【附五套中考模拟卷】2019年广东省惠州市惠阳区中考数学模拟试卷

合集下载

惠州市2019-2020学年中考数学模拟质量跟踪监视试题

惠州市2019-2020学年中考数学模拟质量跟踪监视试题

惠州市2019-2020学年中考数学模拟质量跟踪监视试题一、选择题1.下列说法正确的是( )A .负数没有倒数B .﹣1的倒数是﹣1C .任何有理数都有倒数D .正数的倒数比自身小2.一个几何体由一些小正方体摆成,其主视图与左视图如左图所示.其俯视图不可能是( )A. B. C. D.3.已知二次函数y =ax 2+bx+c (a≠0),过(1,y 1)、(2,y 2).下列结论:①若y 1>0时,则a+b+c >0; ②若a =2b 时,则y 1<y 2;③若y 1<0,y 2>0,且a+b <0,则a >0.其中正确的结论个数为( )A .0个B .1个C .2个D .3个4.如图,四边形ABCD 是边长为1的正方形,E ,F 为BD 所在直线上的两点,若EAF=135°,则下列结论正确的是( )A .DE=1B .tan ∠AFO=13C .AF=2D .四边形AFCE 的面积为945.下列说法中:7和8之间;②六边形的内角和是外角和的2倍;③2的相反数是﹣2;④若a >b ,则a ﹣b >0.它的逆命题是真命题;⑤一个角是126°43',则它的补角是53°17';正确的有( )A .1个B .2个C .3个D .4个6.如图,已知AB=A 1B ,A 1C=A 1A 2,A 2D=A 2A 3,A 3E=A 3A 4,若∠B=20°,则∠A=_____,4A ∠=______.( )A .80°,40°B .80°,30°C .80°,20°D .80°,10°7.一个公园有,,A B C 三个入口和,D E 二个出口,小明进入公园游玩,从“A 口进D 口出”的概率为( )A .12B .13C .15D .168.已知:如图,四边形AOBC 是矩形,以O 为坐标原点,OB 、OA 分别在x 轴、y 轴上,点A 的坐标为(0,3),∠OAB=60°,以AB 为轴对折后,C 点落在D 点处,则D 点的坐标为( )A 32- )B .(32-)C .(32,D .(3,9.已知一次函数y =kx ﹣1和反比例函数y =k x,则这两个函数在同一平面直角坐标系中的图象可能是( )A .B .C .D .10.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是( )已知:如图,在ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE //BC ,DF//AC ,求证:ADE ∽DBF .证明:①又DF//AC ,DE //BC ②,A BDF ∠∠∴=③,ADE B ∠∠∴=④,ADE ∴∽DBF .A.③②④①B.②④①③C.③①④②D.②③④① 11.如图,在半径为6的⊙O 中,正方形AGDH 与正六边形ABCDEF 都内接于⊙O ,则图中阴影部分的面积为( )A.27﹣B.54﹣C.D.54 12.下列条件中,能判定四边形是平行四边形的条件是()A.一组对边平行,另一组对边相等B.一组对边平行,一组对角相等C.一组对边平行,一组邻角互补D.一组对边相等,一组邻角相等二、填空题13.函数y=132x的自变量x的取值范围是_____.14.在平面直角坐标系中,已知A、B、C、D四点的坐标依次为(0,0)、(6,2)、(8,8)、(2,6),若一次函数y=mx-6m+2(m≠0)的图像将四边形ABCD的面积分成1:3两部分,则m的值为___________.15.如图,BD平分∠ABC,DE∥BC,∠2=35°,则∠1=_____.16.如图,直线L1∥L2,AB⊥CD,∠1=34°,那么∠2的度数是___度.17.如果分式有意义,那么x的取值范围是_____.18.如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,∠APO=30°.先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30°得到线段PC,连接BC.若点A的坐标为(﹣1,0),则线段BC的长为_____.三、解答题19.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接AD、CD、OC.填空①当∠OAC的度数为时,四边形AOCD为菱形;②当OA=AE=2时,四边形ACDE的面积为.20.如图,四边形ABCD内接于⊙O,点O在AB上,BC=CD,过点C作⊙O的切线,分别交AB,AD的延长线于点E,F.(1)求证:AF⊥EF;(2)若cosA=45,BE=1,求AD的长.21.抛物线y=ax2﹣2x+b的顶点为A(m,n),过点A的直线y=kx﹣1与抛物线的另一交点为B(p,q).(1)当a=b=1时,求k的值;(2)若b=m,当﹣3≤a<1时,求p的取值范围.22.随着信息技术的迅猛发展,人们购物的支付方式更加多样、便捷,为调查大学生购物支付方式,某大学一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为(2)将条形统计图补充完整;(3)若该大学有10000名学生,请你估计购物选择用支付宝支付方式的学生约有多少人?23.某公司以每件60元的价格购进一批环保产品,经试销发现,如果以每件80元的价格销售那么可售出40万件.销售单价每降低1元,销售量就增加1万件.现超市决定降销售,设销售单价为x元时,销售量为y万件.(1)求y与x之间的函数关系式;(2)设该公司销售这种环保产品,能获得利润w万元,当销售单价为多少元时,公司可获得最大利润?最大利润是多少万元?(3)若物价部门规定规定获利不得高于进价的30%,若该公司为了获取500万元的利润,该产品每件应降价多少元?24.定义:若一个三角形一条边上的高长为这条边长的一半,则称该三角形为这条边上的“半高”三角形,这条高称为这条边上的“半高”,如图,△ABC是BC边上的“半高”三角形.点P在边AB上,PQ ∥BC交AC于点Q,PM⊥BC于点M,QN⊥BC于点N,连接MQ.(1)请证明△APQ为PQ边上的“半高”三角形.(2)请探究BM,PM,CN之间的等量关系,并说明理由;(3)若△ABC的面积等于16,求MQ的最小值25.4cos60°+(﹣1)2019﹣|﹣3+2|【参考答案】***一、选择题13.x≠3 214.-5或1 5 -15.70°.16.17.x≠318.2三、解答题19.(1)证明见解析;(2)①30°;②【解析】【分析】(1)由垂径定理,切线的性质可得FO⊥AC,OD⊥DE,可得AC∥DE;(2)①连接CD,AD,OC,由题意可证△ADO是等边三角形,由等边三角形的性质可得DF=OF,AF=FC,且AC⊥OD,可证四边形AOCD为菱形;②由题意可证△AFO∽△ODE,可得21222AO OF AFOE OD DE====+,即OD=2OF,DE=2AF=AC,可证四边形ACDE是平行四边形,由勾股定理可求DE的长,即可求四边形ACDE的面积.【详解】(1)∵F为弦AC的中点,∴AF=CF,且OF过圆心O∴FO⊥AC,∵DE是⊙O切线∴OD⊥DE∴DE∥AC(2)①当∠OAC=30°时,四边形AOCD是菱形,理由如下:如图,连接CD,AD,OC,∵∠OAC=30°,OF⊥AC∴∠AOF=60°∵AO=DO,∠AOF=60°∴△ADO是等边三角形又∵AF⊥DO∴DF=FO,且AF=CF,∴四边形AOCD是平行四边形又∵AO=CO∴四边形AOCD是菱形②如图,连接CD,∵AC∥DE∴△AFO∽△EDO∴21222 AO OF AFOE OD DE====+∴OD=2OF,DE=2AF∵AC=2AF∴DE=AC,且DE∥AC∴四边形ACDE是平行四边形∵OA=AE=OD=2∴OF=DF=1,OE=4∵在Rt△ODE中,DE=∴S四边形ACDE=DE×DF1==故答案为:【点睛】本题是圆的综合题,考查了圆的有关知识,菱形的判定,等边三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理,熟练运用这些性质进行推理是本题的关键.20.(1)略;(2)325.【解析】【分析】(1)连接AC,OC,如图,先证明OC∥AF,再根据切线的性质得OC⊥EF,从而得到AF⊥EF;(2)先利用OC∥AF得到∠COE=∠DAB,在Rt△OCE中,设OC=r,利用余弦的定义得到415rr=+,解得r=4,连接BD,如图,根据圆周角定理得到∠ADB=90°,然后根据余弦的定义可计算出AD的长.【详解】解:(1)连接AC,OC,如图,∵CD=BC,∴CD BC=,∴∠1=∠2,∵OA=OC,∴∠2=∠OCA,∴∠1=∠OCA,∴OC∥AF,∵EF为切线,∴OC⊥EF,∴AF⊥EF;(2)∵OC∥AF,∴∠COE=∠DAB,在Rt△OCE中,设OC=r,∵cos∠COE=cos∠DAB=45OCOE=,即415rr=+,解得r=4,连接BD,如图,∵AB为直径,∴∠ADB=90°,在Rt△ADB中,cos∠DAB=45 ADAB=,∴AD=45×8=325.【点睛】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理和解直角三角形.21.(1)1;(2)p≤23或p >2. 【解析】【分析】 (1)将a =b =1代入抛物线的解析式确定直线经过的点A 的坐标,从而确定k 的值;(2)表示出直线的解析式:y =ax ﹣1,然后根据当﹣3≤a<0和当0<a <1时利用反比例函数的性质确定P 的取值范围即可.【详解】(1)当a =b =1时,抛物线y =x 2﹣2x+1的顶点为A(1,0),直线y =kx ﹣1过点A(1,0),k =1(2)∵y =ax 2﹣2x+b 的顶点为A(m ,n),∴m =1.a∵b =m ,∴抛物线y =ax 2﹣2x+1.a ∴顶点为(1a,0), ∵直线y =kx ﹣1过顶点为(1a ,0), ∴k a﹣1=0,k =a . 从而直线的解析式为:y =ax ﹣1ax 2﹣2x+1a=a x ﹣1 21(2)0a ax a x a +-++= x 1=1a ,x 2=1+1a. ∵B 与A 是不同的两点 ∴p =1+1a. 对于﹣3≤a<1, ①当﹣3≤a<0时,利用反比例函数性质得:112,33p a -剟 ②当0<a <1时,利用反比例函数性质得:1a >1,p >2 综上所述,p≤23或p >2. 【点睛】本题考查了二次函数的性质及函数图象上的点的坐标特征的知识,解题的关键是得到p 与a 的关系,难度不大.22.(1)200,81°;(2)补充完整的条形统计图如图所示;见解析;(3)购物选择用支付宝支付方式的学生约有2250人.【解析】【分析】(1)根据支付宝、现金、其他的人数和所占的百分比可以求得本次调查的人数,并求出示“支付宝”支付的扇形圆心角的度数;(2)根据(1)中的结果可以求得使用微信和银行卡的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得购物选择用支付宝支付方式的学生约有多少人.【详解】(1)本次调查的人数为:(45+50+15)÷(1﹣15%﹣30%)=200,表示“支付宝”支付的扇形圆心角的度数为:360°×45200=81°,故答案为:200,81°;(2)使用微信的人数为:200×30%=60,使用银行卡的人数为:200×15%=30,补充完整的条形统计图如图所示;(3)10000×45200=2250(人),答:购物选择用支付宝支付方式的学生约有2250人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)y=﹣x+120;(2)当销售单价为80元时,公司可获得最大利润,最大利润是800万元;(3)该产品每件应降价10元.【解析】【分析】(1)根据题意得,y=40+(80﹣x),即y=﹣x+120;(2)根据题意得,w=(x﹣60)(﹣x+120),然后化简利用二次函数性质得到最大值;(3)当w=500时,列出方程解出x,注意要判断取舍【详解】解:(1)根据题意得,y=40+(80﹣x),即y=﹣x+120;(2)根据题意得,w=(x﹣60)(﹣x+120),即w=﹣x2+180x﹣7200=﹣(x﹣90)2+900,由题意可知x≤80,∵a=﹣1<0,∴x<90时,w随x增大而增大,∴当x=80时,w由最大值,此时,w=﹣(80﹣90)2+900=800,答:当销售单价为80元时,公司可获得最大利润,最大利润是800万元;(3)当w=500时,可得方程﹣(x﹣90)2+900=500,解得:x1=70,x2=110,∵110>60(1+30%),∴x2=110(不合题意,舍去),这时,80﹣70=10,答:该产品每件应降价10元.【点睛】本题考查一元二次方程及二次函数的应用,理解题意是本题关键,第三问要注意对一元二次方程的解进行取舍24.(1)见解析;(2)2PM=BM+CN,理由见解析;(3.【解析】【分析】(1)根据平行相似,证明△APQ∽△ABC,利用相似三角形对应边的比等于对应高的比:PQ AKBC AR=,由“半高”三角形的定义可结论;(2)证明四边形PMNQ是矩形,得PQ=MN,PM=KR,代入AR=12BC,可得结论;(3)先根据△ABC的面积等于16,计算BC和AR的长,设MN=x,则BM+CN=8﹣x,PM=QN=12(8﹣x),根据勾股定理表示MQ,配方可得最小值.【详解】(1)证明:如图,过A作AR⊥BC于R,交PQ于K,∵△ABC是BC边上的“半高”三角形,∴AR=12 BC,∵PQ∥BC,∴△APQ∽△ABC,∴PQ AK BC AR=,∴AK AR1 PQ BC2==,∴AK=12 PQ,∴△APQ为PQ边上的“半高”三角形.(2)解:2PM=BM+CN,理由是:∵PM⊥BC,QN⊥BC,∴∠PMN=∠MNQ=∠MPQ=90°,∴四边形PMNQ是矩形,∴PQ=MN,PM=KR,∵AK=12PQ,AR=12BC,∴AK+RK=12(BM+MN+CN),1 2PQ+PM=12BM+12MN+12CN,∴2PM=BM+CN;(3)解:∵△ABC 的面积等于16, ∴12BC AR ⋅=16, ∵AR =12BC , 1122BC BC ⋅⋅=16, BC =8,AR =4,设MN =x ,则BM+CN =8﹣x ,PM =QN =12(8﹣x ),∵MQ ==∴当x =85时,MQ 有最小值是5.【点睛】本题是三角形的综合题,考查的是新定义:“半高”三角形,涉及到相似三角形的性质和判定、三角形面积、勾股定理及新定义的理解和运用等知识,解决问题的关键是作辅助线解决问题.25.0【解析】【分析】本题涉及绝对值、特殊角的三角函数值2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】 解:原式=4×12﹣1﹣|﹣1|=2﹣1﹣1=0. 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.。

2019学年广东省惠阳区三中初中毕业生学业综合测试数学试卷【含答案及解析】

2019学年广东省惠阳区三中初中毕业生学业综合测试数学试卷【含答案及解析】

2019学年广东省惠阳区三中初中毕业生学业综合测试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. -3的绝对值是()A.3 B.-3 C. D.2. 第八届中国文博会以总成交额143 300 000 000 元再创新高,将数143 300 000 000 用科学记数法表示为()A.1.433×1010 B.1.433×1011 C.1.433×1012D.0.1433×10123. 下列图形中,既是轴对称图形,又是中心对称图形的是()4. 下列运算正确的是()A.2a +3b = 5ab B.a2·a3=a5 C.(2a) 3 = 6a3 D.a6+a3= a9 5. 下面四个几何体中,左视图是四边形的几何体共有()A.1个 B.2个 C.3个 D.4个6. 如图, AB是⊙O的直径,C,D为圆上两点,若∠AOC =130°,则∠D等于()A.20° B.25° C.35° D.50°7. 有22位同学参加智力竞赛,他们的分数互不相同,按分数高低选11位同学进入下一轮比赛,小明知道了自己的分数后,还需知道哪个统计量,就能判断自己能否进入下一轮比赛()A、中位数B、众数C、方差D、平均数8. 已知点P(a+l,2a -3)关于x轴的对称点在第一象限,则a的取值范围是()A. B. C. D.9. 将一副三角板按如图所示摆放,图中∠α的度数是()A.75° B.90° C.105° D.120°10. 货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A. B. C. D.二、填空题11. 函数y=中自变量x的取值范围是.12. 分解因式:13. 二次函数的最小值是.14. 某种商品的标价为200元,为了吸引顾客,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是元.15. 如图,双曲线与⊙O在第一象限内交于P、Q 两点,分别过P、Q两点向x 轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为.16. 下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,……,依此规律,第五个图形中三角形的个数是三、计算题17. 计算:-四、解答题18. 如图,一次函数y=x+6与反比例函数的图象相交于A,B两点,与x 轴、y轴交于E、F,点B的横坐标为。

