。这些数据来自于参考29的建议值,参

考29上的数据来源于数以百计的研究论文和被广泛接受的实验数据。热解石墨与高取

向的热解石墨(HOPG),它有一个在室温下为~2000 MK?1的K值。它的正交平面的K值

要比HOPG小两个数量级。另一种通过不同技术生产的高纯度的搭接石墨,其K值为

~200 MK?1时要比HOPG小一个数量级。K的各向异性要明显小很多。HOPG由于是大颗粒

晶粒制造出来的,彼此的结合也非常地好,这样它的整体性能就类似于单晶,那么K值

的不同也就显而易见了。搭接的石墨也是多晶的,但是晶轴并没有高度取向化,并且晶

粒的边界非常明显。最后,非HOPG多晶石墨的K的值就会被晶粒的大小所严格限制。

同样的因素限制了石墨烯的气相沉积制备,石墨烯是无取向晶粒组成的多晶材料。因此,我认为~2000 MK?1条件下K的值可以作为室温下块状石墨的极限。任何一个小的K值都

可以表示低质量的石墨的K的极限值,其中K的值被晶粒边界声子散射、缺陷、或粗糙

的样品的边缘所限制。HOPG的实验K值和理论预言的石墨的K的值非常吻合。

在所有的块状碳的同素异构体中,声子传热是最重要的途径。在金刚石和HOPG中,K的值分别在~ 70 K和~ 100 K时达到了最大值。但是在更高的T值下,K的值反而减

小到~1/T,这正是多晶固体的特征,其中K的值是被Umklapp的散射所限制。在无定型

的碳材料中,K的值变化围从在T=4K时为~0.01 MK?1到在T=500K时为~2 MK?1。其值是和

T成正比的,这也正是各向同性材料所预期的结果,在各向同性材料中的热传导机制是

局部激励跳跃的。如图1b所示,HOPG和搭接的石墨的K值在低温下受T的影响不同。

所证实,而且

众所周知,石墨的K(T)的变化幅度比较大,这不仅被声子密度通过C

p

也由石墨的晶粒大小和质量所证实。

石墨烯纳米带能带结构调控的理论研究

学位论文诚信声明书 本人郑重声明:所呈交的学位论文(设计)是我个人在导师指导下进行的研究(设计)工作及取得的研究(设计)成果。除了文中加以标注和致谢的地方外,论文(设计)中不包含其他人或集体已经公开发表或撰写过的研究(设计)成果,也不包含本人或其他人在其它单位已申请学位或为其他用途使用过的成果。与我一同工作的同志对本研究(设计)所做的任何贡献均已在论文中做了明确的说明并表示了致谢。 申请学位论文(设计)与资料若有不实之处,本人愿承担一切相关责任。 学位论文(设计)作者签名:日期: 学位论文知识产权声明书 本人完全了解学校有关保护知识产权的规定,即:在校期间所做论文(设计)工作的知识产权属西安科技大学所有。学校有权保留并向国家有关部门或机构送交论文的复印件和电子版。本人允许论文(设计)被查阅和借阅;学校可以公布本学位论文(设计)的全部或部分内容并将有关内容编入有关数据库进行检索,可以采用影印、缩印或其它复制手段保存和汇编本学位论文。 保密论文待解密后适用本声明。 学位论文(设计)作者签名:指导教师签名: 年月日

论文题目:石墨烯纳米带能带结构调控的理论研究 专业:微电子学 本科生:朱善旭(签名)___________ 指导教师:徐大庆(签名)___________ 摘要 随着集成电路技术的快速发展,集成密度,速度和存储器容量等集成电路性能指标的进一步发展必须要减小设备的尺寸。但是随着器件尺寸不断减小,硅材料较小的载流子迁移率,较低的热传导率,较差的稳定性成为了集成电路行业进一步发展的障碍,因此寻找新的材料来代替硅成为了科学研究的热点。石墨烯具有极高的电子迁移率(15000cm2·V- 1·S - 1)和优良的热传导率(3-5KW·m- 1·K- 1),因此,石墨烯被认为是可以取代单晶硅或者与单晶硅相结合,进而保持集成电路继续沿着摩尔定律提高性能的一种重要的新材料。 众所周知,本征石墨烯是一种带隙为零的半金属材料。如何打开石墨烯纳米带的带隙,使之具有半导体的基本性质,是研制石墨烯基半导体电子器件的重要条件之一。本研究基于密度泛函理论的第一性原理,利用Materials Studio程序及其CASTEP 模块研究如何改变石墨烯纳米带的能带结构。首先通过建立扶手椅型和锯齿型石墨烯纳米带模型计算分析不同形状的石墨烯纳米带的能带结构,并改变石墨烯纳米带的长度和宽度以及纳米带的层数研究结构变化对石墨烯纳米带带隙的影响,然后通过建立掺杂、吸附模型研究其各自对石墨烯纳米带带隙的影响,最后研究应力下的石墨烯纳米带的能带结构。 研究表明,不同长宽的石墨烯纳米带能带结构有变化。在长度较小,宽度适中时扶手椅型石墨烯纳米带带隙较大,长宽均较小时锯齿型石墨烯纳米带带隙较大,双层结构的石墨烯纳米带的带隙相对单层也会发生变化。另外,掺杂和吸附均可实现石墨烯纳米带能带结构的调控,但吸附对石墨烯优越的电学特性改变较小。最后,研究发现应力的存在使石墨烯纳米带的带隙减小。 关键词:石墨烯纳米带,能带结构,带隙,掺杂,吸附

