高考数学复习点拨约会型几何概型问题
高考数学 考点一遍过 专题52 几何概型 理-人教版高三全册数学试题

专题52 几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.一、几何概型1.几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件发生的可能性相等.3.几何概型的概率计算公式() P AA构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).4.必记结论(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关;(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题;(3)与体积有关的几何概型.二、随机模拟用计算器或计算机模拟试验的方法为随机模拟方法或蒙特卡罗方法.这个方法的基本步骤是:(1)用计算器或计算机产生某个X围内的随机数,并赋予每个随机数一定的意义;(2)统计代表某意义的随机数的个数M和总的随机数个数N;(3)计算频率()n Mf AN作为所求概率的近似值.注意,用随机模拟方法得到的结果只能是概率的近似值或估计值,每次试验得到的结果可能不同,而所求事件的概率是一个确定的数值.考向一与长度有关的几何概型求解与长度有关的几何概型的问题的关键是将所有基本事件及事件A包含的基本事件转化为相应长度,进而求解.此处的“长度”可以是线段的长短,也可以是时间的长短等.注意:在寻找事件A发生对应的区域时,确定边界点是问题的关键,但边界点能否取到不会影响事件A的概率.典例1某学校星期一至星期五每天上午都安排五节课,每节课的时间为40分钟.第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间到达教室,则他听第二节课的时间不少于10分钟的概率是A.12B.13C.23D.35【答案】A故所求概率为201402=,选A . 典例2 在区间[]0,2上随机抽取一个数x ,则事件“1211log 12x ⎛⎫-≤+≤ ⎪⎝⎭”发生的概率为 A .34B .23 C .13D .14【答案】A【解析】区间[]0,2的长度为2, 由1211log 12x ⎛⎫-≤+≤ ⎪⎝⎭可得302x ≤≤, 所以所求事件的概率为P =33224-=.1.公共汽车在7:00到7:20内随机到达某站,李老师从家里赶往学校上班,7:15到达该站,则她能等到公共汽车的概率为A .13B .23 C .14D .342.在长度为10的线段AB 上任取一点C (不同于A ,B ),则以AC ,BC 为半径的圆的面积之和小于58π的概率为A .B .C .D .考向二 与面积有关的几何概型求解与面积有关的几何概型的问题的关键是构造出随机事件对应的几何图形,利用图形的几何特征找出两个“面积”,套用几何概型的概率计算公式,从而求得随机事件的概率. 必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.“面积比”是求几何概型的一种重要的方法.典例3 在如图所示的扇形AOB中,∠AOB=,半圆C切AO于点D,与圆弧AB切于点B,若随机向扇形AOB内投一点,则该点落在半圆C外的概率为A.B.C.D.【答案】A则所求概率P=1-SS=1-,故选A.典例4 如图,已知A(a,0)(a>0),B是函数f(x)=2x2图象上的一点,C(0,2),若在矩形OABC内任取一点P,则点P落在阴影部分的概率为________.【答案】3.圆O 内有一内接正三角形,向圆O 内随机投一点,则该点落在正三角形内的概率为 A 33B .3C .33.34.已知1Ω是集合()22{,|1}x y x y +≤所表示的区域,2Ω是集合(){,|1}x y x y +≤所表示的区域,向区域1Ω内随机地投一个点,则该点落在区域2Ω内的概率为________.考向三 与体积有关的几何概型的求法用体积计算概率时,要注意所求概率与所求事件构成的区域的体积的关系,准确计算出所求事件构成的区域的体积,确定出基本事件构成的区域的体积,求体积比即可.一般当所给随机事件是用三个连续变量进行描述或当概率问题涉及体积时,可以考虑用此方法求解.典例5一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行,若蜜蜂在飞行过程中与正方体玻璃容器六个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全,即始终保持与正方体玻璃容器六个表面的距离均大于10,飞行才是安全的.假设蜜蜂在正方体玻璃容器内飞行到任意位置的可能性相等,那么蜜蜂飞行安全的概率是A.512B.23C.127D.425【答案】C5.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食落在圆锥外面”的概率是A.π14B.π12C.π4D.π112-考向四随机模拟的应用利用随机模拟试验可以近似计算不规则图形A的面积,解题的依据是根据随机模拟估计概率()AP A=随机取的点落在中的随机取点频数的总次数,然后根据()随机取点构的成事全部件的区结果构成的区域面积域面积AP A=列等式求解.典例6 《周髀算经》中给出了勾股定理的绝妙证明,如图是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱(红)色及黄色,其面积分别称朱实、黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+股2=弦2.设勾股形中勾股比为1∶3,若向弦图内随机抛掷3000颗图钉,则落在黄色图形内的图钉数约为(3≈1.732)A.134 B.268C.402 D.536【答案】C6.如图,在一不规则区域内,有一边长为1 m 的正方形,向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为 375,以此试验数据为依据可以估计出该不规则图形的面积为A .83 m 2 B .2 m 2C .38m 2 D .3 m 21.在[]0,π内任取一个实数x ,则1sin 2x ≤的概率为 A .2 3B .1 2C .13D .1 42.若任取[]0,1、x y ∈,则点(),P x y 满足y x >的概率为A .23B .13 C .12D .343.