乘法公式的应用
乘法公式的用法范文

乘法公式的用法范文乘法公式是数学中的一个重要概念,用于计算两个或多个数的乘积。
它是数学中最基础也是最常用的运算之一、下面将详细介绍乘法公式的定义、原理、推导以及一些常见的应用。
1.乘法公式的定义乘法公式是指将两个或多个数相乘的方法。
用符号“×”表示乘法。
例如,将两个数3和4相乘,可以表示为3×4=122.乘法公式的原理乘法公式的原理是根据数的乘法性质和分配律。
乘法性质是指任何数和0相乘的结果都等于0,即a×0=0。
分配律是指两个数相乘后再与第三个数相加,等于先将第一个数与第三个数相加,再与第二个数相乘的结果,即(a+b)×c=a×c+b×c。
3.乘法公式的推导根据乘法性质和分配律,可以推导出一些常用的乘法公式。
(1)平方的乘法公式平方是指一个数与自己相乘的结果。
例如,3的平方可以表示为3×3,记作3²=9、通常,正数的平方都是正数,负数的平方都是正数。
(2)倍数的乘法公式倍数是指一个数乘以一个正整数的结果。
例如,3的2倍可以表示为3×2=6(3)乘方的乘法公式乘方是指一个数连乘多次的结果。
例如,2的3次方可以表示为2³=2×2×2=84.乘法公式的应用乘法公式在日常生活、工作和学习中都有广泛的应用。
(1)计算面积和体积:乘法公式可以用于计算长方形的面积、圆的面积和球的体积等。
例如,长方形的面积可以通过将长和宽相乘来计算,圆的面积可以通过将π乘以半径的平方来计算。
(2)求解方程:乘法公式可以用于求解方程。
例如,如果已知一个方程的两个解分别是3和4,那么根据乘法公式,可以得出方程的形式为(x-3)(x-4)=0,从而求得方程的解。
(3)统计分析:乘法公式可以用于统计分析中的概率计算。
例如,在投掷两个骰子的情况下,根据乘法公式,可以计算出每种点数的出现概率。
(4)商业应用:乘法公式在商业计算中也有广泛的应用。
乘法公式的灵活运用

1乘法公式的灵活运用一、复习:(a+b)(a —b)=a 2—b 2(a+b )2=a 2+2ab+b 2(a-b)2=a 2—2ab+b 2(a+b )(a 2-ab+b 2)=a 3+b 3(a —b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m ) =x 2y 2-(z 2+zm +zm +m 2) =x 2y 2-z 2-2zm -m 2⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=(x -y )(x -y )-z 2=x 2-xy -xy +y 2-z 2 =x 2-2xy +y 2-z 2⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2) =x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992—2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
概率:乘法公式及其应用

2. 条件概率的定义 设A、B是两个事件,且P(B)>0,则称 P ( AB) (1) P ( A | B) P ( B)
为在事件B发生的条件下,事件A的条件概率.
B
若事件B已发生, 则为使 A也发生 , 试验结果必须是既 在 B 中又在A中的样本点 , 即 此点必属于AB. 由于我们已经 知道B已发生, 故B变成了新的 样本空间 , 于是 有(1).
对于看守的上述理由,你是怎么想的?
解:记 A={囚犯甲被处决}, B={囚犯乙被处决}
C={囚犯丙被处决} 依题意,P(A)=1/3, P(A| B)=P(A)/[1-P(B)]=1/2, 甲 P(A|C )=1/2, 看守说得对.
对于看守的上述理由,你是怎么想的?
解:记 A={囚犯甲被处决}, B={囚犯乙被处决}
概率:乘法公式及其应用
一、条件概率
1. 条件概率的概念
在解决许多概率问题时,往往需要在 有某些附加信息(条件)下求事件的概率. 如在事件B发生的条件下求事件A发生的 概率,将此概率记作P(A|B). 一般 P(A|B) ≠ P(A)
例如,掷一颗均匀骰子,A={掷出2点},
B={掷出偶数点}, P(A )=1/6, P(A|B)=?
1000 个
求的是 P(A|B) .
B发生, 在P(AB)中作为结果; 在P(A|B)中作为条件.
例3 设某种动物由出生算起活到20年以上的 概率为0.8,活到25年以上的概率为0.4. 问现 年20岁的这种动物,它能活到25岁以上的概 率是多少?