石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10) 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽

石墨烯纳米带的制备及其应用

石墨烯纳米带的制备及其应用: [1]于璇,刘一,叶雨萌,肖胜雄.石墨烯纳米带的制备方法[J].上海师范大学学报(自然科学版),2018,47(05):539-551+508. 石墨烯是一种二维大平面结构, 为了维持其自身的稳定, 很容易产生皱褶、起伏等结构缺陷.因此, 近年来研究者们开始着重研究石墨烯不同形态的衍生物.其中, 石墨烯纳米带(GNRs) 成为继CNTs之后被广泛关注的一类准一维碳基纳米材料.GNRs是指宽度小于50 nm的石墨烯条带, 其理论模型最初于1996年由FUJITA等[3,4,5]提出, 以检查石墨烯中的边缘和纳米级尺寸效应.由于其具有高载流子迁移率, 石墨烯也被公认为是纳米电子学未来最有应用前景的材料之一.尽管如此, 在纳米电子学中利用石墨烯的最大挑战之一就是其缺乏足够大的带隙[6].因为没有带隙, 则难以关闭石墨烯场效应晶体管(FETs) , 导致较小的开关比, 所以石墨烯不能直接应用于晶体管.要想在打开石墨烯带隙的同时保证其载流子迁移率不下降, 最好的办法就是将石墨烯裁剪成宽度较小的GNRs.当材料的尺寸变得等于材料中电子运动的特征长度时, 材料的性质在很大程度上取决于其尺寸和形状.GNRs结构引起的量子限域可以引入相当大的带隙, 使得GNRs可以应用于纳米电子学中.虽然GNRs不具有石墨烯那样易于器件化的平面结构, 但它继承了石墨烯的许多优异性质, 且由于GNRs特殊的边缘限域效应, 从而使其具有比石墨烯更灵活的可调节性质和更大的实用价值. 1.1 自上而下的制备方法 到目前为止, 人们对石墨烯的制备方法进行了各种研究, 取得了很多进展, 其基本思路可以分为两种:一种是以天然石墨为原料, 从大到小剥离得到单层的石墨烯材料;另一种是从碳原子出发, 从小到大合成GNRs.但如何大批量的制备高质量石墨烯, 仍然是学术界急需解决的问题. 自上而下的方法是目前较成熟的方法之一, 该方法是把大的GNRs、石墨烯晶体、CNTs 等通过一系列的方法变成所需尺寸的纳米带.这种方法不能提供均匀的超窄带宽度和原子级精确边缘, 但是相比于自下而上的制备方法可以大规模的合成GNRs.如图4所示, GNRs的制备方法可以简单总结为几种[12]: (a) 多壁碳纳米管(MWCNTs) 的嵌入-剥离方法, 包括在液态NH3和Li中进行处理, 以及随后使用HCl和热处理的剥离方法; (b) 化学途径方法, 涉及可能破坏碳-碳键的酸反应, 例如硫酸(H2SO4) 和高锰酸钾(KMnO4) 作为氧化剂; (c) 催化方法, 其中金属纳米粒子像剪刀一样纵向“切割”CNTs; (d) 电学方法, 让电流通过CNTs; (e) 物理化学方法, 将CNTs嵌入聚合物基质中, 然后进行Ar等离子体处理, 得到的结构是展开的碳纳米管, 如图4 (f) 所示, 进一步得到GNRs.下面将具体从解卷CNTs法、催化反应解离石墨烯法和石墨烯刻蚀法等方法详细介绍如何制GNRs. 1.1.1 解卷CNTs法 由于GNRs在结构上与CNTs相关, CNTs可以被视为卷起的GNRs, 因此可以通过纵向拉开CNTs来合成GNRs.而解卷CNTs的方法多种多样, 目前比较成熟的就是将CNTs通过一定的方式变成GNRs.解卷CNTs是利用外界作用将管状CNTs切割成带状GNRs的方法.该方法工艺简单、成本低廉, 并且所得GNRs尺寸均一、边缘平整、缺陷低, 因此在大规模制备高质量GNRs领域呈现具体广阔前景.CNTs是圆柱形碳同素异形体, 有明确且可控的直径, 这使得它们成为精确尺寸GNRs的合适前体. KOSYNKIN等[14]报道了一种基于溶液的氧化工艺以打开MWCNTs.他们首先将MWCNTs悬浮在浓H2SO4中, 然后用KMnO4处理, 将混合物在室温下搅拌1 h, 然后在55~70℃下再加热1 h.该过程完成之后, 纳米带的边缘和表面上都会出现含氧物质, 例如环氧