在区间[]0,4上随机地选择一个数,p 则方程2380x px p -+-=有两个正根的概率为A .13B .23 C .12D .144.在直角坐标系中,任取n 个满足x 2+y 2≤1的点(x ,y ),其中满足|x|+|y|≤1的点有m 个,则用随机模拟的方法得到的圆周率π的近似值为 A .4m n B .4nmC .2m n D .2nm5.某校航模小组在一个棱长为6米的正方体房间内试飞一种新型模型飞机,为保证模型飞机安全,模型飞机在飞行过程中要始终保持与天花板、地面和四周墙壁的距离均大于1米,则模型飞机“安全飞行”的概率为 A .127B .116C .38D .8276.如图,在矩形ABCD 中,AB =3,BC =1,以A 为圆心、1为半径作圆弧DE ,点E 在线段AB 上,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是A .1 4B .13C .25D .357.已知函数()2,01(e 1,1e x x f x x x⎧≤<⎪=⎨≤≤⎪⎩为自然对数的底数)的图象与直线e 、x x =轴围成的区域为E ,直线e 1、x y ==与x 轴、y 轴围成的区域为F ,在区域F 内任取一点,则该点落在区域E 内的概率为A .43e B .23e C .23D .2e8.《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是 A .3π 10B .3π 20C .3π110-D .3π120- 9.有一根长为1米的细绳,将细绳随机剪断,则两截的长度都大于18米的概率为__________. 10.一个正方体的外接球的表面积为48π,从这个正方体内任取一点,则该点取自正方体的内切球内的概率为__________.11.甲、乙两艘轮船都要在某个泊位停靠6小时,假定它们在一天内随机到达,若两船同时到达则有一艘必须等待,试求这两艘轮船中有一艘在停靠泊位时必须等待的概率.12.某班早晨7:30开始上早读课,该班学生小陈和小李在早上7:10至7:30之间到班,且两人在此时间段的任何时刻到班是等可能的.(1)在平面直角坐标系中画出两人到班的所有可能结果表示的区域; (2)求小陈比小李至少晚5分钟到班的概率.13.已知函数()22(,f x ax bx a a b =-+∈R ).(1)若a 从集合{}0,1,2,3中任取一个元素,b 从集合{}0,1,2,3中任取一个元素,求方程()0f x =有实根的概率;(2)若b 从区间[]0,2中任取一个数,a 从区间[]0,3中任取一个数,求方程()0f x =没有实根的概率.1.(2017新课标全国Ⅰ理科)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π42.(2016新课标全国Ⅰ理科)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A .13B .12C .23D .343.(2017某某)记函数2()6f x x x =+-的定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 ▲ .4.(2016某某理科)在[1,1]上随机地取一个数k ,则事件“直线y =kx 与圆22(5)9xy 相交”发生的概率为 .1.【答案】 C2.【答案】C【解析】设AC =x ,则BC =10-x ,0<x <10,由题意πx 2+π(10-x )2<58π,得x 2-10x +21<0,得3<x <7, 故所求的概率为.3.【答案】C4.【答案】2π【解析】易知1Ω的面积1πS =,2 Ω的面积22S =, 根据几何概型可得所求事件的概率为P=2.π5.【答案】D【解析】由题意可知,正方体的体积V =8,圆锥的体积V 1=212ππ1233⨯⨯⨯=,所以“鱼食落在圆锥外面”的概率是P=1π112V V V -=-. 6.【答案】A变式拓展【解析】由几何概型的概率计算公式及题意可近似得到正方形不规则图形S S =3751000,所以该不规则图形的面积大约为1000375=83(m 2).1.【答案】C【解析】若1sin 2x ≤,则在[]0,π内π5π0π66或x x ≤≤≤≤, 所以所求概率为π216π03P ⨯==-.选C .2.【答案】C【解析】根据几何概型的概率计算公式可知P =11112112⨯⨯=⨯.故选C .3.【答案】A【解析】因为方程2380x px p -+-=有两个正根,所以()243800,380p p p p ∆⎧=--≥⎪>⎨⎪->⎩所以8p ≥或 84,3p <≤ 又因为[]0,4,p ∈所以所求概率为841343P -==. 4.【答案】D5.【答案】D【解析】依题意得,模型飞机“安全飞行”的概率为(626-)3=827,故选D.6.【答案】B【解析】连接AC,交圆弧DE于点M.在Rt△ABC中,AB3BC=1,所以tan∠BAC=3BCAB=即∠BAC=π6.要使直线AP与线段BC有公共点,则点P必须在圆弧EM上,于是所求概率为P=π16π32=.故选B.7.【答案】A【解析】由题意,区域F的面积为e;区域E的面积S=1e2011d dx x xx+⎰⎰=31e0114|ln|33x x+=,所以在区域F内任取一点,则该点落在区域E内的概率为43e.8.【答案】D【解析】由题意,直角三角形内切圆的半径r=8151732+-=,所以现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率P =18159π3π211208152⨯⨯-=-⨯⨯. 9.【答案】3410.【答案】【解析】因为一个正方体的外接球的表面积为48π,所以这个正方体的棱长为4,而棱长为4的正方体的体积为43,该正方体的内切球的半径为2,体积为×23,所以所求概率P =.11.【解析】设甲船到达的时间为x ,乙船到达的时间为y ,则0≤x <24,0≤y <24.若有一艘在停靠泊位时必须等待,则|y-x|<6,如图中阴影部分所示,所以所求概率为1-=1-=.12.【解析】(1)用,x y 分别表示小陈、小李到班的时间,则][10,3010,30,x y ⎡⎤∈∈⎣⎦,所有可能结果对应坐标平面内一个正方形区域ABCD ,如图所示.(2)小陈比小李至少晚到5分钟,即5x y -≥,对应区域为△BEF ,则所求概率为1151592202032△BEF ABCDS P S ⨯⨯===⨯.“b a ≥或0a =”.