解:设A={能活20年以上},B={能活25年以上} 所求为P(B|A) . 依题意, P(A)=0.8, P(B)=0.4
第1讲 乘法公式的综合应用(学生版)

知识总结典型例题1计算:2已知3若4当5已知6解答下列问题.7设8知识总结典型例题9若10已知:11已知12已知13阅读下列材料,并利用材料中使用的方法解决问题.这样的“走马灯” 性质实在是让人啧啧称奇.于是我们开始好奇,142857 为什么会具有这样神奇的性质?是否还会有其他数具有这样的性质呢?先回答第一个问题.数学系的人也许会高冷地回答你:因为 10 是模 7 的一个原根.但这个回答,一定是令 99 % 的人懵逼的.大部分普通人恐怕会问:“原根” 是什么?当然,也许还有些连初中数学都还给老师的人,会问:“模” 是什么,哈这个问题,其实正是让数学小白们叩开初等数论大门的伟大机会啊!我相信,要完整地理解这个问题的来龙去脉,对于初中数学水平的人,大概也就需要半个小时而已~当然,需要 3 个很简单的前提条件:你知道质数(素数)的概念:只能被 1 和自身整除的数;也知道互质的含义(最大公约数为1);你会竖式计算;你已经知道:142857*7=999999;那么,下面我们开始吧~一、竖式计算的奥秘既然你已经知道了 142857*7=999999,那么你一定很容易联想到 1/7 会有 142857 的循环节.毕竟1000000 除以 7 余 1 嘛!竖式计算告诉我们,产生循环几乎是显然的:仔细观察一下竖式计算,你会发现一个很有趣的现象:前 6 次相减,余数分别 3、2、6、4、5、1,恰好遍历了比 7 小的 1~6,这就意味着,下一个余数无论是几,都必然会和前面的重复,从而必须产生循环.这个现象揭示了一个简单的定理:定理 1.1:1/n 的小数展开,其循环节长度不超过 n-1.如果循环节恰好为 n-1 ,在竖式计算的每一步中,余数一定遍历了 1,2,…,n-1,那么显然,1/n, 2/ n,…, (n-1)/n 的竖式计算,一定能和 1/n 的竖式计算中的某一步衔接起来,循环节会形成 “走马灯” 的效果.反之,对于任意一个“走马灯数”,我们可以把它当做循环小数的循环节,而循环小数必然可以表示成分数 k/n,若循环节小于 n-1,那么余数必然不能遍历 1,2,…,n-1,那么 “走马灯” 的效果则不会出现.于是我们得到了另一个定理:定理 1.2:对每一个 “走马灯数” ,都存在自然数 n,走马灯数为 1/n 的小数展开后的循环节,且这个循环节恰好有 n-1 位.接下来,我们需要寻找满足条件的 n,初等数论的大门将缓缓打开.14如图,在边长为15已知16若17已知18如果多项式19关于多项式20若21已知22已知。
最经典的乘法公式综合应用与拓展分析

最经典的乘法公式综合应用与拓展分析乘法公式是数学中常用的公式之一,它们在各个数学领域中都有广泛的应用。
本文将从学生和教师两个角度综合分析乘法公式的最经典的应用与拓展。
首先,对于学生而言,乘法公式是他们掌握数学知识的基础。
学生在学习数学的过程中,会接触到很多与乘法相关的知识,如乘法口诀、乘法逆元等。
通过乘法公式的学习,学生可以更好地理解和应用乘法的原理和方法。
比如,在解决乘法运算中的复杂问题时,学生可以灵活运用乘法公式,提高解题的效率和准确性。
其次,对于教师而言,乘法公式是他们教学的重要工具。
教师在教授数学知识时,可以通过乘法公式来引导学生掌握乘法的基本操作和运算规则。
此外,乘法公式还可以作为教师讲解和解决数学问题的案例,帮助学生从实践中理解乘法的原理和应用。
例如,在教授高中数学中的二次方程时,教师可以通过乘法公式来引导学生求解方程的根,帮助学生加深对乘法公式的理解和运用。
乘法公式还有很多拓展应用,以下是一些经典的拓展案例:1.方阵乘法:方阵乘法是线性代数中的常用运算,通过乘法公式可以方便地计算两个方阵的乘积。
在实际应用中,方阵乘法广泛用于图像处理、数据压缩等领域。
2.应用于几何图形:通过乘法公式可以计算图形的面积和周长。
例如,计算矩形的面积可以使用乘法公式的形式:面积=长度x宽度。
3.二项式展开:二项式展开是代数中常用的运算,通过乘法公式可以方便地展开一个二项式。
在高中数学中,二项式展开广泛应用于排列组合、概率等问题的求解中。
