第八章相关与回归分析

合集下载

第八章 成对数据的统计分析(公式、定理、结论图表)(新教材)

第八章 成对数据的统计分析(公式、定理、结论图表)(新教材)

第八章成对数据的统计分析(公式、定理、结论图表)一、成对数据的统计相关性1.变量的相关关系(1)函数关系函数关系是一种确定性关系,常用解析式来表示.(2)相关关系两个变量有关系,但又没有确切到可由其中的一个去精确地决定另一个的程度,这种关系称为相关关系.与函数关系不同,相关关系是一种非确定性关系.2.散点图(1)散点图成对样本数据都可用直角坐标系中的点表示出来,由这些点组成的统计图叫做散点图.(2)正相关和负相关如果从整体上看,当一个变量的值增加时,另一个变量的相应值也呈现增加的趋势,我们就称这两个变量正相关;如果当一个变量的值增加时,另一个变量的相应值呈现减少的趋势,则称这两个变量负相关.3.线性相关一般地,如果两个变量的取值呈现正相关或负相关,而且散点落在一条直线附近,则称这两个变量线性相关.4.样本相关系数(1)对于变量x和变量y,设经过随机抽样获得的成对样本数据为(,),(,),,(,),利用相关系数r来衡量两个变量之间线性关系的强弱,相关系数r的计算公式:(其中,,,和①当r>0时,称成对样本数据正相关.这时,当其中一个数据的值变小时,另一个数据的值通常也变小;当其中一个数据的值变大时,另一个数据的值通常也变大.②当r<0时,称成对样本数据负相关.这时,当其中一个数据的值变小时,另一个数据的值通常会变大;当其中一个数据的值变大时,另一个数据的值通常会变小.二、一元线性回归模型及其应用1.线性回归方程:(1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.(2)回归方程:两个具有线性相关关系的变量的一组数据:,其回归方程为,则注意:线性回归直线经过定点.(3)相关系数:【方法归纳】(1)利用散点图判断两个变量是否有相关关系是比较直观简便的方法.如果所有的样本点都落在某一函数的曲线附近,变量之间就有相关关系.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.若点散布在从左下角到右上角的区域,则正相关.(2)利用相关系数判定,当越趋近于1相关性越强.当残差平方和越小,相关指数越大,相关性越强.(3)在分析实际中两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,也可计算相关系数进行判断.若具有线性相关关系,则可通过线性回归方程估计和预测变量的值.(4)正确运用计算的公式和准确的计算,是求线性回归方程的关键.并充分利用回归直线过样本点的中心进行求值.2、回归分析:对具有相关关系的两个变量进行统计分析的一种常用方法。

第八章 时间序列的回归分析 残差序列相关

第八章 时间序列的回归分析 残差序列相关

ˆ
t2
n
et2
n 2 e e t1
t2
n 2
t 1
t2
t2
t2
n
r sxy
(xi x)( yi y)
i1
s
2 x
s
2 y
n
n
(xi x)2 ( yi y)2
i 1
i 1
5
3杜宾-沃森检验法(DW检验)
DW检验是J.Durbin(杜宾)和G.S.Watson(沃 特森)于1951年提出的一种适用于小样本 的检验方法。DW检验只能用于检验随机 误差项具有一阶自回归形式的序列相关 问题,随机误差项的一阶自回归形式为
(假设 已知,等于1)
• 一阶差分法是将原模型 原模型存在完全一阶正自相关,即
Yt 0 1X1
• 变换为
t t1 t
Y Yt1 (0 0 ) 1(1 X t1) (t t1)
Yt 1X1 t
(该模型没有常数项)
• 其中,为经典误差项。则应满足应用普通最小二乘法
的经典假定,用普通最小二乘法估计差分模型,得到
主成分法,偏最小二乘法。
19
• 序列相关性带来的问题 1 参数的估计量不再具有最小方差 线性无偏性 2 均方误差可能严重低估误差项的 方差 3 F检验、T检验失效
第八章 时间序列的回归分析
残差序列相关
对回归方程随机部分的假定: 是一个随机变量,通常满足: 1: 服从正态分布,Y也服从正态分布 2:E ( ) 0,即E(0 ) 0, E(1) 1 3 :Var( ) 2 常数 方差齐性 4 : Cov(i , j ) 0, 相互独立 ~ N (0, 2 ), y ~ (0 1X , 2 ) 5 : 在多元中, 诸自变量相互独立