于是此时,a b 的取值情况为()()()()()()()()()()0,0,0,1,0,2,0,3,1,2,1,3,2,3,1,1,2,2,3,3,即A 包含的基本事件数为10.故 “方程()0f x =有实根”的概率为()105168P A ==. (2)从区间[]0,2中任取一个数,b 从区间[]0,3中任取一个数,a 则试验的全部结果构成区域(){,|03,02}a b a b ≤≤≤≤, 这是一个长方形区域,其面积为236⨯=,设“方程()0f x =没有实根”为事件B ,则事件B 所构成的区域为(){,|03,02,}a b a b a b ≤≤≤≤>,其面积为162242-⨯⨯=.由几何概型的概率计算公式可得“方程()0f x =没有实根”的概率为()4263P B ==.1.【答案】B秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B . 【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 2.【答案】B【解析】由题意,这是一个几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B . 【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等. 3.【答案】59【解析】由260x x +-≥,即260x x --≤,得23x -≤≤,根据几何概型的概率计算公式得x D ∈的概率是3(2)55(4)9--=--.【名师点睛】(1)当试验的结果构成的区域为长度、面积或体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:①无限性,②等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.直通高考4.【答案】34【解析】直线y =kx 与圆22(5)9x y相交,需要满足圆心到直线的距离小于半径,即3d =<,解得3344k -<<,而[1,1]k ,所以所求概率P =33224=.。
2022年新高考数学总复习:几何概型

2022年新高考数学总复习:几何概型知识点一几何概型的定义如果每个事件发生的概率只与构成该事件区域的__长度(面积或体积)__成比例,则称这样的概率模型为几何概率模型,简称几何概型.知识点二几何概型的特点(1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性.知识点三几何概型的概率公式P (A )=__构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)__.知识点四随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算机或计算器模拟试验的方法为随机模拟方法.这个方法的基本步骤是:①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M 和总的随机数个数N ;③计算频率f n (A )=MN作为所求概率的近似值.归纳拓展几种常见的几何概型(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关.(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题.(3)与体积有关的几何概型,可借助空间几何体的体积公式解答问题.双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)在一个正方形区域内任取一点的概率是零.(√)(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.(√)(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.(√)(4)随机模拟方法是以事件发生的频率估计概率.(√)(5)与面积有关的几何概型的概率与几何图形的形状有关.(×)(6)从区间[1,10]内任取一个数,取到1的概率是P =19.(×)题组二走进教材2.(P 140T1)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是(A)[解析]∵P (A )=38,P (B )=14,P (C )=13,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).故选A .3.(P 146B 组T4)≤x ≤2,≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是(D)A .π4B .π-22C .π6D .4-π4[解析]如图所示,正方形OABC 及其内部为不等式组表示的平面区域D ,且区域D的面积为4,而阴影部分(不包括AC ︵)表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4,故选D .题组三走向高考4.(2017·全国Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是(B)A .14B .π8C .12D .π4[解析]不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4.由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知,所求概率P =S 黑S 正方形=π24=π8.故选B .5.(2019·全国)在Rt △ABC 中,AB =BC ,在BC 边上随机取点P ,则∠BAP <30°的概率为(B)A .12B .33C .33D .32[解析]在Rt △ABC 中,AB =BC ,Rt △ABC 为等腰直角三角形,令AB =BC =1,则AC =2;在BC 边上随机取点P ,当∠BAP =30°时,BP =tan 30°=33,在BC 边上随机取点P ,则∠BAP <30°的概率为:P =BP BC =33,故选B .