石墨烯性能简介

第一章石墨烯性能及相关概念 1 石墨烯概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。石墨烯具有优异的导热性能(3×103W/(m?K))和力学性能(1.06×103 GPa)。此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。 石墨烯结构图

2 石墨烯结构 石墨烯指仅有一个原子尺度厚单层石墨层片,由 sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。石墨烯中碳 -碳键长约为 0.142nm。每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。 形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过 sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。 石墨烯的结构非常稳定,碳原子之间连接及其柔韧。受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。 石墨烯是有限结构,能够以纳米级条带形式存在。纳米条带中电荷横向移动时会在中性点附近产生一个能量势垒,势垒随条带宽度的减小而增大。因此,通过控制石墨烯条带的宽度便可以进一步得到需要的势垒。这一特性是开发以石墨烯为基础的电子器件的基础。

石墨烯基础知识简介

1.石墨烯(Graphene)的结构 石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。如图1.1所示,石墨烯的原胞由晶格矢量a1和a2定义每个原胞内有两个原子,分别位于A和B的晶格上。C原子外层3个电子通过sp2杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4个电子为公共,形成弱π键(紫)。石墨烯的碳-碳键长约为0.142nm,每个晶格内有三个σ键,所有碳原子的p轨道均与sp2杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。 如图1.2所示,石墨烯是富勒烯(0维)、碳纳米管(1维)、石墨(3维)的基本组成单元,可以被视为无限大的芳香族分子。形象来说,石墨烯是由单层碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。每个碳原子通过sp2杂化与周围碳原子构成正六边形,每一个六边形单元实际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。 图 1.1(a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。 图1.2石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。前两类具有

相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。双层石墨烯又可分为对称双层和不对称双层石墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出明显的关态。 单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。 双层石墨烯(Bilayer or double-layer graphene):指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛构成的一种二维碳材料。 少层石墨烯(Few-layer or multi-layer graphene):指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC 堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 石墨烯(Graphenes):是一种二维碳材料,是单层石墨烯、双层石墨烯和少层石墨烯的统称。 由于二维晶体在热力学上的不稳定性,所以不管是以自由状态存在或是沉积在基底上的石墨烯都不是完全平整,而是在表面存在本征的微观尺度的褶皱,蒙特卡洛模拟和透射电子显微镜都证明了这一点。这种微观褶皱在横向上的尺度在8~10nm 范围内,纵向尺度大概为 0.7~1.0nm。这种三维的变化可引起静电的产生,所以使石墨单层容易聚集。同时,褶皱大小不同,石墨烯所表现出来的电学及光学性质也不同。 图1.3 单层石墨烯的典型构象 除了表面褶皱之外,在实际中石墨烯也不是完美存在的,而是会有各种形式的缺陷,包括形貌上的缺陷(如五元环,七元环等)、空洞、边缘、裂纹、杂原子等。这些缺陷会影响石墨烯的本征性能,如电学性能、力学性能等。但是通过一些人为的方法,如高能射线照射,化学处理等引入缺陷,却能有意的改变石墨烯的本征性能,从而制备出不同性能要求的石墨烯器件。 2.石墨烯的性质 2.1 力学特性

石墨烯的特殊性能

石墨烯的特殊性能 摘要:石墨烯是2004年才发现的一种有奇异性能的新型材料,它是由碳原子组成的二维六角点阵结构,具有单一原子层或几个原子层厚。石墨烯因其具有独特的电子能带结构和具相对论电子学特性,是迄今为止人类发现的最理想的二维电子系统,且具有丰富而新奇的物理特性。本文详细介绍了石墨烯的结构,特殊性能以及对石墨烯原胞进行了5×5×1的扩展,通过密度泛函理论 ( DFT) 和广义梯度近似( GGA)对50个碳原子的本征石墨烯超晶胞进行电子结构计算。 关键字:石墨烯,结构,特殊性能,超晶胞,电子结构计算 一、引言 石墨烯是2004年以来发现的新型电子材料石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石墨,碳纳米管和富勒烯。石墨烯被认为是平面多环芳香烃原子晶体。石墨烯在电子和光电器件领域有着重要和广阔的应用前景正因为如此,石墨烯的两位发现者获得了2010年的诺贝尔物理学奖。