2019年广东省中考数学学业模拟试卷(一)含精品解析

2019年广东省中考数学学业模拟试卷(一)含精品解析

2019年广东省中考数学学业模拟试卷(一)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)下列实数中的无理数是()A.B.πC.0D.2.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨,用科学记数法可表示为()A.186×108吨B.18.6×109吨C.1.86×1010吨D.0.186×1011吨3.(3分)如图是一个由4个相同正方体组成的立体图形,它的左视图是()A.B.C.D.4.(3分)数据1,2,3,4,4,5的众数是()A.5B.3C.3.5D.45.(3分)一元二次方程x2﹣2x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根6.(3分)在Rt△ABC中,∠C=90°,sin A=,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm7.(3分)不等式组的解集是()A.x>1B.x<2C.1≤x≤2D.1<x<28.(3分)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.29.(3分)如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°10.(3分)下列图形中阴影部分的面积相等的是()A.②③B.③④C.①②D.①④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)比较大小:3.(填“>”、“=”或“<”)12.(4分)正五边形的一个外角等于°.13.(4分)分解因式:a2﹣4a=.14.(4分)如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是度.15.(4分)如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则阴影部分面积是(结果保留π).16.(4分)为了从2018枚外形相同的金蛋中找出唯一的有奖金蛋,检查员将这些金蛋按1﹣2018的顺序进行标号.第一次先取出编号为单数的金蛋,发现其中没有有奖金蛋,他将剩下的金蛋在原来的位置上又按1﹣1009编了号(即原来的2号变为1号,原来的4号变为2号……原来的2018号变为1009号),又从中取出新的编号为单数的金蛋进行检验,仍没有发现有奖金蛋……如此下去,检查到最后一枚金蛋才是有奖金蛋,问这枚有奖金蛋最初的编号是.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:﹣2sin45°﹣(1+)0+2﹣1.18.(6分)先化简,再求值:()•(x2﹣1),其中x=.19.(6分)如图,已知点E、C在线段BF上,且BE=CF,CM∥DF,(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AC=DF.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?21.(7分)新学期开学初,王刚同学对部分同学暑假在家做家务的时间进行了抽样调查(时间取整数小时),(1)王刚同学抽取样本的容量是多少?(2)请你根据表中数据补全图中的频数分布直方图;(3)若该学校有学生1260人,那么大约有多少学生在暑假做家务的时间在40.5~100.5小时之间?22.(7分)如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.(1)求证:AE=CG;(2)试判断BE和DF的位置关系,并说明理由.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,已知一次函数y=﹣2x+3与反比例函数的图象相交于A(﹣1,m)、B(n,﹣2)两点.(1)求反比例函数解析式及m、n的值;(2)求△AOB的面积;(3)观察图象,直接写出反比例函数值大于一次函数值时自变量x的取值范围.24.(9分)已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)连接CD,若CD=3,BD=4,求⊙O的半径和DE的长.25.(9分)如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)2019年广东省中考数学学业模拟试卷(一)参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)下列实数中的无理数是()A.B.πC.0D.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:,0,是有理数,π是无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨,用科学记数法可表示为()A.186×108吨B.18.6×109吨C.1.86×1010吨D.0.186×1011吨【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:186亿吨=1.86×1010吨.故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n 的值是解题的关键.3.(3分)如图是一个由4个相同正方体组成的立体图形,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.4.(3分)数据1,2,3,4,4,5的众数是()A.5B.3C.3.5D.4【分析】直接利用众数的定义分析得出答案.【解答】解:∵数据1,2,3,4,4,5中,4出现的次数最多,∴这组数据的众数是:4.故选:D.【点评】此题主要考查了众数的定义,正确把握定义是解题关键.5.(3分)一元二次方程x2﹣2x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根【分析】代入一元二次方程中的系数求出根的判别式△=﹣8<0,由此即可得出结论.【解答】解:在方程x2﹣2x+3=0中,△=(﹣2)2﹣4×1×3=﹣8<0,∴该方程没有实数根.故选:D.【点评】本题考查了根的判别式,解题的关键是代入数据求出△的值.本题属于基础题,难度不大,解决该题型题目时,根据根的判别式的符号判断出方程根的个数是关键.6.(3分)在Rt△ABC中,∠C=90°,sin A=,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm【分析】根据三角函数的定义求得BC和AB的比值,设出BC、AB,然后利用勾股定理即可求解.【解答】解:∵sin A==,∴设BC=4x,AB=5x,又∵AC2+BC2=AB2,∴62+(4x)2=(5x)2,解得:x=2或x=﹣2(舍),则BC=4x=8cm,故选:C.【点评】本题考查了三角函数与勾股定理,正确理解三角函数的定义是关键.7.(3分)不等式组的解集是()A.x>1B.x<2C.1≤x≤2D.1<x<2【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出即可.【解答】解:∵解不等式①得:x<2,解不等式②得:x>1,∴不等式组的解集为1<x<2,故选:D.【点评】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.8.(3分)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.2【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选:C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.9.(3分)如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°【分析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.【点评】(1)此题主要考查了圆内接四边形的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.(3分)下列图形中阴影部分的面积相等的是()A.②③B.③④C.①②D.①④【分析】首先根据各图形的函数解析式求出函数与坐标轴交点的坐标,进而可求得各个阴影部分的面积,进而可比较出个阴影部分面积的大小关系.【解答】解:①:图中的函数为正比例函数,与坐标轴只有一个交点(0,0),由于缺少条件,无法求出阴影部分的面积;②:直线y=﹣x+2与坐标轴的交点坐标为:(2,0),(0,2),故S=×2×2=2;阴影③:此函数是反比例函数,那么阴影部分的面积为:S=xy=×4=2;④:该抛物线与坐标轴交于:(﹣1,0),(1,0),(0,﹣1),故阴影部分的三角形是等腰直角三角形,其面积S=×2×1=1;②③的面积相等,故选:A.【点评】此题主要考查了函数图象与坐标轴交点坐标的求法以及图形面积的求法,是基础题,熟练掌握各函数的图象特点是解决问题的关键.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)比较大小:>3.(填“>”、“=”或“<”)【分析】先求出3=,再比较即可.【解答】解:∵32=9<10,故答案为:>.【点评】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.12.(4分)正五边形的一个外角等于72°.【分析】根据多边形的外角和是360°,即可求解.【解答】解:正五边形的一个外角==72°,故答案为:72.【点评】本题考查多边形的内角与外角,正确理解多边形的外角和是360°是关键.13.(4分)分解因式:a2﹣4a=a(a﹣4).【分析】由于原式子中含有公因式a,可用提取公因式法求解.【解答】解:a2﹣4a=a(a﹣4).故答案为:a(a﹣4).【点评】主要考查提公因式法分解因式,是基础题.14.(4分)如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是90度.【分析】如图2,AB∥CD,∠AEC=90°,作EF∥AB,根据平行线的传递性得到EF∥CD,则根据平行线的性质得∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEC=90°【解答】解:如图2,AB∥CD,∠AEC=90°,作EF∥AB,则EF∥CD,所以∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEF+∠CEF=∠AEC=90°.故答案为90.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.15.(4分)如图,在边长为4的正方形ABCD 中,先以点A 为圆心,AD 的长为半径画弧,再以AB 边的中点为圆心,AB 长的一半为半径画弧,则阴影部分面积是 2π (结果保留π).【分析】根据题意有S阴影部分=S扇形BAD﹣S半圆BA,然后根据扇形的面积公式:S =和圆的面积公式分别计算扇形和半圆的面积即可.【解答】解:根据题意得,S 阴影部分=S 扇形BAD ﹣S 半圆BA ,∵S 扇形BAD ==4π,S 半圆BA =•π•22=2π, ∴S 阴影部分=4π﹣2π=2π. 故答案为2π.【点评】此题考查了扇形的面积公式:S =,其中n 为扇形的圆心角的度数,R 为圆的半径),或S =lR ,l 为扇形的弧长,R 为半径.16.(4分)为了从2018枚外形相同的金蛋中找出唯一的有奖金蛋,检查员将这些金蛋按1﹣2018的顺序进行标号.第一次先取出编号为单数的金蛋,发现其中没有有奖金蛋,他将剩下的金蛋在原来的位置上又按1﹣1009编了号(即原来的2号变为1号,原来的4号变为2号……原来的2018号变为1009号),又从中取出新的编号为单数的金蛋进行检验,仍没有发现有奖金蛋……如此下去,检查到最后一枚金蛋才是有奖金蛋,问这枚有奖金蛋最初的编号是 1024 .【分析】根据题意可得每次挑选都是去掉奇数,进而得出需要挑选的总次数进而得出答案.【解答】解:∵将这些金蛋按1﹣2018的顺序进行标号,第一次先取出编号为单数的金蛋,发现其中没有有奖金蛋,∴剩余的数字都是偶数,是2的倍数,;∵他将剩下的金蛋在原来的位置上又按1﹣1009编了号,又从中取出新的编号为单数的金蛋进行检验,仍没有发现有奖金蛋,∴剩余的数字为4的倍数,以此类推:2018→1009→504→252→126→63→31→15→7→3→1共经历10次重新编号,故最后剩余的数字为:210=1024.故答案为:1024.【点评】此题主要考查了推理与论证,正确得出挑选金蛋的规律进而得出挑选的次数是解题关键.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:﹣2sin45°﹣(1+)0+2﹣1.【分析】本题涉及零指数幂、负指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2×﹣1+=﹣.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.18.(6分)先化简,再求值:()•(x2﹣1),其中x=.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•(x2﹣1)=2x+2+x﹣1=3x+1,当x=时,原式=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)如图,已知点E、C在线段BF上,且BE=CF,CM∥DF,(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AC=DF.【分析】(1)①以E为圆心,以EM为半径画弧,交EF于H,②以B为圆心,以EM为半径画弧,交EF于P,③以P为圆心,以HM为半径画弧,交前弧于G,④作射线BG,则∠CBN就是所求作的角.(2)证明△ABC≌△DEF可得结论.【解答】解:(1)如图,(2)∵CM∥DF,∴∠MCE=∠F,∵BE=CF,∴BE+CE=CF+CE,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF,∴AC=DF.【点评】本题考查了基本作图﹣作一个角等于已知角,同时还考查了全等三角形的性质和判定;熟练掌握五种基本作图:(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.(4)作已知角的角平分线.(5)过一点作已知直线的垂线.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?【分析】(1)设第一次购买了x台电风扇,则第二次购买了(x﹣10)台电风扇,根据题意可得,第一次比第二次单价低30元,据此列方程求解;(2)分别求出两次的盈利,然后求和.【解答】解:(1)设第一次购买了x台电风扇,则第二次购买了(x﹣10)台电风扇,由题意得,=150+30,解得:x=60,经检验:x=60是原分式方程的解,且符合题意,则x﹣10=60﹣10=50,答:第一次购买了60台电风扇,则第二次购买了50台电风扇;(2)两次获利:(250﹣150)×60+(250﹣150﹣30)×50=6000+3500=9500(元).答:商场获利9500元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.21.(7分)新学期开学初,王刚同学对部分同学暑假在家做家务的时间进行了抽样调查(时间取整数小时),(1)王刚同学抽取样本的容量是多少?(2)请你根据表中数据补全图中的频数分布直方图;(3)若该学校有学生1260人,那么大约有多少学生在暑假做家务的时间在40.5~100.5小时之间?【分析】(1)求得各组的频数的和即可求得样本容量;(2)根据(1)即可直接补全直方图;(3)用总人数乘以对应的比例即可求解.【解答】解:(1)样本容量是20+25+30+15+10=100;(2);(3)样本中,暑假做家务的时间在40.5~100.5小时之间的人数为55人,∴该校有人在暑假做家务的时间在40.5~100.5小时之间.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(7分)如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.(1)求证:AE=CG;(2)试判断BE和DF的位置关系,并说明理由.【分析】(1)先证∠AED=∠CGD,再证明△ADE≌△CDG,根据全等三角形的对应边相等即可得出结论;(2)先证明△AEB≌△CGD,得出对应角相等∠AEB=∠CGD,得出∠AEB=∠EGF,即可证出平行线.【解答】解:(1)证明:在正方形ABCD中,∵AD=CD,∴∠DAE=∠DCG,∵DE=DG,∴∠DEG=∠DGE,∴∠AED=∠CGD.在△AED和△CGD中,∴△AED≌△CGD(AAS),∴AE=CG.(2)解法一:BE∥DF,理由如下:在正方形ABCD中,AB∥CD,∴∠BAE=∠DCG.在△AEB和△CGD中,∴△AEB≌△CGD(SAS),∴∠AEB=∠CGD.∵∠CGD=∠EGF,∴∠AEB=∠EGF,∴BE∥DF.解法二:BE∥DF,理由如下:在正方形ABCD中,∵AD∥FC,∴=.∵CG=AE,∴AG=CE.又∵在正方形ABCD中,AD=CB,∴=.又∵∠GCF=∠ECB,∴△CGF∽△CEB,∴∠CGF=∠CEB,∴BE∥DF.【点评】本题考查了正方形的性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,已知一次函数y=﹣2x+3与反比例函数的图象相交于A(﹣1,m)、B(n,﹣2)两点.(1)求反比例函数解析式及m、n的值;(2)求△AOB的面积;(3)观察图象,直接写出反比例函数值大于一次函数值时自变量x的取值范围.【分析】(1)把A(﹣1,m)、B(n,﹣2)代入一次函数y=﹣2x+3,可求m、n的值,再根据待定系数法求出反比例函数的解析式;(2)求出直线AB 与x 轴的交点的坐标,根据三角形的面积公式求出即可; (3)利用函数图象求出使反比例函数值大于一次函数值时自变量x 的取值范围. 【解答】解:(1)把A (﹣1,m )、B (n ,﹣2)代入一次函数y =﹣2x +3,得 m =2+3=5,﹣2=﹣2n +3,解得n =2.5,设反比例函数解析式为y =,把A (﹣1,5)代入反比例函数得:k =﹣1×5=﹣5,故反比例函数为y =﹣;(2)设直线AB 和x 轴的交点为C , 令y =0,则0=﹣2x +3, ∴x =1.5, ∴C (1.5,0), ∴OC =1.5,∴S △AOB =S △AOC +S △BOC =×1.5×5+×1.5×2=5.25;(3)反比例函数值大于一次函数值时自变量x 的取值范围为﹣1<x <0或x >.【点评】本题主要考查对一次函数与反比例函数的交点问题,用待定系数法求一次函数和反比例函数的解析式,三角形的面积,解一元一次方程等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.24.(9分)已知:如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连结AD . (1)求证:∠DAC =∠DBA ;(2)求证:P是线段AF的中点;(3)连接CD,若CD=3,BD=4,求⊙O的半径和DE的长.【分析】(1)利用角平分线的性质得出∠CBD=∠DBA,进而得出∠DAC=∠DBA;(2)利用圆周角定理得出∠ADB=90°,进而求出∠PDF=∠PFD,则PD=PF,求出PA=PF,即可得出答案;(3)利用勾股定理得出AB的长,再利用三角形面积求出DE即可.【解答】(1)证明:∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)证明:∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠DEB=90°,∴∠1+∠3=∠5+∠3=90°,∴∠1=∠5=∠2,∴PD=PA,∵∠4+∠2=∠1+∠3=90°,且∠ADB=90°,∴∠3=∠4,∴PD=PF,∴PA=PF,即P是线段AF的中点;(3)解:连接CD,∵∠CBD=∠DBA,∴CD=AD,∵CD=3,∴AD=3,∵∠ADB=90°,∴AB=5,故⊙O的半径为2.5,∵DE×AB=AD×BD,∴5DE=3×4,∴DE=2.4.即DE的长为2.4.【点评】此题主要考查了圆的综合以及圆周角定理和勾股定理以及三角形面积等知识,熟练利用圆周角定理得出各等量关系是解题关键.25.(9分)如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)【分析】(1)先在Rt △ABC 中,由勾股定理求出AB =10,再由BP =t ,AQ =2t ,得出AP =10﹣t ,然后由PQ ∥BC ,根据平行线分线段成比例定理得出=,列出比例式=,求解即可;(2)根据S 四边形PQCB =S △ACB ﹣S △APQ =AC •BC ﹣AP •AQ •sin A ,即可得出y 关于t 的函数关系式;(3)根据四边形PQCB 面积是△ABC 面积的,列出方程t 2﹣8t +24=×24,解方程即可; (4)△AEQ 为等腰三角形时,分三种情况讨论:①AE =AQ ;②EA =EQ ;③QA =QE ,每一种情况都可以列出关于t 的方程,解方程即可.【解答】解:(1)Rt △ABC 中,∵∠C =90°,BC =8cm ,AC =6cm , ∴AB =10cm . ∵BP =t ,AQ =2t , ∴AP =AB ﹣BP =10﹣t . ∵PQ ∥BC ,∴=,∴=,解得t =;(2)∵S 四边形PQCB =S △ACB ﹣S △APQ =AC •BC ﹣AP •AQ •sin A∴y =×6×8﹣×(10﹣t )•2t •=24﹣t (10﹣t )=t 2﹣8t +24,即y 关于t 的函数关系式为y =t 2﹣8t +24;(3)四边形PQCB 面积能是△ABC 面积的,理由如下:由题意,得t 2﹣8t +24=×24, 整理,得t 2﹣10t +12=0,解得t 1=5﹣,t 2=5+(不合题意舍去).故四边形PQCB面积能是△ABC面积的,此时t的值为5﹣;(4)△AEQ为等腰三角形时,分三种情况讨论:①如果AE=AQ,那么10﹣2t=2t,解得t=;②如果EA=EQ,那么(10﹣2t)×=t,解得t=;③如果QA=QE,那么2t×=5﹣t,解得t=.故当t为秒秒秒时,△AEQ为等腰三角形.【点评】本题考查了勾股定理,平行线的判定,四边形的面积,等腰三角形的判定,中心对称的性质,综合性较强,难度适中.运用分类讨论、方程思想是解题的关键.。