考点突破·互动探究考点一与长度有关的几何概型——自主练透例1(1)(2021·山西运城模拟)某单位试行上班刷卡制度,规定每天8:30上班,有15分钟的有效刷卡时间(即8:15-8:30),一名职工在7:50到8:30之间到单位且到达单位的时刻是随机的,则他能正常刷卡上班的概率是(D)A .23B .58C .13D .38(2)(2021·福建龙岩质检)在区间-π2,π2上随机取一个实数x ,使cos x ≥12的概率为(B )A .34B .23C .12D .13(3)(2020·山东省青岛市模拟)已知圆C :x 2+y 2=1和直线l :y =k (x +2),在(-3,3)上随机选取一个数k ,则事件“直线l 与圆C 相交”发生的概率为(C)A .15B .14C .13D .12[解析](1)一名职工在7:50到8:30之间到单位,刷卡时间长度为40分钟,但有效刷卡时间是8:15-8:30共15分钟,由测度比为长度比可得,该职工能正常刷卡上班的概率P =1540=38.故选D .(2)由y =cos x 在区间-π2,0上单调递增,在,π2上单调递减,则不等式cos x ≥12在区间-π2,π2上的解为-π3≤x ≤π3,故cos x ≥12的概率为2π3π=23.(3)直线l 与C 相交⇒|2k |1+k 2<1⇒-33<k <33.∴所求概率P =33-(-33)3-(-3)=13.故选C .[引申]本例(3)中“圆上到直线l 的距离为12的点有4个”发生的概率为__515__.[解析]圆上到直线l 的距离为12的点有4个⇔圆心到直线l 的距离小于12⇔|2k |1+k 2<12⇔-1515<k <1515,∴所求概率P =1515-3-(-3)=515.名师点拨与长度有关的几何概型如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为P (A )=构成事件A 的区域长度试验的全部结果所构成的区域长度.〔变式训练1〕(1)(2017·江苏卷)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是__59__.(2)(2021·河南豫北名校联盟精英对抗赛)已知函数f (x )=sin x +3cos x ,当x ∈[0,π]时,f (x )≥1的概率为(D)A .13B .14C .15D .12[解析](1)D ={x |6+x -x 2≥0}=[-2,3],∴所求概率P =3-(-2)5-(-4)=59.(2)由f (x )=1,x ∈[0,π]得x ∈0,π2,∴所求概率P =π2π=12,故选D .考点二与面积有关的几何概型——师生共研角度1与平面图形有关的问题例2(1)(2021·河南商丘、周口、驻马店联考)如图,AC ,BD 上分别是大圆O的两条相互垂直的直径,4个小圆的直径分别为OA ,OB ,OC ,OD ,若向大圆内部随机投掷一点,则该点落在阴影部分的概率为(D)A .π4B .π8C .1πD .2π(2)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为(C )A .34+12πB .12+1πC .14-12πD .12-1π[解析](1)不妨设大圆的半径为2,则大圆的面积为4π,小圆的半径为1,如图,设图中阴影部分面积为S ,由图形的对称性知,S 阴影=8S .又S =12π×12×12-12×2=1,则所求概率为84π=2π,故选D .(2)∵|z |=(x -1)2+y 2≤1,∴(x -1)2+y 2≤1,其几何意义表示为以(1,0)为圆心,1为半径的圆面,如图所示,而y ≥x 所表示的区域如图中阴影部分,故P =π4-12π=14-12π.[引申]本例(1)中图形改成下图,则此点取自图中阴影部分的概率为__π-22π__.[解析]不妨设大圆的半径为2,则小圆的半径为1,∴所求概率P 14×4π=π-22π.角度2与线性规划交汇的问题例3-y +1≥0,+y -3≤0,≥0的平面点集中随机取一点M (x 0,y 0),设事件A 为“y 0<2x 0”,那么事件A 发生的概率是(B )A .14B .34C .13D .23[解析]-y +1≥0+y -3≤0,≥0表示的平面区域为△ABC 且A (1,2),B (-1,0),C (3,0),显然直线l :y =2x 过A 且与x 轴交于O ,∴所求概率P =S △AOC S △ABC =|OC ||BC |=34.选B .名师点拨解决与面积有关的几何概型的方法求解与面积有关的几何概型时,关键是弄清某事件对应的几何元素,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.〔变式训练2〕(1)(2021·唐山模拟)右图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为(B)A .8B .9C .10D .12(2)(2021·四川模拟)以正三角形的顶点为圆心,其边长为半径作圆弧,由这三段圆弧组成的曲边三角形被称为勒洛三角形,它是具有类似于圆的“等宽性”曲线,由德国机械工程专家、数学家勒洛首先发现.如图,D ,E ,F 为正三角形ABC 各边中点,作出正三角形DEF 的勒洛三角形DEF (阴影部分),若在△ABC 中随机取一点,则该点取自于该勒洛三角形部分的概率为(C)A .π-32B .23π-39C .3π-36D .3π-26[解析](1)根据面积之比与点数之比相等的关系,得黑色部分的面积S =4×4×225400=9,故选B .(2)设△ABC 的边长为2,则正△DEF 边长为1,以D 为圆心的扇形面积是π×126=π6,△DEF 的面积是12×1×1×32=34,∴勒洛三角形的面积为3个扇形面积减去2个正三角形面积,即图中勒洛三角形面积为3×π6-34+34=π-32,△ABC 面积为3,所求概率P =π-323=3π-36.故选C .考点三,与体积有关的几何概型——师生共研例4(1)(2021·山西省模拟)以正方体各面中心为顶点构成一个几何体,从正方体内任取一点P ,则P 落在该几何体内的概率为(C )A .18B .56C .16D .78(2)(2020·江西抚州临川一中期末)已知三棱锥S -ABC ,在该三棱锥内任取一点P ,则使V P -ABC ≤13V S -ABC 的概率为(D)A .13B .49C .827D .1927[解析](1)如图以正方体各面中心为顶点的几何体是由两同底正四棱锥拼成,不妨设正方体棱长为2,则GH =2,∴所求概率P =V E -GHIJ -FV 正方体=2×(13×2×2×1)2×2×2=16,故选C .