4.概率与统计:乘法公式在概率和统计中有广泛的应用。
例如,计算多事件的概率时,可以使用乘法公式计算独立事件的联合概率。
此外,在统计学中,乘法公式也被用于计算随机变量的期望和方差等。
总而言之,乘法公式作为数学中的重要工具,在学生和教师的学习和教学中都起到了至关重要的作用。
通过乘法公式的学习和应用,学生可以提高解题的效率和准确性,教师可以引导学生更好地掌握乘法的原理和应用。
此外,乘法公式还有许多拓展应用,可以在其他数学领域中发挥重要作用。
乘法公式的运用

乘法公式的运用乘法公式是在多项式乘法的基础上,将多项式乘法的一般法则应用于一些特殊形式的多项式相乘,得出的既有特殊性、又有实用性的具体结论,在复杂的数值计算,代数式的化简求值、代数式的恒等变形、代数等式的证明等方面有着广泛的应用,在学习乘法公式时,应该做到以下几点:1.熟悉每个公式的结构特征,理解掌握公式;2.根据待求式的特点,模仿套用公式;3.对公式中字母的全面理解,灵活运用公式;4.既能正用、又可逆用且能适当变形或重新组合,综合运用公式.【例1】 (1)已知两个连续奇数的平方差为2000,则这两个连续奇数可以是 .(2)已知(2000一a)(1998一a)=1999,那么(2000一a)2+(1998一a)2= .从特殊到一般的过程是人类认识事物的一般规律,而观察、发现、归纳是发现数学规律最常用的方法. 常见公式变形有: (1)ab b a b a 2)(222 ±=+, 2)()(2)()(222222b a b a b a b a ab --+=+-+=. (2)222222)()(b a b a b a +=-++; (3) ab b a b a 4)()(22=--+;(4)4)()(22b a b a ab --+=,)(2)(2222ac bc ab c b a c b a ++-++=++ 【例2】 若x 是不为0的有理数,已知)12)(12(22+-++=x x x x M ,)1)(1(22+-++=x x x x N ,则M 与N 的大小是( )A .M>NB . M<NC . M=ND .无法确定思路点拨 运用乘法公式,在化简M 、N 的基础上,作差比较它们的大小.【例3】 计算:(1)6(7十1)(72十1)(74十1)(78十1)+1;(2)1.345×0.345×2.69—1.3452一1.345×0.3452.【例4】 (1)已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式yx xy +的值. (2)整数x ,y 满足不等式y x y x 22122+≤++,求x+y 的值.(3)同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:第一次提价的百分率为a ,第二次提价的百分率为b ,乙商场:两次提价的百分率都是2b a +(a>0,b>o),丙商场:第一次提价的百分率为b ,第二次提价的百分率为a ,则哪个商场提价最多?说明理由.完全平方公式逆用可得到两个应用广泛的结论:(1)0)(2222≥±=+±b a b ab a ;(2)ab b a 222≥+ 揭示式子的非负性,利用非负数及其性质解题.【例5】 已知a 、b 、c 均为正整数,且满足222c b a =+,又a 为质数.证明:(1)b 与c 两数必为一奇一偶;(2)2(a+b+1)是完全平方数.思路点拨 从222c b a =+的变形入手;222b c a -=,运用质数、奇偶数性质证明. 学力训练1.观察下列各式:(x 一1)(x+1)=x 2一l ;(x 一1)(x 2+x+1)=x 3一1;(x 一1)(x 3十x 2+x+1)=x 4一1.根据前面的规律可得(x 一1)(x n +x n-1+…+x+1)= .2.已知052422=+-++b a b a ,则ba b a -+= . 3.计算:(1)1.23452+0.76552+2.469×0.7655: ;(2)19492一19502+19512一19522+…+19972一19982+19992 = ;(3)2199919991999199719991998222-+ . 4.如图是用四张全等的矩形纸片拼成的图形,请利用图中空白部分的面积的不同表示方法写出一个关于a 、b 的恒等式 .5.已知51=+a a ,则2241a a a ++= . 6.已知5,3-=+=-c b b a ,则代数式ab a bc ac -+-2的值为( ).A .一15B .一2C .一6D .6 7.乘积)200011)(199911()311)(211(2222----等于( ). A .20001999 B .20002001 C .40001999 D .40002001 8.若(x -y )2+N=x 2+xy +y 2,则N 为( )。