广东省惠州市惠阳区中考数学模拟试卷(含解析)

广东省惠州市惠阳区中考数学模拟试卷(含解析)

2017年广东省惠州市惠阳区中考数学模拟试卷一.选择题(共10小题,每小题3分,共30分.)1.的倒数是()A.﹣2 B.2 C.D.2.下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10104.2010年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()A.32,31 B.31,32 C.31,31 D.32,355.如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()A.35° B.45° C.50° D.55°6.下列运算正确的是()A.2a+3b=5ab B.a2•a3=a5C.(2a)3=6a 3D.a6+a3=a97.一元二次方程x2﹣4x+2=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根8.若等腰三角形的两边长为3和7,则该等腰三角形的周长为()A.10 B.13 C.17 D.13或179.不等式组的解集在数轴上表示正确的是()A.B.C.D.10.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.二、填空题(本题共6小题,每小题4分,共24分)11.因式分解:x2﹣36= .12.一个多边形的内角和为1080°,则这个多边形的边数是.13.若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为.14.分式方程的解是.15.如图,在⊙O中,CD⊥AB于E,若∠BAD=30°,且BE=2,则CD= .16.如图,在圆心角为90°的扇形OAB中,半径OA=4,C为的中点,D、E分别为OA,OB 的中点,则图中阴影部分的面积为.三、解答题(本题共3小题,每小题6分,共18分)17.计算:(﹣)﹣1﹣|﹣1|+3tan30°+0.18.先化简,再求值:(),请在﹣3,0,1,3中选择一个适当的数作为x值.19.如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明)(2)连接BD,求证:DE=CD.四、解答题(本题共3小题,每小题7分,共21分)20.某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球、B乒乓球、C跳绳、D踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完成;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).21.为促进我市经济的快速发展,加快道路建设,某高速公路建设工程中需修隧道AB,如图,在山外一点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,≈1.73,精确到个位)22.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?五、解答题(本题共3小题,每小题9分,共27分)23.直线y=kx+b与反比例函数y=(x<0)的图象交于点A(﹣1,m),与x轴交于点B(1,0)(1)求m的值;(2)求直线AB的解析式;(3)若直线x=t(t>1)与直线y=kx+b交于点M,与x轴交于点N,连接AN,S△AMN=,求t的值.24.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE 与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sinA=,求BH的长.25.把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点A出发,以2cm/s的速度沿AB向点B匀速移动;当点P移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值范围;(2)连接PE,设四边形APEQ的面积为y(cm2),试探究y的最大值;(3)当t为何值时,△APQ是等腰三角形.2017年广东省惠州市惠阳区中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,每小题3分,共30分.)1.的倒数是()A.﹣2 B.2 C.D.【考点】17:倒数.【分析】根据倒数的定义求解.【解答】解:﹣的倒数是﹣2.故选:A.2.下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 400 000 000=4.4×109,故选:B.4.2010年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()A.32,31 B.31,32 C.31,31 D.32,35【考点】W5:众数;W4:中位数.【分析】利用中位数及众数的定义确定答案即可.【解答】解:∵数据31出现了3次,最多,∴众数为31,∵排序后位于中间位置的数是31,∴中位数是31,故选C.5.如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()A.35° B.45° C.50° D.55°【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等可得∠4=∠2,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∵直线a∥b,∴∠4=∠2=55°,∴∠1=∠3﹣∠4=100°﹣55°=45°.故选B.6.下列运算正确的是()A.2a+3b=5ab B.a2•a3=a5C.(2a)3=6a 3D.a6+a3=a9【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】直接利用合并同类项法则以及结合幂的乘方与积的乘方法则,分别化简求出答案.【解答】解:A、2a+3b无法计算,故此选项不合题意;B、a2•a3=a5,正确,符合题意;C、(2a)3=8a 3,故此选项不合题意;D、a6+a3,无法计算,故此选项不合题意;故选:B.7.一元二次方程x2﹣4x+2=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根【考点】AA:根的判别式.【分析】先计算出判别式的值,然后根据判别式的意义判定方程解的情况.【解答】解:∵△=(﹣4)2﹣4×2=8>0,∴方程有两个不相等的实数根.故选A.8.若等腰三角形的两边长为3和7,则该等腰三角形的周长为()A.10 B.13 C.17 D.13或17【考点】KH:等腰三角形的性质;K6:三角形三边关系.【分析】因为等腰三角形的两边为3和7,但已知中没有点明底边和腰,所以有两种情况,需要分类讨论,还要注意利用三角形三边关系考查各情况能否构成三角形.【解答】解:当3为底时,其它两边都为7,3、7、7可以构成三角形,周长为17;当3为腰时,其它两边为3和7,∵3+3=6<7,所以不能构成三角形,故舍去,∴答案只有17.故选C.9.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:由x>﹣1,得x>﹣1,由2x≤4,得x≤2,∴不等式组的解集是﹣1<x≤2,故选:B.10.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】分三种情况进行讨论,当0≤x≤1时,当1≤x≤2时,当2≤x≤3时,分别求得△ANM的面积,列出函数解析式,根据函数图象进行判断即可.【解答】解:由题可得,BN=x,当0≤x≤1时,M在BC边上,BM=3x,AN=3﹣x,则S△ANM=AN•BM,∴y=•(3﹣x)•3x=﹣x2+x,故C选项错误;当1≤x≤2时,M点在CD边上,则S△ANM=AN•BC,∴y=(3﹣x)•3=﹣x+,故D选项错误;当2≤x≤3时,M在AD边上,AM=9﹣3x,∴S△ANM=AM•AN,∴y=•(9﹣3x)•(3﹣x)=(x﹣3)2,故B选项错误;故选(A).二、填空题(本题共6小题,每小题4分,共24分)11.因式分解:x2﹣36= (x+6)(x﹣6).【考点】54:因式分解﹣运用公式法.【分析】直接用平方差公式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣36=(x+6)(x﹣6).12.一个多边形的内角和为1080°,则这个多边形的边数是8 .【考点】L3:多边形内角与外角.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.13.若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为1:9 .【考点】S7:相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方解答.【解答】解:∵△ABC∽△A′B′C′,相似比为1:3,∴△ABC与△A′B′C′的面积之比为1:9.故答案为:1:9.14.分式方程的解是x=﹣1 .【考点】B2:分式方程的解.【分析】根据解分式方程的方法可以求得分式方程的解,记住最后要进行检验,本题得以解决.【解答】解:方程两边同乘以2x(x﹣3),得x﹣3=4x解得,x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,故原分式方程的解是x=﹣1,故答案为:x=﹣1.15.如图,在⊙O中,CD⊥AB于E,若∠BAD=30°,且BE=2,则CD= 4.【考点】M2:垂径定理;M5:圆周角定理.【分析】先根据圆周角定理求出∠C的度数,再由CD⊥AB可知∠CEB=90°,CD=2CE,由直角三角形的性质求出BC的长,根据勾股定理求出CE的长,进而可得出结论.【解答】解:∵∠BAD=30°,BE=2,∴∠C=∠BAD=30°.∵CD⊥AB,∴∠CEB=90°,CD=2CE,∴BC=2BE=4,∴CE===2,∴CD=2CE=4.故答案为:4.16.如图,在圆心角为90°的扇形OAB中,半径OA=4,C为的中点,D、E分别为OA,OB 的中点,则图中阴影部分的面积为2π+2﹣2 .【考点】MO:扇形面积的计算.【分析】连接OC、EC,由△OCD≌△OCE、OC⊥DE可得DE==2,分别求出S扇形OBC、S△OCD、S△ODE面积,根据S扇形OBC+S△OCD﹣S△ODE=S阴影部分可得.【解答】解:连结OC,过C点作CF⊥OA于F,∵半径OA=4,C为的中点,D、E分别是OA、OB的中点,∴OD=OE=2,OC=4,∠AOC=45°,∴CF=2,∴空白图形ACD的面积=扇形OAC的面积﹣三角形OCD的面积=﹣×2×2=2π﹣2,三角形ODE的面积=OD×OE=2,∴图中阴影部分的面积=扇形OAB的面积﹣空白图形ACD的面积﹣三角形ODE的面积=﹣(2π﹣2)﹣2=2π+2﹣2.故答案为:2π+2﹣2.三、解答题(本题共3小题,每小题6分,共18分)17.计算:(﹣)﹣1﹣|﹣1|+3tan30°+0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣4﹣+1+3×+1=﹣2.18.先化简,再求值:(),请在﹣3,0,1,3中选择一个适当的数作为x值.【考点】6D:分式的化简求值.【分析】先把括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分得到原式=3x+15,再根据分式有意义的条件把x=1代入计算即可.【解答】解:原式=•=•=3x+15,当x=1时,原式=3+15=18.19.如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明)(2)连接BD,求证:DE=CD.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质;KO:含30度角的直角三角形.【分析】(1)利用基本作图(作已知线段的垂直平分线)作DE垂直平分AB;(2)先利用线段垂直平分线的性质得到DA=DB,则∠DBA=∠A=30°,再证明BD平分∠ABC,然后根据角平分线的性质定理可得到结论.【解答】(1)解:如图,DE为所作;(2)证明:如图,∵DE垂直平分AB,∴DA=DB,∴∠DBA=∠A=30°,∵∠ABC=90°﹣∠A=60°,∴∠CBD=30°,即BD平分∠ABC,而DE⊥AB,DC⊥BC,∴DE=DC.四、解答题(本题共3小题,每小题7分,共21分)20.某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球、B乒乓球、C跳绳、D踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200 人;(2)请你将条形统计图补充完成;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)由题意可知这次被调查的学生共有20÷=200(人);(2)首先求得C项目对应人数为:200﹣20﹣80﹣40=60(人),继而可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式即可求得答案.【解答】解:(1)根据题意得:这次被调查的学生共有20÷=200(人).故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人);补充如图.(3)列表如下:甲乙丙丁甲﹨(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹨(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹨(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹨∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)==.21.为促进我市经济的快速发展,加快道路建设,某高速公路建设工程中需修隧道AB,如图,在山外一点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,≈1.73,精确到个位)【考点】T8:解直角三角形的应用.【分析】首先过点C作CD⊥AB于D,然后在Rt△BCD中,利用三角函数的知识,求得BD,CD的长,继而在Rt△ACD中,利用∠CAB的正切求得AD的长,继而求得答案.【解答】解:过点C作CD⊥AB于D,∵BC=200m,∠CBA=30°,∴在Rt△BCD中,CD=BC=100m,BD=BC•cos30°=200×=100≈173(m),∵∠CAB=54°,在Rt△ACD中,AD=≈≈72(m),∴AB=AD+BD=173+72≈245(m).答:隧道AB的长为245m.22.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?【考点】AD:一元二次方程的应用;C9:一元一次不等式的应用.【分析】(1)设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×(1﹣降价百分比)的平方”,即可得出关于x的一元二次方程,解方程即可得出结论;(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,根据“总利润=第一次降价后的单件利润×销售数量+第二次降价后的单件利润×销售数量”,即可得出关于m的一元一次不等式,解不等式即可得出结论.【解答】解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.五、解答题(本题共3小题,每小题9分,共27分)23.直线y=kx+b与反比例函数y=(x<0)的图象交于点A(﹣1,m),与x轴交于点B(1,0)(1)求m的值;(2)求直线AB的解析式;(3)若直线x=t(t>1)与直线y=kx+b交于点M,与x轴交于点N,连接AN,S△AMN=,求t的值.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)将点A坐标代入y=可得m的值;(2)将点A、B坐标代入y=kx+b可得关于k、b的方程,解方程求出k、b的值,可得直线解析式;(3)根据直线直线x=t与直线y=kx+b交于点M、与x轴交于点N表示出M、N的坐标,由S=可得关于t的方程,解方程可得t的值.△AMN【解答】解:(1)将点A(﹣1,m)代入y=,得:m=﹣2;(2)由(1)知点A坐标为(﹣1,﹣2),将点A(﹣1,﹣2)、B(1,0)代入y=kx+b,得:,解得:,∴直线AB的解析式为:y=x﹣1;(3)当x=t时,y=t﹣1,∴点M坐标为(t,t﹣1),点N坐标为(t,0),∵S△AMN=,∴×(t﹣1)(t+1)=,解得:t=2或t=﹣2(舍),∴t=2.24.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE 与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sinA=,求BH的长.【考点】MR:圆的综合题.【分析】(1)由圆周角定理和已知条件证出∠ODB=∠ABC,再证出∠ABC+∠DBF=90°,即∠OBD=90°,即可得出BD是⊙O的切线;(2)连接AC,由垂径定理得出,得出∠CAE=∠ECB,再由公共角∠CEA=∠HEC,证明△CEH∽△AEC,得出对应边成比例,即可得出结论;(3)连接BE,由圆周角定理得出∠AEB=90°,由三角函数求出BE,再根据勾股定理求出EA,得出BE=CE=6,由(2)的结论求出EH,然后根据勾股定理求出BH即可.【解答】(1)证明:∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD是⊙O的切线;(2)证明:连接AC,如图1所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)解:连接BE,如图2所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为5,sin∠BAE=,∴AB=10,BE=AB•sin∠BAE=10×=6,∴EA===8,∵,∴BE=CE=6,∵CE2=EH•EA,∴EH==,在Rt△BEH中,BH===.25.把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点A出发,以2cm/s的速度沿AB向点B匀速移动;当点P移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值范围;(2)连接PE,设四边形APEQ的面积为y(cm2),试探究y的最大值;(3)当t为何值时,△APQ是等腰三角形.【考点】S9:相似三角形的判定与性质;H7:二次函数的最值;KH:等腰三角形的性质.【分析】(1)根据题意以及直角三角形性质表达出CQ、AQ,从而得出结论,(2)作PG⊥x轴,将四边形的面积表示为S△ABC﹣S△BPE﹣S△QCE即可求解,(3)根据题意以及三角形相似对边比例性质即可得出结论.【解答】(1)解:AP=2t∵∠EDF=90°,∠DEF=45°,∴∠CQE=45°=∠DEF,∴CQ=CE=t,∴AQ=8﹣t,t的取值范围是:0≤t≤5;(2)过点P作PG⊥x轴于G,可求得AB=10,SinB=,PB=10﹣2t,EB=6﹣t,∴PG=PBSinB=(10﹣2t)∴y=S△ABC﹣S△PBE﹣S△QCE==∴当(在0≤t≤5内),y有最大值,y最大值=(cm2)(3)若AP=AQ,则有2t=8﹣t解得:(s)若AP=PQ,如图①:过点P作PH⊥AC,则AH=QH=,PH∥BC∴△APH∽△ABC,∴,即,解得:(s)若AQ=PQ,如图②:过点Q作QI⊥AB,则AI=PI=AP=t∵∠AIQ=∠ACB=90°∠A=∠A,∴△AQI∽△ABC∴即,解得:(s)综上所述,当或或时,△APQ是等腰三角形.。