石墨烯是一种没有能隙的半导体,具有比硅高100倍的载流子迁移率,在室温下具有微米级自由程和大的相干长度,因此石墨烯是纳米电路的理想材料,石墨烯具有良好的导热性[3000W/(m〃K)]、高强度(110GPa)和超大的比表面积 (2630mZ/g)。这些优异的性能使得石墨烯在纳米电子器件、气体传感器、能量存储及 复合材料等领域有光明的应用前景 二、石墨烯的特殊性能 石墨烯是一种半金属或者零带隙二维材料,在靠近布里渊区6个角处的低能区,其E-k色散关系是线性的 ,因而电子或空穴的有效质量为零,这里的电子或空穴是相对论粒子,可以用自旋为1/2粒子的狄拉克方程来描述。 石墨烯的电子迁移率实验测量值超过15000cm/(V〃s)(载流子浓度n≈10 cm ),在10~100K范围内,迁移率几乎与温度无关,说明石墨烯中的主要散射机制是缺陷散射,因此,可以通过提高石墨烯的完整性来增加其迁移率,长波的声学声子散射使得石墨烯的室温迁移率大约为200000cm /(V〃s),其相应的电阻率为lO -6 〃cm,

纳米石墨烯的特性以及应用

纳米石墨烯的特性以及应用 摘要:石墨烯是指从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。在石墨烯中,碳原子之间以σ键相连接,这些σ键赋予了石墨烯极其强大的机械性能;同时,由于碳原子的结合方式为SP2杂化,因此每个碳原子都有一个孤电子,从而赋予了其优秀的导电性。而近年来,纳米石墨烯以及其氧化物,由于自身良好的生物相容性以及较大的表面积,在生物医药等领域的应用取得了极大的进展,本文将简述石墨烯以及其氧化物的特性,并举例分析其在生物载药工厂中的作用。 关键词:纳米石墨烯;纳米氧化石墨烯;生物医药;药物传递 一.纳米石墨烯以及氧化纳米石墨烯自身特性 1.1 纳米石墨烯自身特性 纳米石墨烯与石墨烯的概念容易混淆,但本质上是同一个物质。纳米石墨烯代表的是厚度在纳米级别的石墨烯。一般程度上严格定义的石墨烯都是单层的,而纳米石墨烯则有可能是多层的。纳米石墨烯常常被称为石墨烯纳米片,也被称为碳纳米片( CNFs )或碳纳米壁( CNWs)。人们所熟悉的富勒烯,碳纳米管,石墨等碳材料,本质的基础单元就是石墨烯。 石墨烯最迷人的地方在于它的纯粹。单层原子的结构使得石墨烯具有极薄的性质,但由于碳原子之间强韧的σ键以及整个二维晶体平面的拉伸性能,使得石墨烯同时具有了非常高的强度性能,杨氏模量为1100Gpa,而断裂强度则达到惊人的125Gpa,这样的机械性能使得石墨烯几乎可以被利用在任何需要高强度材料的领域。 而与此同时,石墨烯二维晶体表面流动的孤电子赋予了它优越的导电性能。由于自身电阻率非常小,石墨烯被视为下一个可以取代“硅”的导电原材料,人们希望能制备出具有更高性能的现代计算机芯片或处理器。 1.2 氧化纳米石墨烯自身特性 氧化纳米石墨烯,英文缩写为GO,顾名思义是石墨烯的氧化物。氧化石墨烯保留了原有的层状结构,通过强氧化剂(例如高锰酸钾)开环,使得部分双键断裂,引入了许多含氧的官能团,例如羧基,羟基,环氧基等。这些活泼的含氧功能团赋予了石墨烯更为活泼的性能。

石墨烯纳米带的研究进展_李婧

图1 GNRs的TEM照片[4] 基金项目:河北省高校重点学科建设项目资助;河北省高等学校科学技术研究青年基金(No.Q2012111);河北省自(NO.E2013210011);河北省大学生创新创业训练计划项目;河北省高校重点学科建设项目资助。