(2)作出S 在底面△ABC 的射影为O ,若V P -ABC =13V S -ABC ,则三棱锥P -ABC 的高等于13SO ,P 点落在平面EFD 上,且SE SA =SD SB =SF SC =23,所以S △EFD S △ABC =49,故V S -EFD =827V S -ABC ,∴V P -ABC ≤13V S -ABC 的概率P =1-827=1927.故选D .名师点拨求解与体积有关问题的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的问题常转化为其对立事件的概率问题求解.〔变式训练3〕一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为(C)A .4π81B .81-4π81C .127D .827[解析]由已知条件可知,蜜蜂只能在以正方体的中心为中心棱长为1的小正方体内飞行,结合几何概型可得蜜蜂“安全飞行”的概率为P =1333=127.[引申]若蜜蜂在飞行过程中始终保持与正方体8个顶点的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为__1-4π81__.[解析]所求概率P =33-43π33=1-4π81.考点四,与角度有关的几何概型——师生共研例5(1)(2021·南岗区校级模拟)已知正方形ABCD 的边长为3,以A 为顶点在∠BAD 内部作射线AP ,射线AP 与正方形ABCD 的边交于点M ,则AM <2的概率为(D)A .32B .12C .33D .23(2)在等腰Rt △ABC 中,过直角顶点C 在∠ACB 内作一条射线CD 与线段AB 交于点D ,则AD <AC 的概率为__34__.[解析](1)正方形ABCD 的边长为3,以A 为顶点在∠BAD 内部作射线AP ,射线AP与正方形ABCD 的边交于点M ,如图所示:己知AD =AB =BC =CD =3,DM =1,所以AM =(3)2+12=2.所以∠DAM =π6.根据阴影的对称性,故P (AM <2)=π6+π6π2=23,故选D .(2)在AB 上取AC ′=AC ,则∠ACC ′=180°-45°2=67.5°.设事件A ={在∠ACB 内部作一条射线CD ,与线段AB 交于点D ,AD <AC }.则所有可能结果的区域角度为90°,事件A 的区域角度为67.5°,∴P (A )=67.590=34.名师点拨与角度有关的几何概型的求解方法(1)若试验的结果所构成的区域的几何度量可用角度来表示,则其概率公式为P (A )=构成事件A 的区域角度试验的全部结果所构成区域的角度.(2)解决此类问题时注意事件的全部结果构成的区域及所求事件的所有结果构成的区域,然后再利用公式计算.〔变式训练4〕(1)(2021·山西太原一模)如图,四边形ABCD 为矩形,AB =3,BC =1,在∠DAB内任作射线AP ,则射线AP 与线段BC 有公共点的概率为__13__.(2)如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM交BC 于点M ,则BM <1的概率为__25__.[解析](1)当点P 在BC 上时,AP 与BC 有公共点,此时AP 扫过△ABC ,所以所求事件的概率P =3090=13.(2)因为∠B =60°,∠C =45°,所以∠BAC =75°,在Rt △ABD 中,AD =3,∠B =60°,所以BD =AD tan 60°=1,∠BAD =30°.记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式,得P (N )=3075=25.名师讲坛·素养提升转化与化归思想在几何概型中的应用例6(1)(2021·贵州遵义模拟)在区间[0,2]上任取两个数,则这两个数之和大于3的概率是(A)A .18B .14C .78D .34(2)(2021·济宁模拟)甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到则等乙半小时,而乙还有其他安排,若乙早到则不需等待,则甲、乙两人能见面的概率为(A )A .38B .34C .35D .45[解析](1)设函数为x ,y ,≤x≤2,≤y≤2由图可知x+y>3的概率P=124=18.故选A.(2)以6点作为计算时间的起点,设甲到的时间为x,乙到的时间为y,则基本事件空间是Ω={(x,y)|0≤x≤1,0≤y≤1},事件对应的平面区域的面积S=1,设满足条件的事件对应的平面区域是A,则A={(x,y)|0≤x≤1,0≤y≤1,y-x≤12,且y≥x},其对应的区域如图中阴影部分所示,则C(0,1),则事件A对应的平面区域的面积是1-12×12×12-12×1×1=38,根据几何概型的概率计算公式得P=381=38.名师点拨]生活中的几何概型度量区域的构造方法:(1)审题:通过阅读题目,提炼相关信息.(2)建模:利用相关信息的特征,建立概率模型.(3)解模:求解建立的数学模型.(4)结论:将解出的数学模型的解转化为题目要求的结论.〔变式训练5〕(2020·海口调研)张先生订了一份《南昌晚报》,送报人在早上6:30-7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00-8:00之间,则张先生在离开家之前能拿到报纸的概率是__78__.[解析]以横坐标x表示报纸送到时间,以纵坐标y表示张先生离家时间,建立平面直角坐标系,如图.因为随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意只要点落在阴影部分,就表示张先生在离开家之前能拿到报纸,即所求事件A发生,所以P(A)=1×1-12×12×121×1=78.。
高中数学复习:几何概型

考点突破 栏目索引
考点突破 栏目索引
由图得等车时间不超过10分钟的概率为
1 2
.
(2)因为∠B=60°,∠C=45°,所以∠BAC=75°.
在Rt△ABD中,AD= 3,∠B=60°,
所以BD=
AD tan 60
=1,∠BAD=30°.
记事件N为“在∠BAC内作射线AM交BC于点M,使BM<1”,则当∠BAM
考点突破 栏目索引
1-1 (2018河南濮阳模拟)在[-6,9]内任取一个实数m,设f(x)=-x2+mx+m,
则函数f(x)的图象与x轴有公共点的概率为( D )
A. 2
B. 7
C. 3 D.11
15
15
5
15
答案 D ∵f(x)=-x2+mx+m的图象与x轴有公共点,∴Δ=m2+4m>0,∴m<-
<∠BAD时,事件N发生.
由几何概型的概率公式,得P(N)=3705
2
=5
.