乘法公式、全概率公式、贝叶斯公式应用
乘法公式、全概率公式、贝叶斯公式应用摘要:一、引言二、乘法公式1.乘法公式的概念2.乘法公式的应用三、全概率公式1.全概率公式的概念2.全概率公式的应用四、贝叶斯公式1.贝叶斯公式的概念2.贝叶斯公式的应用五、乘法公式、全概率公式、贝叶斯公式的关系与联系六、总结正文:一、引言在概率论和统计学中,乘法公式、全概率公式和贝叶斯公式是三个非常重要的公式。
它们在各种实际问题中都有广泛的应用,帮助人们更好地理解和分析数据。
本文将对这三个公式进行详细的介绍和分析。
二、乘法公式1.乘法公式的概念乘法公式,又称概率乘法公式,是指两个事件A 和B 同时发生的概率等于它们各自发生的概率的乘积,即P(A∩B)=P(A)×P(B|A)。
2.乘法公式的应用乘法公式广泛应用于各种实际问题中,例如在研究两个事件之间的关系时,可以用乘法公式计算它们同时发生的概率,从而为后续分析提供依据。
三、全概率公式1.全概率公式的概念全概率公式,又称全概率公式,是指若某事件A 可以被若干个互斥事件B1、B2、...、Bn 的和事件所确定,则有P(A)=P(B1)×P(A|B1)+P(B2)×P(A|B2)+...+P(Bn)×P(A|Bn)。
2.全概率公式的应用全概率公式在统计学和概率论中有广泛的应用,例如在风险评估、决策分析等领域,可以利用全概率公式计算各种可能事件的概率,从而为决策提供依据。
四、贝叶斯公式1.贝叶斯公式的概念贝叶斯公式,又称贝叶斯定理,是指在已知某条件概率P(B|A) 的情况下,求解相关联的逆条件概率P(A|B) 的公式,即P(A|B)=P(B|A)×P(A)/P(B)。
2.贝叶斯公式的应用贝叶斯公式在机器学习、人工智能、医学诊断等领域有广泛的应用,例如在文本分类、情感分析等问题中,可以利用贝叶斯公式计算各种可能类别的概率,从而实现准确的分类和预测。
五、乘法公式、全概率公式、贝叶斯公式的关系与联系乘法公式、全概率公式和贝叶斯公式都是概率论和统计学中的基本公式,它们之间存在密切的联系。
知识应用:活用乘法公式
知识应用:活用乘法公式乘法公式在解题中的应用非常广泛,运用乘法公式解题不仅要熟悉公式的结构特征,而且能灵活使用它们,才能获得简捷合理的解法.现介绍几种方法,供同学们参考.一、对号a、b,正确运用例1 计算(-2+3x)(-2-3x).分析:两个因式中的-2完全相同,而3x与-3x互为相反数,因而可运用平方差公式计算,-2是公式中的a,3x是公式中的b.解:原式=(-2)2-(3x)2=4-9x2.二、适当变形,灵活运用例2 计算(2x+y-z+5)(2x-y+z+5).分析:两个因式中2x和5完全相同,而y和z的符号分别相反,故可适当分组,再用平方差公式计算.解:原式=〔(2x+5)+(y-z)〕·〔(2x+5)-(y-z)〕=(2x+5)2-(y-z)2=4x2+20x+25-y2+2yz-z2.三、分析情况,合理选用例3 计算(2a+1)(2a-1)(4a2-2a+1)(4a2+2a+1).分析:前两个因式与后两个因式可分别运用平方差公式计算它们的积,但若先利用乘法交换律与结合律巧妙结合,就可以用立方和、立方差公式简算.解:原式=〔(2a+1)(4a2-2a+1)〕〔(2a-1)(4a2+2a+1)〕=(8a3+1)(8a3-1)=64a6-1四、创造条件,巧妙应用例4 计算(5a+3b-2c)(5a-3b+6c).分析:从表面上看本题不能使用乘法公式.但注意到两个因式中有一项完全相同,另一项互为相反数,又因-2c=2c-4c,6c=2c+4c,故可先拆项,后仿例2计算.