广东省惠州市2019-2020学年中考数学四模试卷含解析

广东省惠州市2019-2020学年中考数学四模试卷含解析

广东省惠州市2019-2020学年中考数学四模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是()A.(a2)3=a6B.a2•a3=a6C.a3+a4=a7D.(ab)3=ab32.已知a=12(7+1)2,估计a的值在()A.3 和4之间B.4和5之间C.5和6之间D.6和7之间3.下列方程中,没有实数根的是( )A.2x2x30--=B.2x2x30-+=C.2x2x10-+=D.2x2x10--=4.研究表明某流感病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是()A.0.156×10-5B.0.156×105C.1.56×10-6D.1.56×1065.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则cos∠OBD=()A.12B.34C.45D.356.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,158.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为()A.56×108B.5.6×108C.5.6×109D.0.56×10109.下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a210.函数y=13x-中,自变量x的取值范围是()A.x>3 B.x<3 C.x=3 D.x≠311.如图所示的两个四边形相似,则α的度数是()A.60°B.75°C.87°D.120°12.若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.18二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2__S乙2(填“>”、“=”、“<”)14.如果把抛物线y=2x2﹣1向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是_____.15.不等式组2672xx-≥⎧⎨+>-⎩的解集是____________;16.二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的图象如图所示,则a+b+2c__________0(填“>”“=”或“<”).17.如图,在△ABC中,AB=AC=10cm,F为AB上一点,AF=2,点E从点A出发,沿AC方向以2cm/s的速度匀速运动,同时点D由点B出发,沿BA方向以lcm/s的速度运动,设运动时间为t(s)(0<t<5),连D交CF于点G.若CG=2FG,则t的值为_____.18.如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中的基础图形个数为_______ (用含n的式子表示).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=1.求:△ABD的面积.20.(6分)如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC于点E,DE 交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.21.(6分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.请画出平移后的△DEF.连接AD、CF,则这两条线段之间的关系是________.22.(8分)如图所示:△ABC是等腰三角形,∠ABC=90°.(1)尺规作图:作线段AB的垂直平分线l,垂足为H.(保留作图痕迹,不写作法);(2)垂直平分线l交AC于点D,求证:AB=2DH.23.(8分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED =∠C.(1)判断直线AC与圆O的位置关系,并证明你的结论;(2)若AC=8,cos∠BED=,求AD的长.24.(10分)在“打造青山绿山,建设美丽中国”的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具,下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A 30人/辆380元/辆B 20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式。

2024年广东省惠州市惠阳区初中毕业生中考一模数学试题(原卷版)

2024年广东省惠州市惠阳区初中毕业生中考一模数学试题(原卷版)

2024年惠阳区初中毕业学业水平模拟考试(一)数学说明:本试卷共6页,答题卡共4页,满分120分,考试时间:120分钟一、单选题(本大题共10小题,每小题3分,共30分)1. 2024的相反数是( )A. 2024B.C.D. 2. 如图,是由四个大小相同小正方体拼成的几何体,则这个几何体的左视图是( )A. B. C. D.3. 2024年3月30日,中国散裂中子源二期工程在广东东莞启动建设,二期工程将在原装备基础上增设科研设备,建成后装备研究能力将大幅提升.当前,全球建成的散裂中子源装备仅有4个,中国散裂中子源被誉为探索物质材料微观结构的“超级显微镜”,能够为探索科学前沿,解决国家重大需求和产业发展中的关键科学问题提供科技利器.已知中子的半径约为,将用科学记数法表示为( )A. B. C. D. 4.若分式有意义,则x 的取值范围是( )A. B. C. D. 5. “杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取7株水稻苗,测得苗高(单位:cm )分别是23,24,23,25,26,23,25.则这组数据的众数和中位数分别是( )A. 24,25B. 23,23C. 23,24D. 24,246. 在平面直角坐标系中,点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,直线l 1 ∥ l 2 ,CD ⊥AB 于点D ,∠1=50°,则∠BCD 的度数为( )的2024-1202412024-0.0000000000000016m 0.0000000000000016m 141610-⨯141.610-⨯151.610-⨯140.1610-⨯1x x -0x ≠1x ≠-1x ≠1x ≥()21,1P m -+A. 40°B. 45°C. 50°D. 30°8.)A. 点PB. 点QC. 点RD. 点S9. 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别是3、5、2、3,则最大正方形E 的面积是( )A. 8B. 10C. 13D. 1510. 二次函数的图象如图所示,对称轴是直线,下列结论:①;②方程:必有一个根大于2且小于3;③若是抛物线上的两点,那么;④;⑤对于任意实数,都有,其中正确结论的是( )A. ②④B. ①②④C. ②④⑤D. ②③④二、填空题(本大题共6小题,每小题3分,共18分)11. 因式分解:______.()20y ax bx c a =++≠1x =0abc <()200ax bx c a ++=≠()1230,,2y y ⎛⎫ ⎪⎝⎭,12y y <1120a c +>m ()m am b a b +≥+299x -=12______.13. 一个多边形的内角和是,那么这个多边形是_____边形.14. 对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到:“判断结果是否大于190”为一次操作.如果操作只进行一次就停止,则x 的取值范围是_________.15. 如图,四边形是的内接四边形,是的直径,连接,若,则的度数是______.16. 如图,已知一次函数与反比例函数的图象交于第一象限内的点和,过点作轴于点,过点作轴于点,若的面积记为,的面积记为,则___________(填“>”、“<”或“=”).三、解答题(一)(本大题共3小题,第17题8分,第18题6分,第19题7分,共21分)17. ()解方程:()先化简,再求值:,其中.18. 在植树节到来之际,为激发同学们爱护植物,保护生态环境的意识,我市某学校组织七、八年级学生开展植树造林活动.已知七年级植树90棵与八年级植树120棵所用的时间相同,两个年级平均每小时共.()03π-=720︒ABCD O BC O BD 30DBC ∠=︒BAD ∠︒1y k x b =+2k y x =1,82A ⎛⎫ ⎪⎝⎭()4,B m A AP y ⊥P B BQ x ⊥Q AOP 1S BOQ △2S 1S 2S 1240x x -=221111a a a ⎛⎫+÷ ⎪--⎝⎭4a =-植树35棵,求八年级平均每小时植树多少棵?19. 如图,已知D 为的中点,,,点E ,F 为垂足,且,,求证:是等边三角形.四、解答题(二)(本大题共3小题,每小题9分,共27分)20. 如图,在中,,(1)请用直尺和圆规按下列步骤作图(保留作图痕迹),①作的平分线,交斜边AB 于点D ;②过点D 作AC 的垂线,垂足为E.(2)在(1)作出的图形中,若,则DE= .21. 非物质文化遗产是中华民族古老生命记忆和活态的文化基因,惠州市的非物质文化遗产资源丰富,涵盖了多种形式和风格.某学校为了让学生深入了解非物质文化遗产,决定邀请惠东盖子狮,龙门农民画,惠州剪纸,莫家拳,客家凉帽(竹编技艺)的相关传承人进校园宣讲,现随机抽取若干名七年级学生进行投票,选择自己喜欢的项目(假设每名学生只能选择一项),并将投票结果绘制成如下两幅不完整的统计图:BG DE AB ⊥DF AC ⊥BE CF =30BDE ∠=︒ABC Rt ABC ∆090ACB ∠=ACB ∠4,6CB CA ==A B C D E根据以上信息,解决下列问题:(1)参与此次抽样调查的学生共 人,补全统计图1(要求在条形图上方注明人数);(2)若七年级学生共有1200人,根据调查结果,试估计七年级喜欢“莫家拳”项目的学生人数;(3)若该学校决定邀请两位非遗传承人进校园宣讲,请用画树状图或列表的方法,求选中龙门农民画和惠州剪纸这两个项目的概率.22. 综合与实践:根据以下素材,探索完成任务B C五、解答题(三)(本大题共2小题,每小题12分,共24分)23. 如图,是的切线,切点为,点在上,且.连接并延长交于点,交直线于点,连接.PB O B A O PA PB =AO O C PB D OP(1)证明:是的切线;(2)证明:;(3)若,,求线段长.24. 如图,在平面直角坐标系中,抛物线与轴交于,两点,与轴交于点,点为轴下方抛物线上一点.(1)求抛物线的解析式;(2)如图1,当点的横坐标为时,为线段上一点,若的面积为,请求出点坐标;(3)如图2,点在轴的右侧,直线与轴交于点,直线与抛物线交于点,连接与轴交于点,请问的值是否为定值,如果是,请求出这个定值;如果不是,请说明理由.的PA O 2DB DC DA =⋅4BD =3sin 5ADP ∠=OP xOy 2y x bx c =++x ()1,0A -B y ()0,3C -P x P 2D AP OBD 94D P y AP y M BM Q PQ y H PH QH。

2024年广东省九年级中考数学模拟试卷(含答案及部分题解析)