人员深入研究GNRs 的高效制备方法开启了一扇大门。James 小组认为,他们制备的GNRs 可用于柔韧触摸屏、太阳能电池板、以及制成轻薄导电纤维,以取代笨重的铜线,进而用于航空航天领域。本文对GNRs 的典型制备方法进行了综述,并比较各种方法的优劣,最后对GNRs 的应用进行了介绍,对其未来进行了展望。 1 GNRs 的制备方法 清楚的看到剥离的GNRs 一端连接导电电极,一端是脱离的CNTs 内心。并且产生的GNRs 随着电压的增加,电导率也增加,这为它成为电学材料提供了很好的应用前景。这种方法生成的GNRs 宽度分布均匀(45nm 左右),含杂质量低,如果有效实现批量快速生产,有望实现高质量GNRs 的宏量制备。 1.1.2混酸切割CNTs 法 CNTs 具有与石墨相同的晶体结构,CNTs 的发现远早于石墨烯和 GNRs,并且CNTs 非合成技术现在已经成熟。Zhang 等人提出,切割垂直排列的CNTs 获得的GNRs 有许多优异的电学性质,可用于超级电容器。纵向切割和压制管状CNTs 制成GNRs,这种方法通过控制CNTs 的长度和直径进而控制所需GNRs 的尺寸,从而制备出所需的各种规格GNRs,这种方法操作简单方便,得到的GNRs 边缘光滑。James [5]小组用高锰酸钾和硫酸混合处理CNTs,沿着一个轴心将纳米管打开可以得到宽度在100~500nm 的GNRs,如图3所示。这种方法虽然可以制备大量的GNRs,但是得到的GNRs 不是半导体,应用上有一定限制。 1.1.3钾气裂解CNTs 法 催化法是利用化学沉积或磁控溅射把催化的纳米颗粒分散到CNTs 的表面上,在某些特定的气体(如H 2)氛围下进行加热。在纳米粒子的催化下,气体分子会和CNTs 表面的碳原子反应而使得CNTs 裂解产生GNRs。这种方法相对比较简单,但是会影响产物的性质。后来,Kosynkin 等人用气态钾来做催化剂,在250℃真空环境下催化裂解CNTs,得到了边缘连接着钾的GNRs,用乙醇质子化处理后可以得到质量有所提高的边缘钝化的GNRs。 图2 电解CNTs 制备石墨烯过程示意图 [6] 图3 CNTs 逐级拉开形成GNRs 的示意图 [4] 1.1 切割CNTs 法 1.1.1电极切割CNTs 法 在非常高的电偏压下,碳纳米管(CNTs)会显示出超塑[5]。Kim K [6]等人提出了用电流诱发CNTs 裂解制备GNRs 的方法。在真空下,利用电极的移动,促使CNTs 外层裂解。如图2所示,在电极的移动下,通过对电偏压的控制使CNTs 外层被裂解,移除的内心成为一个新的CNTs,剩下的GNRs 完全悬浮在真空中。在图2 中,我们可以

石墨烯结构的分析

石墨烯 石墨烯之所以被广泛应用,是由其自身的内部结构决定的。 石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。 石墨烯内部碳原子的排列方式与石墨单原子层一样以sp2杂化轨道成键,并有如下的特点:碳原子有4个价电子,其中3个电子生成sp2键,即每个碳原子都贡献一个位于pz轨道上的未成键电子,近邻原子的pz轨道与平面成垂直方向可形成π键,新形成的π键呈半填满状态。研究证实,石墨烯中碳原子的配位数为3,每两个相邻碳原子间的键长为 1.42×10-10米,键与键之间的夹角为120°。除了σ键与其他碳原子链接成六角环的蜂窝式层状结构外,每个碳原子的垂直于层平面的pz轨道可以形成贯穿全层的多原子的大π键(与苯环类似),因而具有优良的导电和光学性能。 在石墨烯中,电子能够极为高效地迁移,而传统的半导体和导体,例如硅和铜远没有石墨烯表现得好。由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,目前一般的电脑芯片以这种方式浪费了70%-80%的电能,石墨烯则不同,它的电子能量不会被损耗,这使它具有了优良导热特性。 超级电池采用单原子厚度的碳层构成,这项技术能够在最短时间内对手机和汽车快速充电,能够很容易制造并整合成为器件,未来有望制造更小的手机。 石墨烯储能和放电过程中不发生电池反应,只是将电子储存和释放,是物理变化。由此,应当称其为电容,而不是电池。目前,石墨烯应用于电池上的研究基本上有3个方向: 一是以石墨烯形成全新体系电池。就是说以石墨烯制造一个全新体系的电池,在性能上是颠覆性的,称作“超级电池”。使用这种材料制作的电池,能量密度超过600wh/kg,是目前动力锂电池的5倍,一次充电时间只需8分钟,可行驶1000公里;电池重量只有锂离子电池的一半,体积也会大幅缩小,减轻使用该电池汽车的自身重量;电池的使用寿命更长,是传统氢化电池的4倍,锂电池的2倍;其成本将比目前锂电池降低77%。这些物理参数都符合超级电池的要求。 二是以石墨烯强化现有电池性能。将石墨烯运用到现有电池上,改进提升锂电池、太阳能电池等电池性能,力图达到超级电池的性能。对于那些已投巨资建