解:原式=(5a+3b+2c-4c)(5a-3b+2c+4c)=〔(5a+2c)+(3b-4c)〕·〔(5a+2c)-(3b-4c)〕=(5a+2c)2-(3b-4c)2=25a2+20ac+4c2-9b2+24bc-16c2=25a2-9b2-12c2+20ac+24bc.五、避繁就简,逆向运用例5 计算(x+y)2-2(x+y)(x-y)+(x-y)2分析:若先平方展开后再计算,比较复杂,但把(x+y)看作a,(x-y)看作b,可逆用完全平方公式,迅速得出结果.解:原式=〔(x+y)-(x-y)〕2=4y2.六、明确联系,综合运用乘法公式的主要变式有:①a2+b2=(a+b)2-2ab=(a-b)2+2ab;②(a+b)2+(a-b)2=2(a2+b2);③(a+b)2-(a-b)2=4ab;④a3+b3=(a+b)3-3ab(a+b).熟悉这些变形公式,明确它们间联系,综合运用,常可简化解题过程.例6 已知:a+b=5,ab=2,求:(a-b)2的值.解:由完全平方公式得(a+b)2-(a-b)2=4ab,则(a-b)2=(a+b)2-4ab.∵a+b=5,ab=2∴(a-b)2=52-4×2=17。
乘法公式的基础与拓展应用
乘法公式的基础与拓展应用乘法公式是数学中常用的计算工具,它包含了一系列基础与拓展应用。
基础乘法公式常用于计算两个数之间的乘积。
它们包括:1.乘法交换律:a×b=b×a。
这意味着两个数的乘积与它们的顺序无关。
2.乘法结合律:(a×b)×c=a×(b×c)。
这意味着无论是先将前两个数相乘然后与第三个数再相乘,还是先将后两个数相乘然后与第一个数再相乘,得到的结果都是相同的。
3.分配律:a×(b+c)=(a×b)+(a×c)。
这意味着将一个数与两个数的和相乘,等于将这个数分别与两个数相乘得到的结果再相加。
基础乘法公式还可以进行简化,例如:1. 平方公式:(a + b)² = a² + 2ab + b²。
这意味着一个数的平方可以通过将该数与自身相乘得到。
2. 立方公式:(a + b)³ = a³ + 3a²b + 3ab² + b³。
这意味着一个数的立方可以通过将该数与自身的平方相乘得到。
乘法公式还可以应用于解决实际问题,例如:1.面积计算:通过乘法公式可以计算出各种形状的面积。
例如,长方形的面积可以通过将长与宽相乘得到;圆的面积可以通过将π与半径的平方相乘得到。
2.体积计算:通过乘法公式可以计算出各种形状的体积。
例如,长方体的体积可以通过将长、宽和高相乘得到;圆柱体的体积可以通过将π、半径的平方和高相乘得到。
拓展应用方面,乘法公式也可以用于解决一些更复杂的问题。
例如:1.组合问题:组合问题是指从一个集合中选取若干个元素组成一个子集的问题。
乘法公式可以应用于计算组合问题的总数。
如果一些集合有n个元素,需要选取r个元素组成子集,那么组合问题的总数可以通过计算n!/(r!(n-r)!)得到,其中"!"表示阶乘。
2.概率问题:概率问题是指计算一些事件发生的可能性的问题。
乘法公式课件ppt
乘法公式课件ppt
目 录
• 乘法公式概述 • 乘法公式的分类及运算规则 • 乘法公式的应用
01
乘法公式概述
乘法公式的定义
乘法公式的数学定义
乘法公式是指对于任意的整数a、b(a≠0),都有唯一的乘积 ab和它对应,称为乘法公式。
常用乘法公式
常用的乘法公式包括(a+b)²=a²+2ab+b²,(a-b)²=a²2ab+b²,a³+b³=a³+3a²b+3ab²+b³等。
小数乘法
总结词
小数乘法是在整数乘法的基础上拓展而来 的,它是指将两个或多个小数相乘得到另 一个小数的运算。
VS
详细描述
小数乘法的运算规则与整数乘法基本相同 ,但需注意小数点的位置。具体来说,小 数乘法是通过移动小数点来进行计算的, 移动的位数取决于因数小数点的位数,即 对于任意两个小数a和b,它们的积为 a×10^n×b,其中n为小数点向右移动的 位数。
03
乘法公式的应用
乘法公式在代数中的应用
求解线性方程
在代数中,乘法公式可以用来求解线性方程。比如,对于方程ax+b=c,可 以使用乘法公式得到x=(c-b)/a。
因式分解
乘法公式也可以用于因式分解。例如,对于多项式f(x)=x^2+x+1,我们可以 使用乘法公式得到f(x)=(x+1/2)^2+3/4。
THANK YOU.