2023—2024学年度九年级数学模拟试卷(满分为120分,考试时间为90分钟)一.选择题(本大题共10小题,每小题3分,共30分)1.156000000用科学记数法表示为( )A.156×106 B.1.56×107 C.1.56×108 D.1.6×1082.将点A(-4,6)向右平移2个单位,向上平移3个单位得到点B,则点B 的坐标是( ) A.(-2,4) B.(-2,9) C.(-1,4) D.(-2,3)3.下列运算正确的是( )A.(-a³)²=a6 B.(a2)3=a5C.2a2•a=a D.2﹣=334.某种商品原来每件售价为230元,经过连续两次降价后,该种商品每件售价为196元,设平均每次降价的百分率为x,根据题意,所列方程正确的是( )A.230(1﹣x2)=196 B.230(1﹣x)=196 C.230(1﹣2x)=196 D.230(1﹣x)2=1965.分别标有数字π,,-2,0,-4的五张卡片中,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.25B.15C.35 D.456.下列图形中是中心对称图形的是( )A. B.C. D.7.不透明的袋子中装有红、绿、黄小球各一个,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么摸到一个红球一个黄球的概率是( )A.29B.C.79 D.598.若菱形中两个相邻内角的度数比是2:3,那其中较大的角的度数是( )A.72°B.108° C.120° D.135°9.一个多边形的内角和为1080°,则这个多边形是( )A.七边形B.八边形 C.九边形 D.十边形10.如图,在矩形纸片ABCD中,点E在BC边上,将△CDE沿DE翻折得到△FDE,点F落在AE上.若CE=3cm,AF=2EF,则AB=( )cm.A.3B.3 C.3 D.25 二.填空题(本大题共5小题,每小题3分, 共15分)11.分解因式:2ab 2﹣2a = .12.已知反比例函数y =﹣的图象经过点(12,a ),则a 的值为 .13.实数-9的相反数数等于 .14.如图,在△ABC 中,AB=8,∠C=90°,∠A=30°,DE 是中位线,则DE 的长为 .15.如图是二次函数y=ax²+bx+c 的图像,对称轴是直线x=2,则下列说法:①a-b+c-0;②4a+b=0;③ab c ﹥0;④16a+5b+2c ﹥0,其中正确的是 .三、解答题(一)(本大题共3小题,每小题7分,共21分)16. 解不等式组 .17.先化简,再求值:x +1x 2−2x +1÷(2x−1+1),其中x=3+1.18.如图,AD 是△ABC 的角平分线,过点D 分别作AC 、AB 的平行线,交AB 于点E ,交AC 于点F(1)求证:四边形AEDF 是菱形(2)若AF=13,AD=24.求四边形AEDF 的面积四、解答题(二)(本大题共3小题,每小题10分,共30分)19. 如图,在▱ABCD 中,AC ,BD 交于点O ,点E ,F 在AC 上,AE =CF .(1)求证:四边形EBFD 是平行四边形;(2)若∠BAC =∠DAC ,求证:四边形EBFD 是菱形.20.为落实“双减”政策,优化作业管理,某中学从全体学生中随机抽取部分学生,调查他们每天完成书面作业的时间t (单位:分钟).按照完成时间分成五组:A 组“t ≤45”,B 组“45<t ≤60”,C 组“60<t ≤75”,D 组“75<t ≤90”,E 组“t >90”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次调查的样本容量是 ,请补全条形统计图;(2)在扇形统计图中,A 组的圆心角是 度,本次调查数据的中位数落在 组内;(3)若该校有1900名学生,请你估计该校每天完成书面作业不超过90分钟的学生人数.21.某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE 与支架CB 所在直线相交于点O ,且;支架BC 与水平线AD 垂直.,,,另一支架AB 与水平线夹角,求OB 的长度(结果精确到1cm ;温馨提示:,,)五.解答题(三)(本大题共2小题,每小题12分,共24分)22.【问题情境】:数学活动课上,老师出示了一个问题:如图1,在正方形ABCD 中,E 是BC 的中点,AE ⊥EP ,EP 与正方形的外角∠DCG 的平分线交于P 点.试猜想AE 与EP 的数量关系,并加以证明;【思考尝试】:(1)同学们发现,取AB 的中点F ,连接EF 可以解决这个问题.请在图1中补全图形,解答老师提出的问题.【实践探究】:(2)希望小组受此问题启发,逆向思考这个题目,并提出新的问题:如图2,在正方形ABCD 中,E 为BC边上一动点(点E ,B 不重合),△AEP 是等腰直角三角形,∠AEP =90°,连接CP ,可以求出∠DCP 的大小,请你思考并解答这个问题.OB OE =40cm AC =30ADE ∠=︒190cm DE =65BAD ∠=︒sin650.91︒≈cos650.42︒≈tan65 2.14︒≈23.如图1,在平面直角坐标系中,直线与抛物线交于A 、B 两点,点A 在x 轴上,点B 在y 轴上.设抛物线与x 轴的另一个交点为点C .(1) 求该抛物线的解析式;(2) 若点M 是抛物线对称轴上的一个动点,当的值最小时,求点M 的坐标;(3) P 是抛物线上一动点(不与点A 、B 重合),如图2,若点P 在直线上方,连接交于点D ,求的最大值;2023—2024学年度九年级数学模拟试卷(解析卷)(满分为120分,考试时间为90分钟)一.选择题(本大题共10小题,每小题3分,共30分)1.156000000用科学记数法表示为( )A .156×106B .1.56×107C .1.56×108D .1.6×108【答案】C2.将点A (-4,6)向右平移2个单位,向上平移3个单位得到点B ,则点B 的坐标是( )A .(-2,4)B .(-2,9)C .(-1,4)D .(-2,3)【答案】B3.下列运算正确的是( )A .(-a³)²=a 6B .(a 2)3=a 5C .2a 2•a =aD .2﹣=33【答案】A4.某种商品原来每件售价为230元,经过连续两次降价后,该种商品每件售价为196元,设平均每次降价的4y x =+212y x bx c =-++MC MB +AB OP AB PD OD百分率为x,根据题意,所列方程正确的是( )A.230(1﹣x2)=196 B.230(1﹣x)=196 C.230(1﹣2x)=196 D.230(1﹣x)2=196【答案】D5.分别标有数字π,,-2,0,-4的五张卡片中,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.25B.15C.35 D.45【答案】C6.下列图形中是中心对称图形的是( )A. B.C. D.【答案】C7.不透明的袋子中装有红、绿、黄小球各一个,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么摸到一个红球一个黄球的概率是( )A.29B.C.79 D.59【答案】A8.若菱形中两个相邻内角的度数比是2:3,那其中较大的角的度数是( )A.72°B.108° C.120° D.135°【答案】B9.一个多边形的内角和为1080°,则这个多边形是( )A.七边形B.八边形 C.九边形 D.十边形【答案】B10.如图,在矩形纸片ABCD中,点E在BC边上,将△CDE沿DE翻折得到△FDE,点F落在AE上.若CE=3cm,AF=2EF,则AB=( )cm.A.3B.3 C.3 D.25 【答案】A【详解】二.填空题(本大题共5小题,每小题3分, 共15分)11.分解因式:2ab2﹣2a= .【答案】2a(b+1)(b-1)12.已知反比例函数y=﹣的图象经过点(12,a),则a的值为.【答案】-1213.实数-9的相反数数等于 .【答案】914.如图,在△ABC中,AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为 .【答案】215.如图是二次函数y=ax²+bx+c的图像,对称轴是直线x=2,则下列说法:①a-b+c-0;②4a+b=0;﹥0;④16a+5b+2c﹥0,其中正确的是 .③abc【答案】①②③【详解】由图象知,抛物线过点(5,0),对称轴为直线x =2,∴抛物线过点(-1,0)∴a-b+c=0故①正确;抛物线的对称轴为直线 x =2,∴-b2a=2,∴4a+b=0,故②正确;由图象知,抛物线开口向上,∴a >0,∵4a+b= 0,∴b<0,而抛物线与y轴的交点在y轴的负半轴上,∴c﹤0,故③正确;∵4a+b= 0,∴b=-4a,∵a-b+c=0,∴c=-5a,∴16a+5b+2c=16a-20a-10a=-14a <0,故④错误三、解答题(一)(本大题共3小题,每小题7分,共21分)16. 解不等式组 .【答案】2<x≤3【详解】解:,解不等式①,得:x>2,解不等式②,得:x≤3,∴原不等式组的解集是2<x≤3.17.先化简,再求值:x+1x2−2x+1÷(2x−1+1),其中x=3+1.【答案】3318.如图,AD是△ABC的角平分线,过点D分别作AC、AB的平行线,交AB于点E,交AC于点F(1)求证:四边形AEDF是菱形(2)若AF=13,AD=24.求四边形AEDF的面积【答案】(1)证明:∵AB//DF,AC//DE∴四边形AEDF 是平行四边形∵AD 是△ABC 的角平分线∴∠BAD=∠DAC又∵AC//DE,∴∠ADE=∠DAC∴∠ADE=∠BAD∴EA=ED∴四边形AEDP 是菱形(2)连接EF 交AD 于点O∵四边形AEDF 是菱形∴EF=2FO∴AO=12AD = 12.∵AD ⊥EF.在Rt △AOF 中,由勾股定理得OF=AF 2−AO 2=132−122=5∴OE=OF=5∴四边形AEDF 的面积=12AD ×OF+12AD ×OE=12×24×5+12×24×5=120四、解答题(二)(本大题共3小题,每小题10分,共30分)19. 如图,在▱ABCD 中,AC ,BD 交于点O ,点E ,F 在AC 上,AE =CF .(1)求证:四边形EBFD 是平行四边形;(2)若∠BAC =∠DAC ,求证:四边形EBFD 是菱形.【答案】证明:(1)在▱ABCD中,OA=OC,OB=OD,∵AE=CF.∴OE=OF,∴四边形EBFD是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠BAC=∠DCA,∵∠BAC=∠DAC,∴∠DCA=∠DAC,∴DA=DC,∴▱ABCD是菱形∴DB⊥AC,即DB⊥EF,又∵四边形EBFD是平行四边形∴四边形EBFD是菱形20.为落实“双减”政策,优化作业管理,某中学从全体学生中随机抽取部分学生,调查他们每天完成书面作业的时间t(单位:分钟).按照完成时间分成五组:A组“t≤45”,B组“45<t≤60”,C组“60<t≤75”,D组“75<t≤90”,E组“t>90”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次调查的样本容量是 ,请补全条形统计图;(2)在扇形统计图中,A组的圆心角是 度,本次调查数据的中位数落在 组内;(3)若该校有1900名学生,请你估计该校每天完成书面作业不超过90分钟的学生人数.【答案】解:(1)这次调查的样本容量是:25÷25%=100,D组的人数为:100﹣10﹣20﹣25﹣5=40,补全的条形统计图如下图所示:故答案为:100;(2)在扇形统计图中,B 组的圆心角是:360°×10100=36°,∵本次调查了100个数据,第50个数据和51个数据都在C 组,∴中位数落在C 组, 故答案为:36,C ;(3)1900×=1805(人),答:估计该校每天完成书面作业不超过90分钟的学生有1805人.21. 某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE 与支架CB 所在直线相交于点O ,且;支架BC 与水平线AD 垂直.,,,另一支架AB 与水平线夹角,求OB 的长度(结果精确到1cm ;温馨提示:,,)【答案】.【详解】设,∴,∵ ,∴,∴,∵,OB OE =40cm AC =30ADE ∠=︒190cm DE =65BAD ∠=︒sin650.91︒≈cos650.42︒≈tan65 2.14︒≈OB 19cm ≈OE OB 2x ==OD DE OE 1902x =+=+ADE 30∠=︒1OC OD 95x 2==+BC OC OB 95x 2x 95x =-=+-=-BC tan BAD AC∠=∴,解得:,∴.8≈19 cm五.解答题(三)(本大题共2小题,每小题12分,共24分)22.【问题情境】:数学活动课上,老师出示了一个问题:如图1,在正方形ABCD 中,E 是BC 的中点,AE ⊥EP ,EP 与正方形的外角∠DCG 的平分线交于P 点.试猜想AE 与EP 的数量关系,并加以证明;【思考尝试】:(1)同学们发现,取AB 的中点F ,连接EF 可以解决这个问题.请在图1中补全图形,解答老师提出的问题.【实践探究】:(2)希望小组受此问题启发,逆向思考这个题目,并提出新的问题:如图2,在正方形ABCD 中,E 为BC边上一动点(点E ,B 不重合),△AEP 是等腰直角三角形,∠AEP =90°,连接CP ,可以求出∠DCP 的大小,请你思考并解答这个问题.【答案】解:(1)AE =EP ,理由如下:取AB 的中点F ,连接EF ,∵F 、E 分别为AB 、BC 的中点,∴AF =BF =BE =CE ,∴∠BFE =45°,∴∠AFE =135°,∵CP 平分∠DCG ,∴∠DCP =45°,∴∠ECP =135°,95x 2.1440-=x=9.4OB 2x 18==∴∠AFE =∠ECP ,∵AE ⊥PE ,∴∠AEP =90°,∴∠AEB +∠PEC =90°,∵∠AEB +∠BAE =90°,∴∠PEC =∠BAE ,∴△AFE ≌△ECP (ASA ),∴AE =EP ;(2)在AB 上取AF =EC ,连接EF ,由(1)同理可得∠CEP =∠FAE ,∵AF =EC ,AE =EP ,∴△FAE ≌△CEP (SAS ),∴∠ECP =∠AFE ,∵AF =EC ,AB =BC ,∴BF =BE ,∴∠BEF =∠BFE =45°,∴∠AFE =135°,∴∠ECP =135°,∴∠DCP =45°,23.如图1,在平面直角坐标系中,直线与抛物线交于A 、B 两点,点A 在x 轴上,点B 在y 轴上.设抛物线与x 轴的另一个交点为点C.4y x =+212y x bx c =-++(2) 求该抛物线的解析式;(2) 若点M 是抛物线对称轴上的一个动点,当的值最小时,求点M 的坐标;(3) P 是抛物线上一动点(不与点A 、B 重合),如图2,若点P 在直线上方,连接交于点D ,求的最大值;【答案】(1) (2) (3)【详解】(1)解: 直线与坐标轴交于A 、B 两点,当时,,当时,,,,将A 、B 代入抛物线,得 ,解得 ,抛物线的解析式为:.(2)∵抛物线的解析式为:.∴当时,解得,∴,∴抛物线的对称轴为,∵点关于对称,连接交对称轴于点M ,MC MB +AB OP AB PD OD2142y x x =--+()1,3M -124y x =+0x =4y =0y =4x =-(40A ∴-,)()0,4B 212y x bx c =-++()210=4424b c c ⎧-⨯--+⎪⎨⎪=⎩14b c =-⎧⎨=⎩∴2142y x x =--+2142y x x =--+0y =124,2=-=x x ()()4,0,2,0A C -4212x -+==-()()4,0,2,0A C -=1x -AB∴,此时取得最小值,∴当时,,∴;(3)过点P 作交直线于点E ,则,设点 , ,,, 代数式,当时有最大值 ,的最大值为.MB MC MB MA AB +=+=MC MB +=1x -143y =-+=()1,3M -PE OB ∥AB PDE ODB ∽PD PE DO OB∴=21(,4)(40)2P m m m m --+-<<(,4)E m m ∴+221144222PE m m m m m ∴=--+--=--21224m m PD DO --∴= 2122m m --22122m -=-=-⎛⎫⨯- ⎪⎝⎭PD DO ∴()()212221242-⨯--⨯-=。

2024年广东省惠州市中考数学模拟试题(四)

2024年广东省惠州市中考数学模拟试题(四)一、单选题1.若 12024a =-,则 a -=( ) A .2024 B .2024- C .12024- D .120242.我国古代数学家祖冲之推算出圆周率(π)的近似值为355113.这一密率值是世界上最早提 出的,比欧洲早1000多年,所以有人主张叫它“祖率”也就是圆周率的祖先.它与π的 误差小于0.0000003,将0.0000003用科学记数法可以表示为( )A .6310-⨯B .6310⨯C .7310-⨯D .7310⨯ 3.每个人都有最初的梦想,最初的梦想是一种寄望与希望,以下是摘自《最初的梦想》简 谱的部分旋律,当中出现的音符的众数是( )A .1B .2C .3D .44.下列运算正确的是( )A .2246a a a +=B .()2222a a -= C .()()2122a a a -+=- D .221124a a a ⎛⎫-=-+ ⎪⎝⎭ 5.近年来,市交通运输局配合相关部门积极推广清洁能源车辆,有力地推动了全市发展绿 色交通体系、促进节能减排、打赢蓝天保卫战.以下新能源车的车标既是中心对称图形又是轴对称图形的是( )A .B .C .D . 6.如图,在Rt ABC △中,已知9030BAC C ∠=︒∠=︒,,将ABC V 绕点A 顺时针旋转70︒得到AB C ''△,则CAC '∠的度数是( )A .60︒B .70︒C .80︒D .90︒7.如图,摆放两根矩形直尺,其中128∠=︒,那么2∠的度 数 为( )A .132︒B .142︒C .152︒D .162︒8.在函数y x 的取值范围是( )A .4x ≤B .4x <C .4x ≥D .4x >9.如图,已知AB 是O e 的直径,C 是圆上一点,点D 是 弧AC 中 点,若70DAB ∠=︒.则C A B ∠为 ( )A .40︒B .45︒C .50︒D .60︒10.如图,在平面直角坐标系中,AOB ∠的顶点与原点O 重合,角的一边OB 与 x 轴正方向重合,反比例函数4y x =与OA 相交于点M , 以 M 为圆心2OM 为半径作弧,交 反比例函数4y x=于点N , 分别过点M 、N 作x 轴和y 轴平行线,两线相交于点C ,连接OC 、MN 相交于点D , 过 点M 作ME x ⊥轴,垂足为E , 与OC 相交点F , 则下列结论:①2EOM S =V :②OF MF =:③2AOC BOC ∠=∠:④ 当90OMN ∠=︒时,OEF MEO ∽VV : 其中一定正确的是( )A .①②③B .①②④C .①③④D .②③④二、填空题11.计算: ()02023-=.12.如果关于x 的一元二次方程210+-=ax bx 的一个解是1x =,则2024a b --=. 13.石油的提取物中含有稠环芳香烃,它的同系物的分子结构中有 一种物质叫释迦牟尼分子,它的分子式是2CH (部分结构是正六边形和矩形构成),其中1∠的度数为14.谢尔宾斯基三角形是一种具有非凡美学和分形特性的数学图形,它在几何、数学和计算机图形学等领域都有广泛应用.如图1叫做谢尔宾斯基地毯,是这样制作出来的:把一个正三角形分为全等的4小正三角形,挖去中间的一个小三角形:对剩下的3个小正三角形再分别重复以上做法……如2图是谢尔宾斯基三角形的一部分,已知4AB =,则AD 为.15.如图,已知正方形ABCD 的边长为4,点E 是AB 边上的中点,F 是AB 延长线上一点,以BF 为长作正方形BFGH 如图所示,连接CE AG 、交于点M , 若45AME ∠=︒时,则BF 的长为 .三、解答题16.(1)化简:22121339x x x x x x -+⎛⎫-÷ ⎪---⎝⎭(2)已知一次函数31y x =-与7y x =-+的图象在同一个平面直角坐标系中相交于点A , 求交点A 的坐标.17.如图,将ABCD Y 沿对角线BD 对折得BDE V ,BE 与AD 相交于点F ,求证:AF EF =.18.在创建全国文明城市中,我市需要在丁香花园外侧修建一条900米的亲水栈道将江滨公 园与南岸公园的绿道连通,构建清远市“万里绿道”.由于工期缩短,工程队改进了施 工方式,实际每天修建的长度是原计划的1.5倍,结果提前了3天完成这一工程,求实 际每天修建栈道多少米19.某学校七年级为丰富第二课堂内容,计划新增悦动思维、听说达人、心灵奇旅、“篮” 舍难分、Python 编程五门兴趣课程.为了了解学生对这五门课程的喜好情况,随机抽 取了部分学生进行了问卷调查(要求每位学生只能选择一门课程),并将调查结果绘制 成如下两幅不完整的统计图.根据图中信息,完成下列问题:(1)本次调查共抽取了 名学生.(2)补全条形统计图:并求出扇形统计图中,悦动思维课程的圆心角是 ;(3)甲、乙两位同学都参与了这次的调查,请用列表或画树状图的方法求出两位同学选中同一个课程的概率.20.如图,已知等腰ABC V 中 ,AB AC =,D 是BC 上中点.(1)实践与操作:作AB 的垂直平分线分别交AB 、AC 于 点E 、F (要求:尺规作图,保留作图痕迹,不写作法)(2)连接DE ,若50BAC ∠=︒, 求DEF ∠的度数.21.定义运算:max a b ,,当a b ≥时 ,max a b a =,; 当a b <时 ,max a b b =,.例如:max 353-=,;根据以上材料,解决下列问题.(1)max =;(2)若max 533x x x +-+=-+,,求x 的取值范围. (3)如图1y k x b =+和2k y x=在同一平面直角坐标系中,当211max ,k k x b k x b x +=+,结合图象,直接写出x 的取值范围.22.综合探究如图1,已知Rt ABC △,90ACB ∠=︒,30CAB ∠=︒,2BC =,ABC V 沿AB 对折得到ABD △, 点O 是线段AB 上动点,过点O 作OE AC ⊥交于点E ,以 O 为圆心,OE 为半径作圆(1)求 证 :AD 是O e 的切线:(2)如图2,连接CD 交AB 于点F ,当O e 与CD 相切时,求O e 的半径:(3)如图3,当点O 运动到点B 时,延长CO 与O e 交 于 点G ,连 接AG 与O e 交于点H ,求FH 的长 .23.综合运用如图1,已知抛物线2=+43y x x --与y 轴交于点A ,与x 轴交于点B (点B 在对称轴左侧).(1)求点A 与点B 坐标:(2)以AB 为边作矩形ABCD ,使点C 落在抛物线上,分别求点C 和点D 的坐标:(3)如图2,在(2)的条件下,连接AC ,点P 是直线AC 上方抛物线上的一点动点,在抛物线内部作APCQ Y ,求APCQ Y 面积的最大值.。