石墨烯纳米带场效应管

石墨烯纳米带场效应管原理 微电子与固体电子学专业 学生潘立丁S111411 指导教师石瑞英摘要:由于石墨烯的导带与价带之间没有能隙,做成晶体管器件时,很难实现开关特性,而且若要运用于现在普遍使用的逻辑电路,其金属性也是一个巨大的难题。如何在石墨烯中引入能隙,成为了石墨烯晶体管器件制造的关键。本文主要关注的石墨烯纳米带场效应管,通过对肖特基势垒石墨烯纳米带场效应管和金属氧化物半导体石墨烯纳米带场效应管这两种结构进行对比和分析来了解其主要特性。 关键词:石墨烯纳米带场效应管肖特基势垒 Abstract:Because there is no energy gap in graphene,it is very difficult to achieve on-off characteristic while use it to make transistors, and it is metallic behavior also have been a big problem if we want to use it in logical circuits. How to get an energy gap in grapheme has become the key point of the fabrication of grapheme transistors. This paper focus on graphene nanoribbon FETs, the comparison of two structures (GNR SBFET and GNR MOSFET) is used to analyze the main behaviors of graphene nanoribbon FETs. Key words:graphene nanoribbon field-effect-transistor schottky barrier 1、引言 石墨烯[1](Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。2004年,石墨烯被成功地从石墨中分离出来。石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光,导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比碳纳米管或硅晶体迁移率高,而电阻率只约10-6Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子传输的速度极快,因此被期待为可用来发展出更薄、导电速度更快的新一代电子元件或电晶体的材料。 2、石墨烯纳米带基本结构 目前已知可以在石墨烯中引入能隙的手段主要有:(1) 利用对称性破缺场或相互作用等使朗道能级发生劈裂,在导带与价带之间引入能隙。这主要通过掺杂、外加电场、化学势场等方式在双层石墨烯中引入对称破缺,实现人工调制能隙。 (2) 利用量子陷阱效应和边缘效应,通过形成石墨烯纳米结构(如纳米带)引入能

单层氧化石墨烯性能参数

单层氧化石墨烯性能参数 单层氧化石墨烯性能参数,这是很多人想知道的知识。氧化石墨烯是一种性能很好的新型碳材料,具有较高的比表面积和表面丰富的官能团,应用范围很广,市面上常见的产品有粉末状、片状以及溶液状的。氧化石墨烯可视为一种非传统型态的软性材料,具有聚合物、胶体、薄膜,以及两性分子的特性。下面就由先丰纳米简单的介绍单层氧化石墨烯性能参数。 1、性能 (1)含有丰富的羟基、羧基和环氧基等含氧官能团; (2)易于接枝改性,可与复合材料进行原位复合,从而赋予复合材料导电、导热、增强、阻燃、抗菌抑菌等性能; (3)易于剥离成稳定的氧化石墨烯分散液,易于成膜。 2、用途 应用于橡胶、塑料、树脂、纤维等高分子复合材料领域,还可以应用于锂电正负极材料的复合、石墨烯导热膜、催化剂负载。 3、操作处置与储存 操作人员需穿戴合适的防护服及防护手套;避免与皮肤直接接触,进入眼睛,应立即用大量清水冲洗。产品需密闭贮存于阴凉、通风及干燥的环境,在20℃的环境中贮存效果更佳。远离火种、热源,应与强还原剂、易燃物分开存放。

4、运输 非限制性货物,运输中应注意安全,防止日晒、雨淋、渗漏和标签脱落,严禁抛掷, 轻装轻卸,远离热源,隔绝火源。 如果想要了解更多关于单层氧化石墨烯的内容,欢迎立即咨询先丰纳米。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

石墨烯的结构、制备、性能及应用研究进展

. . .. . . 报告题目:石墨烯的结构、制备、性能及应用研究进展 一、书目信息: 二、评分标准 1.格式规、容简明扼要。报告中引用的数据、观点等要注明出处20分 2. 报告结构合理,表述清晰20分 3. 石墨烯的结构、性能、制备方法概述正确、新(查阅5篇以上的文献)20分 4. 石墨烯的应用研究进展概述(文献)全、新(查阅5篇以上的文献)20分 5. 心得及进一步的研究展望真实,无抄袭与剽窃现象20分 三、教师评语 请根据写作容给定成绩,填入“成绩”部分。 注1:本页由报告题目、书目信息有学生填写,其余由教师填写。提交试卷时含本页。学生从第二页开始写作,要求见蓝色字体部分。 注2:“阅卷教师评语”部分请教师用红色或黑色碳素笔填写,不可用电子版。无“评语”视为不合规。注3:不符合规试卷需修改规后提交。 摘要 碳是自然界中万事万物的重要组成物质,也是构成生命有机体的主要元素。石墨和金刚石是两种典型的单质碳,也是最早为人们所熟知的两种碳的三维晶体结构,属于天然矿