回归分析方法

回归分析方法

第八章 回归分析方法当人们对研究对象的内在特性和各因素间的关系有比较充分的认识时,一般用机理分析方法建立数学模型。

如果由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型,那么通常的办法是搜集大量数据,基于对数据的统计分析去建立模型。

本章讨论其中用途非常广泛的一类模型——统计回归模型。

回归模型常用来解决预测、控制、生产工艺优化等问题。

变量之间的关系可以分为两类:一类叫确定性关系,也叫函数关系,其特征是:一个变量随着其它变量的确定而确定。

另一类关系叫相关关系,变量之间的关系很难用一种精确的方法表示出来。

例如,通常人的年龄越大血压越高,但人的年龄和血压之间没有确定的数量关系,人的年龄和血压之间的关系就是相关关系。

回归分析就是处理变量之间的相关关系的一种数学方法。

其解决问题的大致方法、步骤如下: (1)收集一组包含因变量和自变量的数据;(2)选定因变量和自变量之间的模型,即一个数学式子,利用数据按照最小二乘准则计算模型中的系数;(3)利用统计分析方法对不同的模型进行比较,找出与数据拟合得最好的模型; (4)判断得到的模型是否适合于这组数据; (5)利用模型对因变量作出预测或解释。

应用统计分析特别是多元统计分析方法一般都要处理大量数据,工作量非常大,所以在计算机普及以前,这些方法大都是停留在理论研究上。

运用一般计算语言编程也要占用大量时间,而对于经济管理及社会学等对高级编程语言了解不深的人来说要应用这些统计方法更是不可能。

MATLAB 等软件的开发和普及大大减少了对计算机编程的要求,使数据分析方法的广泛应用成为可能。

MATLAB 统计工具箱几乎包括了数理统计方面主要的概念、理论、方法和算法。

运用MATLAB 统计工具箱,我们可以十分方便地在计算机上进行计算,从而进一步加深理解,同时,其强大的图形功能使得概念、过程和结果可以直观地展现在我们面前。

本章内容通常先介绍有关回归分析的数学原理,主要说明建模过程中要做的工作及理由,如模型的假设检验、参数估计等,为了把主要精力集中在应用上,我们略去详细而繁杂的理论。

第八章-虚拟变量回归

第八章-虚拟变量回归

1 高中 D2 0 其它
1 博士 D5 0 其它
1 大 学 D3 0 其 它
1 小 学 D6 0 其 它
则总体回归模型:
w 0 1 X 2 D1 3 D2 4 D3 5 D4 6 D5 7 D6+u
17
二、用虚拟变量测量斜率变动
基本思想
引入虚拟变量测量斜率变动,是在所设立的模型中,将虚 拟解释变量与其它解释变量的乘积,作为新的解释变量出 现在模型中,以达到其调整设定模型斜率系数的目的。
可能的情形:
(1)截距不变;
(2)截距和斜率均发生变化;
分析手段:仍然是条件期望。
18
(1)截距不变
模型形式:
意义:若α1显著,表明城市居民的平均人均可支配收入比农村 高α1元。但这种差异可能是由其它因素引起的,并不一定是由 户籍差异引起。
12
(2) 一个两属性定性解释变量和一个定量 解释变量
模型形式 Yi = f(Di,X i )+ μi 例如:Yi = 0 1 Di + X i + μi 1 城市 其中: Y-人均可支配收入;X-工作时间; Di 0 农村
会受到一些定性因素的影响,如性别、国籍、民族、自 然灾害和政治体制等。
问题:我们如何把这些定性想:将这些定性因素进行量化
由于定性变量通常表示某种属性是否存在,如是否男性、 是否经济特区、是否有色人和等。因此若该属性存在, 我们就将变量赋值为1,否则赋值为0,从而将定性因素 定量化。 计量经济学中,将取值为0和1的人工变量称为虚拟变量 (DUMMY)或哑元变量。通常用字母D或DUM表示。
7
一个例子(虚拟变量陷阱)
研究工资收入与学历之间的关系:

《概率论与数理统计》第八章 回归分析

《概率论与数理统计》第八章 回归分析
lxx
n
lxx (xi x)2
其中
i1
n
lxy (xi x) ( yi y)
i1
即,最小二乘估计所得回归方程为: yˆ aˆ bˆx
从参数估计过程可见,回归方程的基本性质
1 2
Q ( y yˆ)2 最小 ( y yˆ) 0
3 回 归直线通过点 (x, y)
1
n
第八章 回归分析
• 一元线性回归 • 回归效果的检验 • 一元非线性回归 • 预测与控制 • 多元线性回归
回归:从一组样本数据出发,确定变量之间的数学关 系式 检验:对这些关系式的可信程度进行统计检验,从影 响某一特定变量的诸多变量中,找出哪些变量的影响显著, 哪些不显著 预测和控制:利用求得的关系式,根据一个或几个变 量的取值来预测或控制另一个特定变量的取值,并给出这 种预测或控制的精确程度
ε
i
~N (0,σ 2)
n
bˆ lxy lxx
( xi x ) yi
i1 n
( xi x )2
i1
aˆ y bˆx
D(bˆ) σ 2
lxx
D(aˆ) σ 2 ( 1 x 2 )
n lxx
D( yi ) σ 2
3、直线回归的变异来源
根据回归方程作回归直线, 可以发现,并不是所有散
点都恰好落在回归直线上,说明用 yˆ去估计 y 有偏差。
(1)( y y) 的分解
从左图可以看出:
(y y) (yˆ y) (y yˆ)
( y y) ( yˆ y) ( y yˆ)
上式两端平方,然后对所有n个点求和,有
( y y)2 [( yˆ y) ( y yˆ)]2
(2)
称 R2 = SSR / SST 为判定系数,它度量了经验回归方程 对观测数据的拟和程度。

概率论课件_高教版_第八章_方差分析与回归分析

概率论课件_高教版_第八章_方差分析与回归分析

MS A 168.00 F 20.56 MS e 8.17
查附表在f1=3,f2=12时, F0.05=3.49,F0.01=5.95 实得 F> F0.01或 P<0.01,说明药剂处理有统计意义。
四、单因素方差分析模型参数的估计 当方差分析结果为否定原假设时,就需要估计模型的有 关参数 ,下面就讨论方差分析模型参数的估计。 单因素方差分析的模型 为 xij i ij i 1,2, , r 2 ~ N ( 0 , ), 且相互独立 j 1,2, , m ij 其中为总以平均效应, i为因素A的第i个水平Ai 对试验指标 的作用; ij为随机因素对试验指标 值的影响。需要估计的 参数 有 , i , 2。不难证明这些参数的 极大似然估计量为: 1 r m 1 m 1 r m ˆ i xij ˆ xij xij rm i 1 j 1 m j rm i 1 j 1 1 r m 1 2 2 ˆ ˆ) ( xij SSe rm i 1 j 1 rm
Tr
T

xr
x
其中xij是因素A第i水平下第j次重复试验结果 , m r m r T T Ti xij xi T xij Ti x . m rm j 1 i 1 j 1 i 1
单因素方差分析的统计模型
试验数据xij满足 xij i ij i 1,2,, r 2 ~ N ( 0 , ),且相互独立 j 1,2,, m ij 其中为总以平均效应, i为因素A的第i个水平Ai 对试验指 标的作用 ; ij为随机因素对试验指标 值的影响。
鸡重/g-1000
60 80 1 2 12 9 28
Ti

第八章_可直线化的非线性回归分析


0.2 0.16 0.12 0.08 0.04
0 0
叶绿素含量y 乘幂 (叶绿素含量y) 对数 (叶绿素含量y) 线性 (叶绿素含量y) 指数 (叶绿素含量y)
y = 1.401x-0.9631 R2 = 0.8868
y = -0.0743Ln(x) + 0.3146 R2 = 0.7603
y = -0.0023x + 0.1372 R2 = 0.5857
y = 0.1457e-0.0304x
15
30
45
60
R2 = 0.7333
r r0.01(9) 0.735
第二节 倒数函数曲线
特点
(1)x的观测值无0值; (2)yx应具有专业意义,而不是抽象 的量 (3)以 y( y yx) 和x为坐标绘制出的 散点图有明显的直线性; (4)y 和x的相关系数显著。
倒数函数的转换
倒数函数的表达式
y a bx x
y 1 a bx
y x a bx
变量转换
y yx
y 1 y
y xy
倒数函数的转换
y a bx y a bx
y a bx
第三节 指数函数曲线
指数函数的转换
指数函数的表达式 变量转换
y
aebx
ln y ln a bx
对数函数
yˆ a b lg x yˆ a bx'
x' lg x
指数函数 yˆ aebx
ln yˆ ln a bx
yˆ' a'bx
四、常用曲线模型的直线化方法
幂函数 双曲线
yˆ axb yˆ' a'bx'
ln yˆ ln a b ln x