集合乘法
总结词
集合乘法是一种特殊的乘法运算,它是指将两个或多个集合组合在一起得到另一个集合的运算。
详细描述
集合乘法是指将两个或多个集合组合在一起得到另一个集合的过程。它的运算规则是将两个集合的元素逐一组 合起来,形成一个新的集合。例如,对于集合A和集合B,它们的积A×B是一个新的集合,包含所有(a, b)对, 其中a属于A且b属于B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
For personal use only in study and research; not for commercial use 乘法公式的几何背景 1、如图所示可以验证哪个乘法公式用式子表示为 .
第2题 2、如图所示,用该几何图形的面积可以表示的乘法公式是 . 3、如图,图①是边长为a的正方形中有一个边长是b的小正方形,图②是将图①中的阴影部分剪拼成的一个等腰梯形,比较图①和图②阴影部分的面积,可验证的是 .
第4题图 4、用该几何图形的面积可以表示的等量关系是 . 5、如图:边长为a,b的两个正方形,边保持平行,如果从大正方形中剪去小正方形,剩下的图形可以分割成4个大小相等的梯形.请你计算出两个阴影部分的面积,同时说明可以验证哪一个乘法公式的几何意义.
6、如图1,A、B、C是三种不同型号的卡片,其中A型是边长为a的正方形,B型是长为b、宽为a的长方形,C是边长是b的正方形. 7、小杰同学用1张A型、2张B型和1张C型卡片拼出了一个新的图形(如图2).请根据这个图形的面积关系写出一个你所熟悉的公式是 . 8、图1是一个长为2a,宽为2b的长方形,沿图中虚线剪开,可分成四块小长方形.
(1)你认为图1的长方形面积等于 ; (2)将四块小长方形拼成一个图2的正方形.请用两种不同的方法求图2中 阴影部分的面积. 方法1: 方法2: (3)观察图2直接写出代数式(a+b)2、(a-b)2、ab之间的等量关系; (4)把四块小长方形不重叠地放在一个长方形的内部(如图3),未被覆盖的部分用阴影表示.求两块阴影部分的周长和(用含m、n的代数式表示).
9、如图,ABCD是正方形,P是对角线BD上一点,过P点作直线EF、GH分别平行于AB、BC,交两组对边于E、F、G、H,则四边形PEDG,四边形PHBF都是正方形,四边形PEAH、四边形PGCF都是矩形,设正方形PEDG的边长是a,正方形PHBF的边长是b. 请动手实践并得出结论: (1)请你动手测量一些线段的长后,计算正方形PEDG与正方形PHBF的面积之和以及矩形PEAH与矩形PGCF的面积之和. (2)你能根据(1)的结果判断a2+b2与2ab的大小吗? (3)当点P在什么位置时,有a2+b2=2ab? 1.5平方差公式 一、点击公式 abab= ,abba= ,abab= .
abba= ,abab= ,abba= .