考点突破 栏目索引
规律总结 与长度、角度有关的几何概型的求法 解答关于长度、角度的几何概型问题,只要将所有基本事件及事件A包 含的基本事件转化为相应长度或角度,即可利用几何概型的概率计算公 式求解.要特别注意“长度型”与“角度型”的不同,解题的关键是构 建事件的区域(长度或角度).
4或m>0,∴在[-6,9]内取一个实数m,函数f(x)的图象与x轴有公共点的概
率P=[4 (6)] (9 0) =11,故选D.
9 (6)
15
考点突破 栏目索引
1-2
在区间
2
,
2
上随机取一个数x,则cos
几何概型-高考数学知识点

几何概型-高考数学知识点
知识点总结
1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积或度数)成比例,则称这样的概率模型为几何概率模型,简称为几何概型。
2.几何概型的特点(1)试验中所有可能出现的基本事件有无限多个.(2)每个基本事件出现的可能性相等. 几何概型是高中数学课程改革中新增的内容,基础的知识点很好理解,但是在实际解题的时候总是会遇到这样或那样的问题,想要学好几何概型,首先要知道几何概型的思考方法。
高考数学总复习 第十章 第七节几何概型课件 理

根据条件S=x(12-x)<32,得x2-12x+32>0⇒0<x<4或8<x<12,则矩形面
积(miàn jī)小于32 cm2的概率P= 答案:C
4 .0故选(C12. 8) 2
12
3
第二十八页,共34页。
2.已知圆C:x2+y2=12,直线l:4x+3y=25.
(1)圆C的圆心到直线l的距离为________;
1
2
A. 8
B. 3
C. 4 于2 m”为事件(shìjiàn)A,则P(A)
= 2= 1.
63
(2)P(x∈[1,3])= 答案:(1) (2)C
区区间间[-[1,3,3]5的]的长长度度=故28=选14C. .
第十三页,共34页。
考点
与面积有关(yǒuguān)的几何概型
= S2 S S1 4 π故. 选D.
SS
4
答案(dáàn):D
第六页,共34页。
2.(2011·福州市质检)在区间[-π,π]内随机取两个数分别记为a, b,则使得函数f(x)=x2+2ax-b2+π2有零点(línɡ diǎn)的概率为( )
A.1-
C.1- π 4 π 6
B.1-
D.1- π-2 2
住它的本质特征,即与长度有关.
第十二页,共34页。
变式探究 (tànj1i.ū) (1)两根相距6 m的木杆上系一根绳子,并在绳子上挂一 盏灯,则灯与两端(liǎnɡ duān)距离都大于2 m的概率为 ________.
(2)(2011·湖南十二校联考)在区间[-3,5]上随机取一个数x,
则x∈[1,33]的概率为( 1 )
P(两人能会面)
高考数学复习讲义 第5讲 几何概型

第5讲 几何概型一、选择题1、如图,在边长为25cm 的正方形中挖去边长为23cm 的两个等腰直角三角形,现有均匀的粒子散落在正方形中,问粒子落在中间带形区域的概率是多少?A. 62596B.98625 C. 529625D. 68625解析 因为均匀的粒子落在正方形内任何一点是等可能的 所以符合几何概型的条件。
设A =“粒子落在中间带形区域”则依题意得正方形面积为:25×25=625两个等腰直角三角形的面积为:2×21×23×23=529带形区域的面积为:625-529=96∴P (A )= 62596答案 A2.一只蚂蚁在如图所示的地板砖(除颜色不同外,其余全部相同)上爬来爬去,它最后随意停留在黑色地板砖上的概率是( )A.14B.13C.15 D. 12 解析 每个小方块的面积相等,而黑色地板砖占总体的41123,故蚂蚁停留在黑色地板砖上的概率是13答案 B3. 如图的矩形长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,由此我们可以估计出阴影部分的面积约为( ). A.165 B.215C.235D.195解析 由几何概型的概率公式,得S 10=138300,所以阴影部分面积约为235,故选C. 答案 C4.在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为( ).A.16B.13C.23D.45解析 设出AC 的长度,先利用矩形面积小于32 cm 2求出AC 长度的范围,再利用几何概型的概率公式求解.设AC =x cm ,CB =(12-x )cm ,0<x <12,所以矩形面积小于32 cm 2即为x (12-x )<32⇒0<x <4或8<x <12,故所求概率为812=23. 答案 C5. 分别以正方形ABCD 的四条边为直径画半圆,重叠部分如图中阴影区域所示,若向该正方形内随机投一点,则该点落在阴影区域的概率为( ). A.4-π2 B.π-22 C.4-π4D.π-24解析 设正方形边长为2,阴影区域的面积的一半等于半径为1的圆减去圆内接正方形的面积,即为π-2,则阴影区域的面积为2π-4,所以所求概率为P =2π-44=π-22. 答案 B6.若利用计算机在区间(0,1)上产生两个不等的随机数a 和b ,则方程x =22a -2bx 有不等实数根的概率为( ).A.14B.12C.34D.25解析 方程x =22a -2bx ,即x 2-22ax +2b =0,原方程有不等实数根,则需满足Δ=(22a )2-4×2b >0,即a >b .在如图所示的平面直角坐标系内,(a ,b )的所有可能结果是边长为1的正方形(不包括边界),而事件A “方程x =22a -2bx 有不等实数根”的可能结果为图中阴影部分(不包括边界).