统计学第八章练习题

第八章相关与回归分析一、填空题8.1.1客观现象之间的数量联系可以归纳为两种不同的类型,一种是_____________ ,另一种是__________________ 。

8.1.2回归分析中对相互联系的两个或多个变量区分为__________________ 和___________ 。

8.1.3 _____________ 是指变量之间存在的严格确定的依存关系。

8.1.4 变量之间客观存在的非严格确定的依存关系,称为_____________________ 。

8.1.5按 ____________ 的多少不同,相关关系可分为单相关、复相关和偏相关。

8.1.6两个现象的相关,即一个变量对另一个变量的相关关系,称为。

8.1.7在某一现象与多个现象相关的场合,当假定其他变量不变时,其中两个变量的相关关系称为____________________________ 。

8.1.8按变量之间相关关系的 _______________ 不同,可分为完全相关、不完全相关和不相关。

8.1.9按相关关系的 ____________________ 不同可分为线性相关和非线性相关。

8.1.10 线性相关中按_________________ 可分为正相关和负相关。

8.1.11 研究一个变量与另一个变量或另一组变量之间相关方向和相关密切程度的统计分析方法,称为__________________ 。

8.1.12当一个现象的数量由小变大,另一个现象的数量也相应由小变大,这种相关称为。

8.1.13当一个现象的数量由小变大,而另一个现象的数量相反地由大变小,这种相关称为。

8.1.14 当两种现象之间的相关只是表面存在,实质上并没有内在的联系时,称之为__________________ 。

8.1.15根据相关关系的具体形态,选择一个合适的数学模型来近似地表达变量间平均变化关系的统计分析方法,称为_____________________ 。

第四版应用回归分析课后习题第八章

第8章 非线性回归思考与练习参考答案8.1 在非线性回归线性化时,对因变量作变换应注意什么问题?答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式, 还要注意误差项的形式。

如:(1) 乘性误差项,模型形式为, (2) 加性误差项,模型形式为。

对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。

一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。

8.2为了研究生产率与废料率之间的关系,记录了如表8.15所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。

表8.15生产率x (单位/周) 1002000 3000 3500 400045005000废品率y (%)5.26.56.88.110.2 10.3 13.0解:先画出散点图如下图:e y AK L αβε=y AK L αβε=+从散点图大致可以判断出x和y之间呈抛物线或指数曲线,由此采用二次方程式和指数函数进行曲线回归。

(1)二次曲线SPSS输出结果如下:从上表可以得到回归方程为:72ˆ 5.8430.087 4.4710yx x -=-+⨯ 由x 的系数检验P 值大于0.05,得到x 的系数未通过显著性检验。

由x 2的系数检验P 值小于0.05,得到x 2的系数通过了显著性检验。

(2)指数曲线从上表可以得到回归方程为:0.0002t ˆ 4.003ye = 由参数检验P 值≈0<0.05,得到回归方程的参数都非常显著。

从R2值,σ的估计值和模型检验统计量F值、t值及拟合图综合考虑,指数拟合效果更好一些。

8.3 已知变量x与y的样本数据如表8.16,画出散点图,试用αeβ/x来拟合回归模型,假设:(1)乘性误差项,模型形式为y=αeβ/x eε(2)加性误差项,模型形式为y=αeβ/x+ε。

表8.16解:散点图:(1)乘性误差项,模型形式为y=αeβ/x eε线性化:lny=lnα+β/x +ε令y1=lny, a=lnα,x1=1/x .做y1与x1的线性回归,SPSS输出结果如下:从以上结果可以得到回归方程为:y1=-3.856+6.08x1F检验和t检验的P值≈0<0.05,得到回归方程及其参数都非常显著。