2023年广东省惠州市惠阳区中考数学模拟试卷(含答案)

2023年广东省惠州市惠阳区中考数学模拟试卷一、选择题(本大题共10小题,共30.0分)1. 在实数3,―1,3,0中,最小的数是( )A. 3B. ―1C. 3D. 02. 古语有云:“水滴石穿”,若水珠不断滴在一块石头上,经过40年,石头上会形成一个深为的小洞.数0.0000052用科学记数法表示为( )A. 5.2×105B. 5.2×10―6C. 5.2×10―7D.3. 下列计算正确的是( )A. (―3)2=―3B.C. (―a2)3=a6D.4. 在下面四个几何体中,俯视图是矩形的是( )A. B. C. D.5. 如图,若AB//CD,直线EF分别交AB,CD于点E,F,EG⊥EF交CD于点G,若∠1=50°,则∠2=( )A. 30°B. 40°C. 50°D. 130°6. 爱好运动的小颖同学利用“微信运动”这一公众号,连续记录了8天每天的步数(单位:万步)分别为:1.6,1.3,1.4,1.7,1.4,1.4,1.8,1.6,则这组数据的中位数( )A. 1.4B. 1.5C. 1.6D. 1.77. 等式x―34―x =x―34―x有意义,则x的取值范围为( )A. 3<x≤4B. 3<x<4C. 3≤x<4D. 3≤x≤48. 如图,大建从A点出发沿直线前进8米到达B点后向左旋转的角度为α,再沿直线前进8米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了72米,则每次旋转的角度α为( )A. 30°B. 40°C. 45°D. 60°9. 若x满足(x―2022)(2023―x)=0.25,则(x―2022)2+(2023―x)2=( )A. 0.25B. 0.5C. 1D. ―0.2510. 如图,抛物线y=ax2+bx+c,与x轴正半轴交于A,B两点,与y轴负半轴交于点C.①abc>0;②b2―4ac<0;③若点B的坐标为(4,0),且AB≥3,则4b+3c>0;④若抛物线的对称轴是直线x=3,m为任意实数,则a(m―3)(m+3)≤b(3―m).上述结论中,正确的个数是( )A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共5小题,共15.0分)11. 分解因式:______ .12. 如图,在▱ABCD中,点E在AD上,且EC平分∠BED,若∠EBC=30°,BE=8,则▱ABCD的面积为______ .13. 若x,y为实数,且,则x y的值为______ .14. 如图,学校有一旗杆AB.为了测量旗杆高度,小明采用如下方案:在点C处测得旗杆顶B的仰角为45°,从与点C相距6m的E处测得旗杆顶B的仰角为60°.若CD=EF=1.5m,则旗杆AB的高度为______ 米.(结果保留小数点后一位,2≈1.41,3≈1.73.)15. 如图,矩形OABC的两边OA,OC在坐标轴上,且OC=2OA,M,N分别为OA,OC的中点,AN与BM交于点E,且四边形EMON的面积为1,则经过点B的反比例函数的解析式为______ .三、解答题(本大题共8小题,共75.0分)16. (8.0分)已知关于x 的不等式组:只有2个正整数解,求a 的取值范围.17. (8.0分)先化简,再求值:(x ―1―3x +1)÷x2+4x +4x +1,其中.18. (8.0分)清明节,又称踏青节、行清节、三月节、祭祖节等,节期在仲春与暮春之交,是中华民族最隆重盛大的祭祖大节.清明节兼具自然与人文两大内涵,既是自然节气点,也是传统节日,扫墓祭祖与踏青郊游是清明节的两大礼俗主题,这两大传统礼俗主题在中国自古传承,至今不辍.某学校数学兴趣小组为了了解该校学生对清明节的了解情况,在全校范围内随机抽取一部分学生进行问卷调查,并将调查结果适当整理后绘制成如下两幅不完整的统计图.(1)本次调查抽查了______ 人,请补全条形统计图;(2)本次调查的中位数落在______ (填了解程度),扇形图中“了解一点”对应的扇形的圆心角为______ 度;(3)已知该学校共有600人,请你估计该校学生对清明节“不了解”的人数.19. (9.0分)世界杯火热进行期间,其相关的周边产品大多为中国制造.为了抓住这一商机,两工厂决定生产球衣.据统计,甲厂每小时生产600件,乙厂每小时生产800件.甲、乙两厂共生产16小时,且每天生产的球衣总数量为11400件.(1)求甲、乙两厂每天分别生产多少小时?(2)由于球衣在国外热销,客户纷纷追加订单,两工厂每天均增加生产时间,其中甲厂比乙厂多增加2小时,在整个生产过程中,甲厂每小时产量不变,而乙厂由于机器损耗及人员不足,每增加一个小时,每小时产量将减少140件,这样两工厂一天生产的球衣总量将比原来多1200件.求甲厂增加的生产时间为多少小时?20. (9.0分)如图,一次函数y=kx+b(k≠0)与反比例函数y=m(m≠0)的图象交于点xA(―3,2)和B(1,a),与y轴交于点D.(1)求一次函数和反比例函数的解析式;(2)若点A关于原点O的对称点为C,求△ACD的面积.21. (9.0分)如图,半径是3的⊙O中,AB与⊙O相切于点B,OA与⊙O交于点C,点F是AB 延长线上一点,且BF=33,E是半圆CD上的一点,∠A=30°.(1)求∠E的度数;(2)求证:DF是⊙O的切线;(3)求图中阴影部分的面积.22. (12.0分)已知,在四边形ABCD中,∠BAD=∠BCD=90°,AD=AB,连AC、BD,如图1.(1)求∠ACB的度数;(2)以AC为对角线,BC为边作平行四边形ABCE,如图2,试判断直线DE与AC的位置关系,并说明理由.(3)在(2)的条件下,若AD=25,AE=2,直接写出DE的长.23. (12.0分)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴分别交于A,B两点,点A的坐标是(―4,0),点B的坐标是(1,0),与y轴交于点C,P是抛物线上一动点,且位于第二象限,过点P作PD⊥x轴,垂足为D,线段PD与直线AC相交于点E.(1)求该抛物线的解析式;(2)如图1,若线段DE将△AOC分成面积比为1:3两部分,求点P的坐标;(3)如图2,连接OP,是否存在点P,使得,若存在,求出点P的横坐标;若不存在,请说明理由.1.B2.B3.D4.C5.B6.B7.C8.B9.B 10.D 11. 12.32 13.114.12.115.y =5x16.解:由,得,由,得,当a ―1>0时,,∵关于x 的不等式组:只有2个正整数解,∴a ―1>0不符合题意;当a ―1<0,即a <1时,,∴不等式组的解集为,∵不等式组:只有2个正整数解,,解得a ≥34,∴a 的取值范围34≤a <1.17.解:(x ―1―3x +1)÷x2+4x +4x +1=x ―2x +2,.∴原式=2―42=1―2 2.18.解:由题意得,样本容量为:35÷35%=100,非常了解的人数为:100×40%=40(人),补全条形统计图如下:(2)由统计图可知,本次调查的中位数落在比较了解,扇形图中“了解一点”对应的扇形的圆心角为:360°×=54°;故答案为:比较了解;54;(3)600×=60(人),答:该校学生对清明节“不了解”的人数约为60人.19.解:(1)设甲厂每天生产x小时,乙厂每天生产y小时,根据题意得:,解得:x=7 y=9.答:甲厂每天生产7小时,乙厂每天生产9小时;(2)设甲厂增加的生产时间为m小时,则乙厂增加的生产时间为(m―2)小时,乙厂每小时生产件,根据题意得:,整理得:m2―5m+6=0,解得:m1=2,m2=3,当m=2时,m―2=0,不符合题意,舍去,∴m=3.答:甲厂增加的生产时间为3小时.20.解:(1)把A(―3,2)代入y=mx得:m=―3×2=―6,∴反比例函数的解析为:y=―6x.∵点B(1,a)在反比例函数y=―6x的图象上,,∴B(1,―6),把A(―3,2),B(1,―6)代入y=kx+b得―3k+b=2k+b=―6,解得k=―2 b=―4.∴一次函数的解析式为:y=―2x―4.(2)∵A(―3,2)关于原点的对称点为C,∴C(3,―2).∴C和A到y轴的距离是3.∵D在直线y=―2x―4上,且在y轴上,∴D(0,―4),∴OD=4.,.21.(1)解:如图所示,连接OB,CB,∵AB与⊙O相切于点B,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°∵OB=OC,∴△OBC是等边三角形,∴∠OCB=60°,;(2)证明:如图所示,连接OF,∵OB=3,∠OAB=30°,在Rt△OAB中,,,∴BA=BF,,∴OF=OA,∴∠FOB=∠AOB=60°,,,,在△ODF,△OBF中,,∴△ODF≌△OBF(SAS),∴∠ODF=∠OBF=90°,即OD⊥DF,∴DF是⊙O的切线;(3)解:,,,,.22.解:(1)如图1,延长CD至F,使DF=BC,连接AF,,∠BAD=∠BCD=90°,∴∠ADC+∠ABC=180°,∴∠ADC+∠ADF=180°,∵∠ADF+∠ADC=180°,∴∠ADF=∠ABC,在△ADF和△ABC中,,∴△ADF≌△ABC(SAS)∴AF=AC,∠DAF=∠BAC,,,∴△CAF是等腰直角三角形,∴∠F=45°,∴∠ACB=∠F=45°.(2)DE⊥AC,理由:延长CD至F,使DF=BC,连接AF,连接EF交AD于G,∵平行四边形ABCE,∴AE=BC,AE//BC,∴∠CAE=∠ACB,∵DF=BC,∴AE=DF,由(1)知,∴∠CAE=45°,∵∠CAF=90°,,,在△AEF与△FDA中,,∴△AEF≌△FDA(SAS),∴∠AFE=∠DAF,AD=EF,∴AG=FG,,即DG=EG,∴∠GDE=∠GED,,,∠AGF=∠DGE,∴∠AFE=∠DEG,∴DE//AF,∵∠CAF=90°,∴AF⊥AC,∴DE⊥AC.(3)延长CD 至F ,使DF =BC ,连接AF ,延长AE 交CD 于G ,由(1)知:AF =AC ,△CAF 是等腰直角三角形,由(2):,DE//AF ,∴∠GDE =∠GED =45°∴GD =GE ,由(1)知:△CAF 是等腰直角三角形,∴FG =CG ,AG ⊥CF ,∴FG =AG ,在Rt △AGD 中,设,则,由勾股定理,得,解得:x =2,,在Rt △GDE 中,由勾股定理,得. 23.解:(1)把A(―4,0),B(1,0)代入y =ax 2+bx +2得:16a ―4b +2=0a +b +2=0,解得a =―12b =―32,∴抛物线的解析式为y =―12x 2―32x +2;(2)设P(m,―12m 2―32m +2),则D(m,0),在y =―12x 2―32x +2中,令x =0得y =2,∴C(0,2),∴S △AOC =12×2×4=4,由A(―4,0),C(0,2)得直线AC 的解析式为y =12x +2,∴E(m,1m+2),2,,,由线段DE将△AOC分成面积比为1:3两部分,分两种情况:①当时,,解得m=―2或m=―6(此时P在第三象限,舍去),∴P(―2,3);②当时,,解得或此时P在第三象限,舍去),;综上所述,P的坐标为(―2,3)或;(3)存在点P,使得,理由如下:延长DP到H,设PH=OP,连接OH,如图:,,,,,,,,设P(t,―12t 2―32t +2),则OD =―t ,,,,,,,整理化简得,,解得t =0(舍去)或大于0,舍去)或,∴点P 的横坐标为.。