由几何概型公式可得P (A )=12×1×11×1=12.故选B.答案 B 二、填空题7.在区间⎣⎢⎡⎦⎥⎤-π2,π2上随机取一个数x ,cos x 的值介于0至12之间的概率为________.解析 根据题目条件,结合几何概型的概率公式可得所求的概率为P =2⎝ ⎛⎭⎪⎫π2-π3π2-⎝ ⎛⎭⎪⎫-π2=13. 答案 138.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________. 解析 设A ={小波周末去看电影},B ={小波周末去打篮球},C ={小波周末在家看书},D ={小波周末不在家看书},如图所示,则P (D )=1-(12)2π-(14)2ππ=1316. 答案 13169.有一个底面圆的半径为1,高为3的圆柱,点O 1,O 2分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P ,则点P 到点O 1,O 2的距离都大于1的概率为________.解析 确定点P 到点O 1,O 2的距离小于等于1的点的集合为,以点O 1,O 2为球心,1为半径的两个半球,求得体积为V =2×12×43π×13=43π,圆柱的体积为V =Sh =3π,所以点P 到点O 1,O 2的距离都大于1的概率为V =1-4π33π=59. 答案 5910.已知正三棱锥S -ABC 的底边长为4,高为3,在三棱锥内任取一点P ,使得V P -ABC <12V S -ABC 的概率是________.解析 三棱锥P -ABC 与三棱锥S -ABC 的底面相同,V P -ABC <12V S -ABC 就是三棱锥P -ABC 的高小于三棱锥S -ABC 的高的一半,过高的中点作一平行底面的截面,这个截面下任取一点都符合题意,设底面ABC 的面积为S ,三棱锥S -ABC 的高为h ,则所求概率为:P =13Sh -13×14S ×12h 13Sh =78.答案 78三、解答题11.已知|x |≤2,|y |≤2,点P 的坐标为(x ,y ),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.思路分析 由题意画出图象可求面积之比. 解 如图,点P 所在的区域为正方形ABCD 的内 部(含边界),满足(x -2)2+(y -2)2≤4的点的区域 为以(2,2)为圆心,2为半径的圆面(含边界). ∴所求的概率P 1=14π×224×4=π16.12.已知关于x 的一次函数y =mx +n .(1)设集合P ={-2,-1,1,2,3}和Q ={-2,3},分别从集合P 和Q 中随机取一个数作为m 和n ,求函数y =mx +n 是增函数的概率;(2)实数m ,n 满足条件⎩⎨⎧m +n -1≤0,-1≤m ≤1,-1≤n ≤1,求函数y =mx +n 的图象经过一、二、三象限的概率. 解 (1)抽取的全部结果的基本事件有:(-2,-2),(-2,3),(-1,-2),(-1,3),(1,-2),(1,3),(2,-2),(2,3),(3,-2),(3,3),共10个基本事件.设使函数为增函数的事件为A ,则A 包含的基本事件有:(1,-2),(1,3),(2,-2),(2,3),(3,-2),(3,3),共6个基本事件,所以,P (A )=610=35.(2)m ,n 满足条件⎩⎨⎧m +n -1≤0,-1≤m ≤1,-1≤n ≤1的区域如图所示,要使函数的图象过一、二、三象限,则m >0,n >0,故使函数图象过一、二、三象限的(m ,n )的区域为第一象限的阴影部分,∴所求事件的概率为P =1272=17.13.已知集合A ={-2,0,2},B ={-1,1},设M ={(x ,y )|x ∈A ,y ∈B },在集合M 内随机取出一个元素(x ,y ).(1)求以(x ,y )为坐标的点落在圆x 2+y 2=1上的概率;(2)求以(x ,y )为坐标的点位于区域D :⎩⎨⎧x -y +2≥0,x +y -2≤0,y ≥-1内(含边界)的概率.解 (1)记“以(x ,y )为坐标的点落在圆x 2+y 2=1上” 为事件A ,则基本事件总数为6.因落在圆x 2+y 2=1上的点有(0,-1),(0,1)2个,即A 包含的基本事件数为2,所以P (A )=26=13.(2)记“以(x ,y )为坐标的点位于区域内”为事件B , 则基本事件总数为6,由图知位于区域D 内(含边界) 的点有:(-2,-1),(2,-1),(0,-1),(0,1), 共4个,即B 包含的基本事件数为4,故P (B )=46=23.14.甲、乙两艘船都要停靠同一个泊位,它们可能在一昼夜的任意时刻到达.甲、乙两船停靠泊位的时间分别为4小时与2小时,求有一艘船停靠泊位时必须等待一段时间的概率.解 甲比乙早到4小时内乙需等待,甲比乙晚到2小时内甲需等待.以y和x分别表示甲、乙两船到达泊位的时间,则有一艘船停靠泊位时需等待一段时间的充要条件为-2≤x-y≤4,在如图所示的平面直角坐标系内,(x,y)的所有可能结果是边长为24的正方形,而事件A“有一艘船停靠泊位时必须等待一段时间”的可能结果由阴影部分表示.由几何概型公式,得P(A)=242-12×222-12×202242=67288.故有一艘船停靠泊位时必须等待一段时间的概率是67 288.。
高考数学复习 专题14 计数原理与概率统计 几何概型考点剖析
几何概型
主标题:几何概型
副标题:为学生详细的分析几何概型的高考考点、命题方向以及规律总结。
关键词:几何概型,几何概型公式
难度:2
重要程度:4
考点剖析:
1.了解随机数的意义,能运用模拟方法估计概率.