直线回归与相关


• 回归分析时的假定:
• (1) Y 变数是随机变数,而X 变数则是没有误差的固定变数,至 少和Y 变数比较起来X 的误差小到可以忽略。
• (2) 在任一X 上都存在着一个Y 总体(可称为条件总体),它是作
正态分布的,其平均数 Y / X 是X 的线性函数:
Y / X X
• Y / X的样本估计值,与X 的关系就是线性回归
相关分析研究X与Y两个随机变量之间的 共同变化规律,例如当X增大时Y如何变化, 以及这种共变关系的强弱。
原则上Y含有试验误差,而X不含试验 误差时着重回归分析;Y和x均含有试验 误差时着重相关分析。
但讨论X为非随机变量的情况,所得到 的参数估计式也可用于X为随机144.6356
SSy=∑y2-(∑y)2/n=794-(70)2/9=249.5556 SPxy=∑xy-∑x∑y/n=2436.4-(333.7×70)/9=-159.0444 X =∑x/n=333.7/9=37.0778
Y =∑y/n=70/9=7.7778 因而有:b=SPxy/SSx=-159.0444/144.6356
对x、y进行考察的简便方法是将n对观察值 (x1,y1)、(x2,,y2)、…、(xn,yn) 于同一直 角坐标平面上制作散点图:
① X和Y的相关的性质(正或负)和密切程度; ② X和Y的关系是直线型的还是非直线型的; ③ 是否有一些特殊的点表示其他因素的干扰等。
图9.1B 每平方米土地上 的总颖花数(X) 和结实率(Y)
a
bxi
)
0
n
n
n
( xi ) ( yi ) n
b
xi yi
i 1 n
i 1 n
i 1
n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 相关分析  第一节 相关分析概述  第二节 直线相关关系的测定  第三节 回归分析 第一节 相关分析概述  一、 相关关系的概念  现象相互之间的数量关系可以从形式上分为两种类型:一类是严格的确定性的函数关系,另一类是不严格的不确定性的相关关系。  相关关系是现象之间确实存在有数量上的依存关系,但这种数量上的关系是不确定的。 函数关系的例子 ▪ 某种商品的销售额(y)与销售量(x)之间的关系可表示为 y = px (p 为单价) ▪ 圆的面积(S)与半径之间的关系可表示为S=R2 ▪ 企业的原材料消耗额(y)与产量(x1) 、单位产量消耗(x2) 、原材料价格(x3)之间的关系可表示为y = x1 x2 x3 函数关系 1. 是一一对应的确定关系 2. 设有两个变量 x 和 y ,变量 y 随变量 x 一起变化,并完全依赖于 x ,当变量 x 取某个数值时, y 依确定的关系取相应的值,则称 y 是 x 的函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量 3. 各观测点落在一条线上 相关关系(几个例子) 相关关系的例子 ▪ 父亲身高(y)与子女身高(x)之间的关系 ▪ 收入水平(y)与受教育程度(x)之间的关系 ▪ 粮食亩产量(y)与施肥量(x1) 、降雨量(x2) 、温度(x3)之间的关系 ▪ 商品的消费量(y)与居民收入(x)之间的关系 ▪ 商品销售额(y)与广告费支出(x)之间的关系 相关关系 1. 变量间关系不能用函数关系精确表达 2. 一个变量的取值不能由另一个变量唯一确定 3. 当变量 x 取某个值时,变量 y 的取值可能有几个 4. 各观测点分布在直线周围 二、 相关关系的种类 (1)相关关系按涉及的变量的多少分为单相关、复相关和偏相关。 单相关就是两个变量之间的相关关系。是研究一个因变量与一个自变量的依存关系。 复相关就是多个变量之间的相关关系。是研究一个因变量与两个或两个以上自变量的依存关系。 偏相关就是在复相关研究中,如果假定其它变量不变,仅研究某一个变量对另一个变量的依存关系。 (2)相关关系按方向不同分为正相关和负相关。 正相关是指变量之间存在着同向变动的相关关系,即当一个变量的数值有小变大,另一个变量的数值也相应地由小变大 负相关是指变量之间存在着反向变动的相关关系,即当一个变量的数值有小变大,另一个变量的数值却由大变小。 (3)相关关系按表现的形式不同分为线性相关和非线性相关。 当一个变量变动时,另一个变量也随之发生大致均等的变动,从图形上看,二者对应点分布近似地在一条直线附近,这种相关关系就称为线性相关关系。 当一个变量变动时,另一个变量也随之发生变动,但从图形上看,二者对应点分布近似地在一条曲线附近,这种相关关系就称为非线性相关关系。 (4)相关关系按相关程度不同分为完全相关、不完全相关和不相关。 完全相关就是当一个变量的变动完全由另一个变量的变动所决定。(函数关系) 当两个变量之间完全不存在任何依存关系,各自独立变动,其相关程度为零,称为不相关或零相关。 当变量之间的关系介于完全相关与不相关之间,称为不完全相关。 三、相关分析的内容  1.确定现象之间是否存在相关关系,以及相关关系的表现形式  2.测定相关关系的密切程度和方向  3.确定现象之间相关关系的一般关系式  4.测定变量估计值的可靠程度 第二节 直线相关关系的测定 判断现象之间有无相关关系,应先进行定性分析,即依据理论知识、实践经验对现象之间是否存在相关关系及相关关系的类型作出判断。然后在此基础上进行定量分析,即运用相关图、相关表和相关系数等方法对现象之间的相关关系进行描述与测度。 ㈠相关表 ㈡相关关系的图示 ㈢相关系数 一、 相关表 相关表是指按照相关现象的数量对应关系以及一定的逻辑顺序编制成的一种统计表。 通过相关表可以初步看出各变量之间的相关关系。 某企业2006年某种产品产量与总成本相关表 月份 产量万吨x 总成本万元y 1 2 3 4 5 6 2.4 3.1 4.3 5.2 4.4 6.1 32 43 51 61 53 78 二、相关图  相关图是指把相关表中原始的对应数值在平面直角坐标图中用点描绘出来,用以反映其分布状况的统计图,也称散点图、散布图。  从相关点的分布情况,就可以直观地、近似地观察出两个变量之间有无相关关系、相关关系的形式和相关关系的密切程度。