广东省惠州市2019-2020学年中考数学第五次押题试卷含解析

广东省惠州市2019-2020学年中考数学第五次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,则可列方程组为()A.100 131003x yx y+=⎧⎪⎨+=⎪⎩B.100131003x yx y+=⎧⎪⎨+=⎪⎩C.1003100x yx y+=⎧⎨+=⎩D.1003100x yx y+=⎧⎨+=⎩2.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过93.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.16个B.15个C.13个D.12个4.如图,△ABC中,若DE∥BC,EF∥AB,则下列比例式正确的是( )A.AD DEDB BC=B.BF EFBC AD=C.AE BFEC FC=D.EF DEAB BC=5.如图,⊙O的直径AB=2,C是弧AB的中点,AE,BE分别平分∠BAC和∠ABC,以E为圆心,AE为半径作扇形EAB,π取3,则阴影部分的面积为()A.1324﹣4 B.72﹣4 C.6﹣524D.3252-6.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm7.如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为()A.233π-B.2233π-C.433π-D.4233π-8.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE 的度数是()A.135°B.120°C.60°D.45°9.(2016福建省莆田市)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是()A .PC ⊥OA ,PD ⊥OB B .OC=ODC .∠OPC=∠OPD D .PC=PD 10.已知二次函数y=x 2+bx ﹣9图象上A 、B 两点关于原点对称,若经过A 点的反比例函数的解析式是y=8x ,则该二次函数的对称轴是直线( )A .x=1B .x=49C .x=﹣1D .x=﹣4911.已知一次函数3y kx =-且y 随x 的增大而增大,那么它的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限12.二次函数y =x 2﹣6x+m 的图象与x 轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为( )A .(﹣1,0)B .(4,0)C .(5,0)D .(﹣6,0)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,等边三角形AOB 的顶点A 的坐标为(﹣4,0),顶点B 在反比例函数k y x=(x <0)的图象上,则k= .14.已知扇形的弧长为π,圆心角为45°,则扇形半径为_____.15.若不等式组220x a b x ->⎧⎨->⎩的解集为11x -<<,则2009()a b +=________. 16.如图,在△ACB 中,∠ACB =90°,点D 为AB 的中点,将△ACB 绕点C 按顺时针方向旋转,当CB 经过点D 时得到△A 1CB 1.若AC =6,BC =8,则DB 1的长为________.17.若a 2﹣2a ﹣4=0,则5+4a ﹣2a 2=_____.18.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知点A,B的坐标分别为(0,0)、(2,0),将△ABC绕C点按顺时针方向旋转90°得到△A1B1C.(1)画出△A1B1C;(2)A的对应点为A1,写出点A1的坐标;(3)求出B旋转到B1的路线长.20.(6分)如图,一条公路的两侧互相平行,某课外兴趣小组在公路一侧AE的点A处测得公路对面的点C与AE的夹角∠CAE=30°,沿着AE方向前进15米到点B处测得∠CBE=45°,求公路的宽度.(结果精确到0.1米,参考数据:3≈1.73)21.(6分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.22.(8分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=kx交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.(1)求双曲线的解析式;(2)求点C的坐标,并直接写出y1<y2时x的取值范围.23.(8分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.求k的值;如果这个方程有两个整数根,求出它的根.24.(10分)在平面直角坐标系中,已知直线y=﹣x+4和点M(3,2)(1)判断点M是否在直线y=﹣x+4上,并说明理由;(2)将直线y=﹣x+4沿y轴平移,当它经过M关于坐标轴的对称点时,求平移的距离;(3)另一条直线y=kx+b经过点M且与直线y=﹣x+4交点的横坐标为n,当y=kx+b随x的增大而增大时,则n取值范围是_____.25.(10分)如图,在边长为1 个单位长度的小正方形网格中:(1)画出△ABC 向上平移6 个单位长度,再向右平移5 个单位长度后的△A1B1C1.(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)求△CC1C2的面积.26.(12分)如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.27.(12分)已知反比例函数的图象过点A(3,2).(1)试求该反比例函数的表达式;(2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.【详解】解:设大马有x 匹,小马有y 匹,由题意得:100131003x y x y +=⎧⎪⎨+=⎪⎩, 故选:B .【点睛】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.2.D【解析】【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解: 根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A 、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为35,不符合题意;B 、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为12,不符合题意; C 、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为14,不符合题意; D 、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为13,符合题意,故选D .【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.3.D【解析】【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴4144x=+,解得:x=12,经检验x=12是原方程的根,故白球的个数为12个.故选:D.【点睛】本题考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题的关键.4.C【解析】【分析】根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解.【详解】解:∵DE∥BC,∴DEBC=ADAB,BD≠BC,∴ADBD≠DEBC,选项A不正确;∵DE∥BC,EF∥AB,∴BFBC=AEAC,EF=BD,EFAD=BDAD,∵AEAC≠BDAD,∴BFBC≠EFAD,选项B不正确;∵EF∥AB,∴AEEC=BFCF,选项C正确;∵DE∥BC,EF∥AB,∴EFAB=CEAC,DEBC=AEAC,CE≠AE,∴EFAB≠DEBC,选项D不正确;故选C.【点睛】本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健.5.A【解析】∵O的直径AB=2,∴∠C=90°,∵C是弧AB的中点,∴»»AC BC,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分别平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°−12(∠BAC+∠CBA)=135°,连接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO为Rt△ABC内切圆半径,∴S△ABC=12(AB+AC+BC)⋅EO=12AC⋅BC,∴2−1,∴AE2=AO2+EO2=122−1)22,∴扇形EAB的面积=135(422)360π-=9(22)4-,△ABE的面积=12AB⋅EO=2−1,∴弓形AB的面积=扇形EAB的面积−△ABE的面积=221324-,∴阴影部分的面积=12O的面积−弓形AB的面积=32−(22132-)=132−4,故选:A. 6.B 【解析】【分析】由已知可证△ABO∽CDO,故CD OCAB OA=,即1.813AB=.【详解】由已知可得,△ABO∽CDO,所以,CD OC AB OA=,所以,1.813 AB=,所以,AB=5.4故选B【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质.7.D【解析】连接OC,过点A作AD⊥CD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC 是等边三角形,可得∠AOC=∠BOC=60°,故△ACO与△BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×3=3,因此可求得S阴影=S扇形AOB﹣2S△AOC=21202360π⨯﹣2×12×2×3=43π﹣23.故选D.点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键.8.B【解析】【分析】易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.【详解】∵四边形ABCD 是正方形,∴AB=AD ,∠BAF=∠DAF ,∴△ABF ≌△ADF ,∴∠AFD=∠AFB ,∵CB=CE ,∴∠CBE=∠CEB ,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°,∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故选B .【点睛】此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化. 9.D【解析】试题分析:对于A ,由PC ⊥OA ,PD ⊥OB 得出∠PCO=∠PDO=90°,根据AAS 判定定理可以判定△POC ≌△POD ;对于B OC=OD ,根据SAS 判定定理可以判定△POC ≌△POD ;对于C ,∠OPC=∠OPD ,根据ASA 判定定理可以判定△POC ≌△POD ;,对于D ,PC=PD ,无法判定△POC ≌△POD ,故选D . 考点:角平分线的性质;全等三角形的判定.10.D【解析】【分析】设A 点坐标为(a ,8a),则可求得B 点坐标,把两点坐标代入抛物线的解析式可得到关于a 和b 的方程组,可求得b 的值,则可求得二次函数的对称轴.【详解】解:∵A 在反比例函数图象上,∴可设A 点坐标为(a ,8a ). ∵A 、B 两点关于原点对称,∴B 点坐标为(﹣a ,﹣8a). 又∵A 、B 两点在二次函数图象上,∴代入二次函数解析式可得:228989a ab a a ab a ⎧+-=⎪⎪⎨⎪--=-⎪⎩,解得:389a b =⎧⎪⎨=⎪⎩或389a b =-⎧⎪⎨=⎪⎩,∴二次函数对称轴为直线x=﹣49. 故选D .【点睛】本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b 的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系.11.B【解析】【分析】根据一次函数的性质:k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小,进行解答即可.【详解】解:∵一次函数y=kx-3且y 随x 的增大而增大,∴它的图象经过一、三、四象限,∴不经过第二象限,故选:B .【点睛】本题考查了一次函数的性质,掌握一次函数所经过的象限与k 、b 的值有关是解题的关键.12.C【解析】【分析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案.【详解】解:由二次函数26y x x m =-+得到对称轴是直线3x =,则抛物线与x 轴的两个交点坐标关于直线3x =对称,∵其中一个交点的坐标为()1,0,则另一个交点的坐标为()5,0,故选C .【点睛】考查抛物线与x 轴的交点坐标,解题关键是掌握抛物线的对称性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解析】【分析】过点B作BD⊥x轴于点D,因为△AOB是等边三角形,点A的坐标为(-4,0)所∠AOB=60°,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式.【详解】过点B作BD⊥x轴于点D,∵△AOB是等边三角形,点A的坐标为(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD= OB=2,33,∴B(﹣2,3),∴k=﹣2×3=﹣3【点睛】本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中.14.1【解析】【分析】根据弧长公式l=nπr180代入求解即可.【详解】解:∵nπrl180 =,∴180lr4nπ==.故答案为1.【点睛】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=nπr 180.15.-1【解析】分析:解出不等式组的解集,与已知解集-1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.详解:由不等式得x >a+2,x <12b , ∵-1<x <1,∴a+2=-1,12b=1 ∴a=-3,b=2,∴(a+b )2009=(-1)2009=-1.故答案为-1.点睛:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.16.2【解析】【分析】根据勾股定理可以得出AB 的长度,从而得知CD 的长度,再根据旋转的性质可知BC=B 1C ,从而可以得出答案.【详解】∵在△ACB 中,∠ACB =90°,AC =6,BC =8,∴10AB =,∵点D 为AB 的中点,∴152CD AB ==,∵将△ACB 绕点C 按顺时针方向旋转,当CB 经过点D 时得到△A 1CB 1.∴CB 1=BC =8,∴DB 1=CB 1-CD=8﹣5=2,故答案为:2.【点睛】本题考查的是勾股定理、直角三角形斜边中点的性质和旋转的性质,能够根据勾股定理求出AB 的长是解题的关键.17.-3【解析】试题解析:∵2240a a ,--= 即224a a ,-= ∴原式()2522583a a ,=--=-=-故答案为 3.-18.213【解析】【分析】设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.【详解】连接BE,设⊙O半径为r,则OA=OD=r,OC=r-2,∵OD⊥AB,∴∠ACO=90°,AC=BC=12AB=4,在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,r=5,∴AE=2r=10,∵AE为⊙O的直径,∴∠ABE=90°,由勾股定理得:BE=6,在Rt△ECB中,EC222264213BE BC+=+=.故答案是:13【点睛】考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)画图见解析;(2)A1(0,6);(3)弧BB1=102.【解析】【分析】(1)根据旋转图形的性质首先得出各点旋转后的点的位置,然后顺次连接各点得出图形;(2)根据图形得出点的坐标;(3)根据弧长的计算公式求出答案.【详解】解:(1)△A1B1C如图所示.(2)A1(0,6).(3) 221310,BC=+=¼1901010. 1801802n rBB πππ⨯∴===.【点睛】本题考查了旋转作图和弧长的计算. 20.公路的宽为20.5米.【解析】【分析】作CD⊥AE,设CD=x米,由∠CBD=45°知BD=CD=x,根据tan∠CAD=CDAD,可得x15+x=3,解之即可.【详解】解:如图,过点C作CD⊥AE于点D,设公路的宽CD=x米,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵∠CAE=30°,∴tan∠CAD=CDAD=3,即x15+x=3,解得:x=153+15≈20.5(米),答:公路的宽为20.5米.【点睛】本题考查了直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形.21.(1)1000;(2)54°;(3)见解析;(4)32万人【解析】【分析】根据“每项人数=总人数×该项所占百分比”,“所占角度=360度×该项所占百分比”来列出式子,即可解出答案.【详解】解:(1)400÷40%=1000(人)(2)360°×1501000=54°,故答案为:1000人; 54°;(3)1-10%-9%-26%-40%=15% 15%×1000=150(人)(4)80×6601000=52.8(万人)答:总人数为52.8万人.【点睛】本题考查获取图表信息的能力,能够根据图表找到必要条件是解题关键.22.(1)24yx;(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.【解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.【详解】(1)∵点A在直线y1=1x﹣1上,∴设A(x,1x﹣1),过A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=12OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴24yx =;(1)∵224y xyx=-⎧⎪⎨=⎪⎩,解得:1122xy=⎧⎨=⎩,2214xy=-⎧⎨=-⎩,∴C(﹣1,﹣4),由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.23.(2)k=﹣2,﹣2.(2)方程的根为x2=x2=2.【解析】【分析】(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.【详解】解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k)≥0,解得k≥﹣2.∵k为负整数,∴k=﹣2,﹣2.(2)当k=﹣2时,不符合题意,舍去;当k=﹣2时,符合题意,此时方程的根为x2=x2=2.【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.24.(1)点M(1,2)不在直线y=﹣x+4上,理由见解析;(2)平移的距离为1或2;(1)2<n<1.【解析】【分析】(1)将x=1代入y=-x+4,求出y=-1+4=1≠2,即可判断点M(1,2)不在直线y=-x+4上;(2)设直线y=-x+4沿y轴平移后的解析式为y=-x+4+b.分两种情况进行讨论:①点M(1,2)关于x 轴的对称点为点M1(1,-2);②点M(1,2)关于y轴的对称点为点M2(-1,2).分别求出b的值,得到平移的距离;(1)由直线y=kx+b经过点M(1,2),得到b=2-1k.由直线y=kx+b与直线y=-x+4交点的横坐标为n,得出y=kn+b=-n+4,k=23nn-+-.根据y=kx+b随x的增大而增大,得到k>0,即23nn-+->0,那么①2030nn-+⎧⎨-⎩>>,或②2030nn-+⎧⎨-⎩<<,分别解不等式组即可求出n的取值范围.【详解】(1)点M不在直线y=﹣x+4上,理由如下:∵当x=1时,y=﹣1+4=1≠2,∴点M(1,2)不在直线y=﹣x+4上;(2)设直线y=﹣x+4沿y轴平移后的解析式为y=﹣x+4+b.①点M(1,2)关于x轴的对称点为点M1(1,﹣2),∵点M1(1,﹣2)在直线y=﹣x+4+b上,∴﹣2=﹣1+4+b,∴b=﹣1,即平移的距离为1;②点M(1,2)关于y轴的对称点为点M2(﹣1,2),∵点M2(﹣1,2)在直线y=﹣x+4+b上,∴2=1+4+b,∴b=﹣2,即平移的距离为2.综上所述,平移的距离为1或2;(1)∵直线y=kx+b经过点M(1,2),∴2=1k+b,b=2﹣1k.∵直线y=kx+b与直线y=﹣x+4交点的横坐标为n,∴y=kn+b=﹣n+4,∴kn+2﹣1k=﹣n+4,∴k=23nn-+-.∵y=kx+b随x的增大而增大,∴k>0,即23nn-+->0,∴①2030nn-+⎧⎨-⎩>>,或②2030nn-+⎧⎨-⎩<<,不等式组①无解,不等式组②的解集为2<n<1.∴n的取值范围是2<n<1.故答案为2<n<1.【点睛】本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,一次函数的性质,解一元一次不等式组,都是基础知识,需熟练掌握.25.