密封线 石。除石墨和金刚石外,碳材料还包括活性炭、碳黑、煤炭和碳纤维等非晶形式。煤是重 要的燃料。碳纤维在复合材料领域有重要的应用。20 世纪80 年代,纳米材料与技术获得 了极大的发展。纳米碳材料也是从这一时期开始进入历史的舞台。1985 年,由60 个碳原 子构成的“足球”分子:C60被三位英美科学家发现。随后,C70、C86等大分子相继出现, 为碳家族添加了一大类新成员:富勒烯。富勒烯是碳的零维晶体结构,它们的出现开启了 富勒烯化学新篇章。三位发现者于1996 年获诺贝尔化学奖。1991 年,由石墨层片卷曲 而成的一维管状纳米结构:碳纳米管被发现。如今,碳纳米管已经成为一维纳米材料的典 型代表。发现者饭岛澄男于2008 年获卡弗里纳米科学奖。2004 年,一位新成员:石墨 烯,出现在碳材料的“家谱”中。石墨烯的发现者,两位英国科学家安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)于2010 年获诺贝尔物理学 奖。 关键词:碳材料复合材料晶体结构 1 石墨烯的结构 石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石墨,碳纳米管和富勒烯。石墨烯被认为是平面多环芳香烃原子晶体。 2 石墨烯的制备 2.1 物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得, 操作相对简单,合成的石墨烯的纯度高、缺陷较少。 2.1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt 等[1]于2004年用一种极为简单的微机械剥离法成功地从高定向热解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在 1 mm厚的高定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20 μm—2 mm、深 5 μm的微槽后,用光刻胶将其粘到玻璃衬底上,再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用德华力或毛细管力将单层石墨烯“捞出”。 2.1.2取向附生法—晶膜生长

石墨烯纳米材料(论文)

《应用胶体化学》论文大作业 ——石墨烯纳米材料 姓名:杨晓 学号:200900111143 年级:2009级 2011-12-11

摘要:石墨烯是继富勒烯、碳纳米管之后发现的一种具有二维平面结构的碳纳米材料,它自 2004 年发现被以来,成为凝聚态物理与材料科学等领域的一个研究热点。石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文简要介绍了石墨烯的性能特点、制备方法,着重对石墨烯纳米复合材料进行了介绍,对石墨烯纳米材料的制备方法、理化性质、国内外研究进展、石墨烯纳米材料的优缺点及应用前景进行了详细介绍。 关键词:石墨烯纳米材料复合物特性制备应用

目录 引言 (4) 一石墨烯纳米材料的理论与实际意义 (4) 二石墨烯纳米材料的国内外研究现状及比较分析 (5) 2.1 石墨烯纳米材料的国内外研究 (5) 2.1.1 国外研究 (5) 2.1.2 国内研究 (8) 2.2 石墨烯纳米材料的国内外研究比较分析 (11) 三文献中石墨烯纳米材料的研究方案 (11) 3.1 聚乳酸/ 纳米羟基磷灰石/ 氧化石墨烯(PLA/n-HA/GO)纳米复合膜的制备及生物性 (11) 3.1.1 实验试剂 (11) 3.1.2 PLA/n-HA/GO纳米复合膜的制备 (11) 3.2 石墨烯负载Pt催化剂的制备及催化氧还原性能[43] (12) 3.2.1 试剂和仪器 (12) 3.2.2 石墨烯负载Pt催化剂的制备 (12) 3.3 石墨烯的制备和改性及其聚合物复合的研究进展[44] (12) 3.3.1 石墨烯的制备 (12) 3.3.2 制备聚合物基复合材料 (14) 3.4 石墨烯/聚合物复合材料的研究进展[45] (14) 3.4.1 石墨烯的制备 (14) 3.4.2 石墨烯/聚合物复合材料的制备 (15) 3.5 石墨烯的合成与应用[46] (16) 3.5.1 微机械分离法(micromechanical cleavage) (16) 3.5.2 取向附生法———晶膜生长(eqitaxial growth) (16) 3.5.3 加热SiC的方法 (17) 3.5.4 化学分散法 (17) 四结合胶体理论与性质比较分析各种石墨烯纳米材料的优缺点 (17) 4.1 石墨烯 (17) 4.2 氧化石墨烯 (18) 4.3 石墨烯/无机物纳米材料 (18) 4.4 石墨烯/聚合物纳米材料 (18) 五展望石墨烯纳米材料的应用前景 (18) 参考文献 (20)