二、公式运用 1、化简计算: (1))3241)(3241(22yxyx (2)(x-2)(x4+16)(x+2)(x2+4)
(3) ()()()abababab (4)11323222abababab 2、简便计算 (1)899×901+1 (2)99.9×100.1-99.8×100.2 (3)2006×2008-20072 22000
4
199920011 (5)9×11×101×10001
课时测试——基础篇 1、下列多项式乘法中可以用平方差公式计算的是( ) A、 ))((baba B、)2)(2(xx C、 )31)(31(xyyx D、 )1)(2(xx 2、已知 (x - ay) (x + ay ) = x2 - 16y2 , 那么 a = 。 3、化简:mmmmmmyxyxyx22= 。 4、用平方差公式计算 (1)(2)2(3)(3)xyyxyxxy (2)2005200320042
(3)211111(1)(1)(1)(1)2241616 (4)(2+1) (22+1) (24+1)…(216+1)+1 5、先化简,再求值:(3+m)(3-m)+m(m-6)-7,其中m=21 6、若20072008a,20082009b,试不用..将分数化小数的方法比较a、b的大小. 拓展篇 1、计算:(1)2222baba (2)1002-992+982-972+…+22-12
(3))10011)(9911()411)(311)(211(22222
2、请你估计一下,22222222222100994321)1100)(199()14)(13)(12(的值应该最接近于 ( ) A、 1 B、 12 C、 1100 D、 1200
1.6完全平方公式 一、点击公式 1、2ab= ,2ab= ,abba= . 2、222abab+ =2ab+ .3、22abab= . 二、公式运用 1、计算化简 (1) 2222xyxyxy (2)2)())((yxyxyx (3)2)21(1x (4)zyxzyx3232 (5)2121abab 2、简便计算: (1)(-69.9)2 (2)472-94×27+272
3、公式变形应用: 在公式(a±b)2=a2±2ab+b2中,如果我们把a+b,a-b,a2+b2,ab分别看做一个整体,那么 只要知道其中两项的值,就可以求出第三项的值. (1)已知a+b=2,代数式a2-b2+2a+8b+5的值为 ,已知1125,,7522xy代数式 (x+y)2-(x-y)2的值为 ,已知2x-y-3=0,求代数式12x2-12xy+3y2的值 是 ,已知x=y+4,求代数式2x2-4xy+2y2-25的值是 .
(2)已知3ba,1ab,则22ba= ,44ab= ;若5ab,4ab,则22ba的值为______;28ab,22ab,则ab=_______. (3)已知:x+y=-6,xy=2,求代数式(x-y)2的值. (4)已知x+y=-4,x-y=8,求代数式x2-y2的值. (5已知a+b=3, a2+b2=5,求ab的值.
(6)若222315xx,求23xx的值.
(7)已知x-y=8,xy=-15,求的值. (8)已知:a2+b2=2,ab=-2,求:(a-b)2的值.
4、配方法(整式乘法的完全平方公式的反用) 我们知道,配方是一种非常重要的数学方法,它的运用非常广泛.学好它,对于中学生来说显得尤为重要.试用配方法解决下列问题吧! (1) 如果522xxy,当x为任意的有理数,则y的值为( ) A、有理数 B、可能是正数,也可能是负数 C、正数 D、负数 (2)多项式192x加上一个单项式后成为一个整式的完全平方,那么加上的这个单项式 是 .(填上所有你认为是正确的答案) (3)试证明:不论x取何值,代数x2+4x+92的值总大于0. (4)若 2x2-8x+14=k,求k的最小值. (5)若x2-8x+12-k=0,求2x+k的最小值.
(6)已知2)()1(2yxxx,求xyyx222的值. (7)已知abbaba10162222,那么22ba ; (8)若关于x的一元一次方程50axb的解为2x,求224423ababab的 值. (9)若m2+2mn+2n2-6n+9=0,求m和n的值.
(10)若△ABC的三边为a,b,c,并满足222abcabbcca,试问三角形ABC 为何种三角形? 课时测试——基础篇
1、下列式子中是完全平方式的是( ) A、22baba B、222aa C、222bba D、122aa 2、1622axx是一个完全平方式,则a的值为( ) A、4 B、8 C、4或—4 D、8或—8 3、已知y+2x=1,代数式(y+1)2-(y2-4x)的值是 . 4、化简求值:[(x+y)²-(x-y)²+2x²y]÷(-4y) 其中x=-2.
5、当2x,25y时,求xxyyxyxyx2]4222[2的值.
拓展篇 1、若21aa,则221aa的值是 ,441aa的值是 ,1aa的值是 , 44
1aa 的值是 .
2、若51ba,13ba,则53912322baba的值是( )
A、92 B、32 C、54 D、0 3、已知133xx,则代数式199973129234xxxx的值是( ) A、1997 B、1999 C、2003 D、004 4、若121222xxxxM,1122xxxxN(0x),则M与N的 大小关系是( ) A、NM B、NM C、NM D、无法确定 5、若22223cbacba,则cba,,三者的关系为( ) A、cbba B、1cba C、cba D、cabcab 6、计算:
(1)2abc (2)(a-b+c-d)(c-a-d-b) (3) 2332abccab
7、已知222xx,求代数式133312xxxxx的值.
8、求代数式3x2+6x-5的最小值. 9、证明x2-4x+5的值不小于1.
10、解方程:)1)(1(13)12()31(22xxxx