(1)见解析(2)见解析(3)9【解析】试题分析:(1)将△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1,如图所示;(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,如图所示.试题解析:(1)根据题意画出图形,△A1B1C1为所求三角形;(2)根据题意画出图形,△A2B2C2为所求三角形.考点:1.作图-位似变换,2. 作图-平移变换26.答案见解析【解析】由于AB=AC,那么∠B=∠C,而DE⊥AC,DF⊥AB可知∠BFD=∠CED=90°,又D是BC中点,可知BD=CD,利用AAS可证△BFD≌△CED,从而有DE=DF.27.(1);(2)MB=MD.【解析】【分析】(1)将A(3,2)分别代入y=,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;(2)有S△OMB=S△OAC=×=3 ,可得矩形OBDC的面积为12;即OC×OB=12 ;进而可得m、n的值,故可得BM与DM的大小;比较可得其大小关系.【详解】(1)将A(3,2)代入中,得2,∴k=6,∴反比例函数的表达式为.(2)BM=DM,理由:∵S △OMB=S△OAC=×=3,∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12,即OC·OB=12,∵OC=3,∴OB=4,即n=4,∴,∴MB=,MD=,∴MB=MD.【点睛】本题考查了待定系数法求反比例函数和正比例函数解析式,反比例函数比例系数的几何意义,矩形的性质等知识.熟练掌握待定系数法是解(1)的关键,掌握反比例函数系数的几何意义是解(2)的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年广东省惠州市惠阳区中考数学模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一.选择题(共10小题,每小题3分,共30分.)1.的倒数是()A.﹣2 B.2 C.D.2.下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10104.2010年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()A.32,31 B.31,32 C.31,31 D.32,355.如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()A.35° B.45° C.50° D.55°6.下列运算正确的是()A.2a+3b=5ab B.a2•a3=a5C.(2a)3=6a 3D.a6+a3=a97.一元二次方程x2﹣4x+2=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根8.若等腰三角形的两边长为3和7,则该等腰三角形的周长为()A.10 B.13 C.17 D.13或179.不等式组的解集在数轴上表示正确的是()A.B.C.D.10.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A 停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.二、填空题(本题共6小题,每小题4分,共24分)11.因式分解:x2﹣36= .12.一个多边形的内角和为1080°,则这个多边形的边数是.13.若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为.14.分式方程的解是.15.如图,在⊙O中,CD⊥AB于E,若∠BAD=30°,且BE=2,则CD= .16.如图,在圆心角为90°的扇形OAB中,半径OA=4,C为的中点,D、E分别为OA,OB的中点,则图中阴影部分的面积为.三、解答题(本题共3小题,每小题6分,共18分)17.计算:(﹣)﹣1﹣|﹣1|+3tan30°+0.18.先化简,再求值:(),请在﹣3,0,1,3中选择一个适当的数作为x值.19.如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明)(2)连接BD,求证:DE=CD.四、解答题(本题共3小题,每小题7分,共21分)20.某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球、B乒乓球、C跳绳、D踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完成;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).21.为促进我市经济的快速发展,加快道路建设,某高速公路建设工程中需修隧道AB,如图,在山外一点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,≈1.73,精确到个位)22.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?五、解答题(本题共3小题,每小题9分,共27分)23.直线y=kx+b与反比例函数y=(x<0)的图象交于点A(﹣1,m),与x轴交于点B(1,0)(1)求m的值;(2)求直线AB的解析式;(3)若直线x=t(t>1)与直线y=kx+b交于点M,与x轴交于点N,连接AN,S△AMN=,求t的值.24.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D 为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sinA=,求BH的长.25.把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F在同一条直线上.已知:∠ACB=∠EDF=90°,∠DE F=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点A出发,以2cm/s的速度沿AB向点B匀速移动;当点P移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值范围;(2)连接PE,设四边形APEQ的面积为y(cm2),试探究y的最大值;(3)当t为何值时,△APQ是等腰三角形.参考答案与试题解析一.选择题(共10小题,每小题3分,共30分.)1.的倒数是()A.﹣2 B.2 C.D.【考点】17:倒数.【分析】根据倒数的定义求解.【解答】解:﹣的倒数是﹣2.故选:A.2.下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 400 000 000=4.4×109,故选:B.4.2010年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()A.32,31 B.31,32 C.31,31 D.32,35【考点】W5:众数;W4:中位数.【分析】利用中位数及众数的定义确定答案即可.【解答】解:∵数据31出现了3次,最多,∴众数为31,∵排序后位于中间位置的数是31,∴中位数是31,故选C.5.如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()A.35° B.45° C.50° D.55°【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等可得∠4=∠2,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∵直线a∥b,∴∠4=∠2=55°,∴∠1=∠3﹣∠4=100°﹣55°=45°.故选B.6.下列运算正确的是()A.2a+3b=5ab B.a2•a3=a5C.(2a)3=6a 3D.a6+a3=a9【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】直接利用合并同类项法则以及结合幂的乘方与积的乘方法则,分别化简求出答案.【解答】解:A、2a+3b无法计算,故此选项不合题意;B、a2•a3=a5,正确,符合题意;C、(2a)3=8a 3,故此选项不合题意;D、a6+a3,无法计算,故此选项不合题意;故选:B.7.一元二次方程x2﹣4x+2=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根【考点】AA:根的判别式.【分析】先计算出判别式的值,然后根据判别式的意义判定方程解的情况.【解答】解:∵△=(﹣4)2﹣4×2=8>0,∴方程有两个不相等的实数根.故选A.8.若等腰三角形的两边长为3和7,则该等腰三角形的周长为()A.10 B.13 C.17 D.13或17【考点】KH:等腰三角形的性质;K6:三角形三边关系.【分析】因为等腰三角形的两边为3和7,但已知中没有点明底边和腰,所以有两种情况,需要分类讨论,还要注意利用三角形三边关系考查各情况能否构成三角形.【解答】解:当3为底时,其它两边都为7,3、7、7可以构成三角形,周长为17;当3为腰时,其它两边为3和7,∵3+3=6<7,所以不能构成三角形,故舍去,∴答案只有17.故选C.9.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:由x>﹣1,得x>﹣1,由2x≤4,得x≤2,∴不等式组的解集是﹣1<x≤2,故选:B.10.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A 停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】分三种情况进行讨论,当0≤x≤1时,当1≤x≤2时,当2≤x≤3时,分别求得△ANM的面积,列出函数解析式,根据函数图象进行判断即可.【解答】解:由题可得,BN=x,当0≤x≤1时,M在BC边上,BM=3x,AN=3﹣x,则S△ANM=AN•BM,∴y=•(3﹣x)•3x=﹣x2+x,故C选项错误;当1≤x≤2时,M点在CD边上,则S△ANM=AN•BC,∴y=(3﹣x)•3=﹣x+,故D选项错误;当2≤x≤3时,M在AD边上,AM=9﹣3x,∴S△ANM=AM•AN,∴y=•(9﹣3x)•(3﹣x)=(x﹣3)2,故B选项错误;故选(A).二、填空题(本题共6小题,每小题4分,共24分)11.因式分解:x2﹣36= (x+6)(x﹣6).【考点】54:因式分解﹣运用公式法.【分析】直接用平方差公式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣36=(x+6)(x﹣6).12.一个多边形的内角和为1080°,则这个多边形的边数是8 .【考点】L3:多边形内角与外角.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.13.若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为1:9 .【考点】S7:相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方解答.【解答】解:∵△ABC∽△A′B′C′,相似比为1:3,∴△ABC与△A′B′C′的面积之比为1:9.故答案为:1:9.14.分式方程的解是x=﹣1 .【考点】B2:分式方程的解.【分析】根据解分式方程的方法可以求得分式方程的解,记住最后要进行检验,本题得以解决.【解答】解:方程两边同乘以2x(x﹣3),得x﹣3=4x解得,x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,故原分式方程的解是x=﹣1,故答案为:x=﹣1.15.如图,在⊙O中,CD⊥AB于E,若∠BAD=30°,且BE=2,则CD= 4.【考点】M2:垂径定理;M5:圆周角定理.【分析】先根据圆周角定理求出∠C的度数,再由CD⊥AB可知∠CEB=90°,CD=2CE,由直角三角形的性质求出BC的长,根据勾股定理求出CE的长,进而可得出结论.【解答】解:∵∠BAD=30°,BE=2,∴∠C=∠BAD=30°.∵CD⊥AB,∴∠CEB=90°,CD=2CE,∴BC=2BE=4,∴CE===2,∴CD=2CE=4.故答案为:4.16.如图,在圆心角为90°的扇形OAB中,半径OA=4,C为的中点,D、E分别为OA,OB的中点,则图中阴影部分的面积为2π+2﹣2 .【考点】MO:扇形面积的计算.【分析】连接OC、EC,由△OCD≌△OCE、OC⊥DE可得DE==2,分别求出S扇形OBC、S△OCD、S△ODE面积,根据S扇形OBC+S△OCD﹣S△ODE=S阴影部分可得.【解答】解:连结OC,过C点作CF⊥OA于F,∵半径OA=4,C为的中点,D、E分别是OA、OB的中点,∴OD=OE=2,OC=4,∠AOC=45°,∴CF=2,∴空白图形ACD的面积=扇形OAC的面积﹣三角形OCD的面积=﹣×2×2=2π﹣2,三角形ODE的面积=OD×OE=2,∴图中阴影部分的面积=扇形OAB的面积﹣空白图形ACD的面积﹣三角形ODE的面积=﹣(2π﹣2)﹣2=2π+2﹣2.故答案为:2π+2﹣2.三、解答题(本题共3小题,每小题6分,共18分)17.计算:(﹣)﹣1﹣|﹣1|+3tan30°+0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣4﹣+1+3×+1=﹣2.18.先化简,再求值:(),请在﹣3,0,1,3中选择一个适当的数作为x值.【考点】6D:分式的化简求值.【分析】先把括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分得到原式=3x+15,再根据分式有意义的条件把x=1代入计算即可.【解答】解:原式=•=•=3x+15,当x=1时,原式=3+15=18.19.如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明)(2)连接BD,求证:DE=CD.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质;KO:含30度角的直角三角形.【分析】(1)利用基本作图(作已知线段的垂直平分线)作DE垂直平分AB;(2)先利用线段垂直平分线的性质得到DA=DB,则∠DBA=∠A=30°,再证明BD平分∠ABC,然后根据角平分线的性质定理可得到结论.【解答】(1)解:如图,DE为所作;(2)证明:如图,∵DE垂直平分AB,∴DA=DB,∴∠DBA=∠A=30°,∵∠ABC=90°﹣∠A=60°,∴∠CBD=30°,即BD平分∠ABC,而DE⊥AB,DC⊥BC,∴DE=DC.四、解答题(本题共3小题,每小题7分,共21分)20.某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球、B乒乓球、C跳绳、D踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200 人;(2)请你将条形统计图补充完成;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)由题意可知这次被调查的学生共有20÷=200(人);(2)首先求得C项目对应人数为:200﹣20﹣80﹣40=60(人),继而可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式即可求得答案.【解答】解:(1)根据题意得:这次被调查的学生共有20÷=200(人).故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人);补充如图.(3)列表如下:∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)==.21.为促进我市经济的快速发展,加快道路建设,某高速公路建设工程中需修隧道AB,如图,在山外一点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,≈1.73,精确到个位)【考点】T8:解直角三角形的应用.【分析】首先过点C作CD⊥AB于D,然后在Rt△BCD中,利用三角函数的知识,求得BD,CD的长,继而在Rt △ACD中,利用∠CAB的正切求得AD的长,继而求得答案.【解答】解:过点C作CD⊥AB于D,∵BC=200m,∠CBA=30°,∴在Rt△BCD中,CD=BC=100m,BD=BC•cos30°=200×=100≈173(m),∵∠CAB=54°,在Rt△ACD中,AD=≈≈72(m),∴AB=AD+BD=173+72≈245(m).答:隧道AB的长为245m.22.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?【考点】AD:一元二次方程的应用;C9:一元一次不等式的应用.【分析】(1)设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×(1﹣降价百分比)的平方”,即可得出关于x的一元二次方程,解方程即可得出结论;(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,根据“总利润=第一次降价后的单件利润×销售数量+第二次降价后的单件利润×销售数量”,即可得出关于m的一元一次不等式,解不等式即可得出结论.【解答】解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.五、解答题(本题共3小题,每小题9分,共27分)23.直线y=kx+b与反比例函数y=(x<0)的图象交于点A(﹣1,m),与x轴交于点B(1,0)(1)求m的值;(2)求直线AB的解析式;(3)若直线x=t(t>1)与直线y=kx+b交于点M,与x轴交于点N,连接AN,S△AMN=,求t的值.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)将点A坐标代入y=可得m的值;(2)将点A、B坐标代入y=kx+b可得关于k、b的方程,解方程求出k、b的值,可得直线解析式;(3)根据直线直线x=t与直线y=kx+b交于点M、与x轴交于点N表示出M、N的坐标,由S△AMN=可得关于t的方程,解方程可得t的值.【解答】解:(1)将点A(﹣1,m)代入y=,得:m=﹣2;(2)由(1)知点A坐标为(﹣1,﹣2),将点A(﹣1,﹣2)、B(1,0)代入y=kx+b,得:,解得:,∴直线AB的解析式为:y=x﹣1;(3)当x=t时,y=t﹣1,∴点M坐标为(t,t﹣1),点N坐标为(t,0),∵S△AMN=,∴×(t﹣1)(t+1)=,解得:t=2或t=﹣2(舍),∴t=2.24.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D 为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sinA=,求BH的长.【考点】MR:圆的综合题.【分析】(1)由圆周角定理和已知条件证出∠ODB=∠ABC,再证出∠ABC+∠DBF=90°,即∠OBD=90°,即可得出BD是⊙O的切线;(2)连接AC,由垂径定理得出,得出∠CAE=∠ECB,再由公共角∠CEA=∠HEC,证明△CEH∽△AEC,得出对应边成比例,即可得出结论;(3)连接BE,由圆周角定理得出∠AEB=90°,由三角函数求出BE,再根据勾股定理求出EA,得出BE=CE=6,由(2)的结论求出EH,然后根据勾股定理求出BH即可.【解答】(1)证明:∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD是⊙O的切线;(2)证明:连接AC,如图1所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)解:连接BE,如图2所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为5,sin∠BAE=,∴AB=10,BE=AB•sin∠BAE=10×=6,∴EA===8,∵,∴BE=CE=6,∵CE2=EH•EA,∴EH==,在Rt△BEH中,BH===.25.把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点A出发,以2cm/s的速度沿AB向点B匀速移动;当点P移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值范围;(2)连接PE,设四边形APEQ的面积为y(cm2),试探究y的最大值;(3)当t为何值时,△APQ是等腰三角形.【考点】S9:相似三角形的判定与性质;H7:二次函数的最值;KH:等腰三角形的性质.【分析】(1)根据题意以及直角三角形性质表达出CQ、AQ,从而得出结论,(2)作PG⊥x轴,将四边形的面积表示为S△ABC﹣S△BPE﹣S△QCE即可求解,(3)根据题意以及三角形相似对边比例性质即可得出结论.【解答】(1)解:AP=2t∵∠EDF=90°,∠DEF=45°,∴∠CQE=45°=∠DEF,∴CQ=CE=t,∴AQ=8﹣t,t的取值范围是:0≤t≤5;(2)过点P作PG⊥x轴于G,可求得AB=10,SinB=,PB=10﹣2t,EB=6﹣t,∴PG=PBSinB=(10﹣2t)∴y=S△ABC﹣S△PBE﹣S△QCE==∴当(在0≤t≤5内),y有最大值,y最大值=(cm2)(3)若AP=AQ,则有2t=8﹣t解得:(s)若AP=PQ,如图①:过点P作PH⊥AC,则AH=QH=,PH∥BC∴△APH∽△ABC,∴,即,解得:(s)若AQ=PQ,如图②:过点Q作QI⊥AB,则AI=PI=AP=t ∵∠AIQ=∠ACB=90°∠A=∠A,∴△AQI∽△ABC∴即,解得:(s)综上所述,当或或时,△APQ是等腰三角形.中考数学模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

相关文档
最新文档