掺杂armchair石墨烯纳米带电子结构和输运性质的研究

第39卷第4期2011年8月 福州大学学报(自然科学版) Journal of Fuzhou University(Natural Science Edition) Vol.39No.4 Aug.2011 DOI:CNKI:35-1117/N.20110705.1543.017文章编号:1000-2243(2011)04-0533-06掺杂armchair石墨烯纳米带电子结构和输运性质的研究 安丽萍1,2,刘念华1,刘春梅1,刘正方1 (1.南昌大学高等研究院,江西南昌330031;2.燕山大学物理系,河北秦皇岛066004) 摘要:基于第一性原理计算,研究了B/N掺杂对宽度为N a =3p+2=11的扶手椅(Armchair)型石墨烯纳米带电子结构和输运性质的影响.杂质的存在使得扶手椅型石墨烯纳米带的能隙增大,并在能隙中出现了一条局 域的杂质态能带,杂质的位置也影响其能带结构.另外,杂质的存在还引起输运过程中的电子共振散射,其特 点与掺杂种类、掺杂位置和结构对称性有关. 关键词:扶手椅型石墨烯纳米带;杂掺;电子结构;输运性质 中图分类号:O472文献标识码:A The study of the electronic structure and transport properties of armchair graphene nanoribbons with dopant AN Li-ping1,2,LIU Nian-hua1,LIU Chun-mei1,LIU Zheng-fang1 (1.Institute for Advanced Study,Nanchang University,Nanchang,Jiangxi330031,China; 2.Department of Physics,Yanshan University,Qinhuangdao,Hebei066004,China) Abstract:The electronic structure and transport properties of armchair graphene nanoribbons(AG-NRs)with B/N dopant are studied by using the first-principles calculation.It is shown that because of the existence of the dopant,there is an impurity band in the energy gap of armchair graphene nanor-ibbons and their energy gaps increase.The band structures depend also on the position of the dopant. In addition,the existence of the dopant yields resonant backscattering in the charge transport,whose features are strongly dependent on the types,the position of the dopant and the symmetry of the struc-ture. Keywords:armchair graphene nanoribbons;dopant;electronic structure;transport properties 单层石墨片的成功剥离和石墨烯纳米带(graphene nanoribbon)的成功制备引起了人们对此类碳基纳米 材料研究的极大热情[1-9].这种石墨烯纳米带具有类似碳纳米管(CNTs)的结构和量子限域效应,是潜在 的新一代微纳电子学的候选基础材料之一.石墨烯纳米带是具有一定宽度、无限长度的准一维带状石墨 烯,按照边缘的形状,可以分为锯齿型石墨烯带(zigzag-graphene nanoribbon,ZGNR)和扶手椅型石墨烯 带(armchair-graphene nanoribbon,AGNR).石墨烯纳米带的特性强烈依赖于它们的几何构型,通过控制 几何构型可将其调制成金属或能隙宽度依赖于纳米带宽度的半导体[10],这在能带工程中非常有用. 另外,石墨片和石墨烯纳米带在最初的制备过程中不可避免地产生各种缺陷,如拓扑缺陷、空位、吸 附原子和替位式杂质,这些缺陷的存在会影响其结构和性能[5-9,11-20].类似于传统半导体,如在锯齿型石 墨烯带中掺B/N,将产生受主(施主)杂质能级,实现金属和半导体的转变,而且随着杂质原子在纳米带 中位置的不同,将会发生受主与施主的转变[13].另外,由石墨烯裁制而成的微纳电子器件一般都是在有 限偏压下工作,有必要研究偏压下石墨烯纳米带的电子输运情况.本工作旨在探讨宽度为N a=3p+2=11 的扶手椅型单层石墨烯纳米带的掺杂效应,利用第一性原理方法研究B/N掺杂对扶手椅型石墨烯纳米带 电子结构和输运性质的影响. 收稿日期:2010-10-27 通讯作者:安丽萍(1975-),讲师,E-mail:fox781209@sina.com.cn 基金项目:国家自然科学基金资助项目(10832005)

石墨烯的性能与应用

ANYANG INSTITUTE OF TECHNOLOGY 《材料物理》期末论文 石墨烯的性能及应用 学院名称:数理学院 专业班级:应用物理学11-1班 学生姓名:邢俊俊 学号: 201111020026 2014年6月

石墨烯的性能及应用 摘要:石墨烯其貌不扬,其微片看上去就好像是棉花一样的黑色絮状物,可它为什么如此受追捧?答案其实并不复杂。因为它太轻薄了,只有一个原子厚度,却又非常坚硬。除此之外,它还拥有优秀的导热性、极低的电阻率。在轻薄坚固的同时,它还几乎是完全透明的。这些特性让研究者们能够创造出无限的可能性,无怪乎石墨烯横空出世之时业界震惊。 关键词:石墨烯、新材料、物质、科技 Abstract:Graphene does not seem good, its microchip looks like black cotton floc, but why it can be so popular these days? The answer is not complicated. Because it is so thin and only has one atom thick, it is very hard, however. In addition, it has excellent thermal conductivity and low resistivity. It is in strong light while almost completely transparent. These features allow the researchers are able to create infinite possibilities, no wonder when the industry turned out of graphene shocked. Key words: Graphene, new materials, substances, Technology 1、前言: 石墨烯是一种由碳原子构成的单层片状结构的新材料。是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈?海姆(Andre Geim)和康斯坦丁?诺沃肖洛夫(Konstantin Novoselov),成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”,共同获得2010年诺贝尔物理学奖。 石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸

相关文档
最新文档