0102030405060708090

02468总产量(万吨)x

总成本(万元)y 散点图(scatter diagram)

不相关负线性相关



正线性相关

非线性相关完全负线性相关完全正线性相关





散点图(例题分析) 【例】一家大型商业银行在多个地区设有分行,其业务主要是进行基础设施建设、国家重点项目建设、固定资产投资等项目的贷款。近年来,该银行的贷款额平稳增长,但不良贷款额也有较大比例的提高,这给银行业务的发展带来较大压力。为弄清楚不良贷款形成的原因,希望利用银行业务的有关数据做些定量分析,以便找出控制不良贷款的办法。下面是该银行所属的25家分行2002年的有关业务数据

散点图(例题分析) 不良贷款与贷款余额的散点图02468101214

0100200300400贷款余额

不良贷款

不良贷款与贷款项目个数的散点图02468101214010203040贷款项目个数

不良贷款

不良贷款与固定资产投资额的散点图02468

10

1214

050100150200固定资产投资额

不良贷款 不良贷款与累计应收贷款的散点图024681012140102030累计应收贷款

不良贷款 三、 相关系数 1.相关系数的概念及其公式 相关表与相关图只能大致反映变量间的相关关系要准确反映变量之间的相关程度,就需要计算相关系数。 相关系数是测量变量之间的密切程度的指标。测定两个变量之间线性关系密切程度的指标称为单线性相关系数或线性单相关系数。通常用字母r 表示。 积差法公式: 

22

2

..yyxxyyxxryxxy





(简单式)2222)(.)(.yynxxnyxxynr

相关系数简捷法计算表

1455.618088117.4731825.5合计

76.8133.3219.3317.2233.2475.81024184926013721280960845.769.6118.4927.0419.3637.213243516153782.43.14.35.24.46.1123456

月份xy2x2yxy产量总成本

9826.03181808865.2547.11763185.256.1455622r2222)(.)(.yynxxnyxxyn

r

例:某地区1985—1996年人均月收入和商品销售额资料如下,计算相关系数并检验。年份人均月收入商品销售额x2 y2 xy1985 480 220 230400 48400 1056001986 560 280 313600 78400 1568001987 600 300 360000 90000 1800001988 610 320 372100 102400 1952001989 620 330 384400 108900 2046001990 650 335 422500 112225 2177501991 670 340 448900 115600 2278001992 700 352 490000 123904 2464001993 750 380 562500 144400 2850001994 780 400 608400 160000 3120001995 820 405 672400 164025 3321001996 850 425 722500 180625 361250合计8090 4087 5587700 1428879 2824500

985.014288791255877001240878090282450012)(.)(.40878090222222



yynxxnyxxynr

相关文档
最新文档