2.了解几何概型的意义.
命题方向:
以选择题或填空题形式考查几何概型,可与二元一次不等式组所表示的平面区域、定积分、向量等知识交汇考查基本概念,基本运算、难度中等.
规律总结:
1.对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.
2.转化思想的应用
对一个具体问题,可以将其几何化,如建立坐标系将试验结果和点对应,然后利用几何概型概率公式.
知识梳理
几何概型
(1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
(2)特点:①无限性:在一次试验中,可能出现的结果有无限多个;
②等可能性:每个结果的发生具有等可能性.
(3)公式:
P(A)=
构成事件A的区域长度面积或体积
试验的全部结果所构成的区域长度面积或体积
.。
高考数学第一轮知识点总复习 第七节 随机数与几何概型
1.
举一反三
(2009·山东)在区间[-1,1]上随机取一个数x,
cos的 x值介于0到12之间的
2
概率为
()
A. 1 B.
C.2
1
D.
2
3
2
3
解析:在区间[-1,1]上随机取一个实数x,cos 的x值位于[0,1]区间,若使
2
的值co位s 于x
2
公式可知
答案:A
区间,取0到, 12的实数x应在2 区1间 p 3
第七节 随机数与几何概型
基础梳理
1. 几何概型的概念 事件A理解为区域Ω的某一子区域A,A的概率只与子区域A的几何度量成 正比,而与A的位置和形状无关,此种试验称为几何概型.
2. 几何概型的特点 (1)无限性:即在一次试验中,基本事件的个数可以是无限的. (2)等可能性:即每个基本事件发生的可能性是均等的.
6. 均匀随机数的应用 (1)用随机模拟法估计几何概率; (2)用随机模拟法计算不规则图形的面积.
典例分析
题型一 与长度、角度有关的几何概型
【例1】(2009·盐城模拟)某公共汽车站每隔10分钟有一辆汽车到达, 乘客到达车站的时刻是任意的,求一个乘客候车时间不超过7分钟的概率.
分析 因为乘客在两车间隔的10分钟内任何时刻都可能到,所以该事件包 含的基本事件是无限多个,并且每个事件发生的可能性都是一样的,故 是几何概型问题.
因此,阴影部分与单位正方形的面积比就反映了两人在约定时间范围内相 遇的可能性的大小,也就是所求的概率,即
P S阴影部分 S单位正方形
1-( 1 )2
3 12
8. 9
学后反思 对于几何概型的应用题,关键是构造出随机事件A对应的几何图 形,利用几何图形的度量来求随机事件的概率.根据实际问题的具体情况, 合理设置参数,建立适当的坐标系,在此基础上将试验的每一个结果一一 对应于该坐标系的一点,便可构造出度量区域.
高考数学复习:几 何 概 型
()
(4)与面积有关的几何概型的概率与几何图形的形状有
关. ( )
提示:(1)√.这是几何概型与古典概型的区别. (2)√.这是几何概型与古典概型的共同点. (3)×.从区间[1,10]内任取一个数,取到1的概率是0. (4)×.无论长度、角度、面积、体积、“测度”只与大 小有关,而与形状和位置无关.
3
6
=6 . 1
3
2
【规律方法】 长度、角度等测度的区分方法 (1)如果试验的结果构成的区域的几何度量可用长度表 示,则把题中所表示的几何模型转化为长度,然后求解. 解题的关键是构建事件的区域(长度).
(2)当涉及射线的转动、扇形中有关落点区域问题时, 应以角度的大小作为区域度量来计算概率,且不可用线 段的长度代替,这是两种不同的度量手段.
【题组练透】
1.(2019·西宁模拟)函数f(x)=2x(x<0),其值域为D,在
区间(-1,2)上随机取一个数x,则x∈D的概率是 ( )
A. 1
B. 1
C. 1
D. 2
2
3
4
3
【解析】选B.函数f(x)=2x(x<0)的值域为(0,1),即
D=(0,1),则在区间(-1,2)上随机取一个数x,则x∈D的
【解析】以A为圆心,以AD=1为半径作圆弧 DB 交 AC,AP,AB分别为C′,P′,B′.
依题意,点P′在 B上D任何位置是等可能的,且射线AP
与线段BC有公共点,则事件“点P′在 B上C”发生.
又在Rt△ABC中,易求∠BAC=∠B′AC′= .
故所求事件的概率P=BA=C
BAD
答案: 1
=75(s)的时间长度.根据几何概型的概率公式 可得,事件A发生的概率P(A)= 40 = 8 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学复习点拨约会型几何概型问题第一篇:高考数学复习点拨约会型几何概型问题谈“约会型”概率问题的求解由两个量决定的概率问题,求解时通过坐标系,借助于纵、横两轴产生公共区域的面积,结合面积产生问题的结论,我们称此类问题为“约会型”概率问题;“约会型”概率问题的求解,关键在于合理、恰当引入变量,再将具体问题“数学化”,透过数学模型,产生结论。
请看以下几例:例1、甲、乙两人约定在晚上7时到8时之间在公园门口会面,并约定先到者应等候另一个人一刻钟,这时即可离去,那么两人见面的概率是多少?解:以x轴和y轴分别表示甲、乙两人到达约会地点的时间,那么两人能见面的充要条件是|x-y|≤15,如图由于(x,y)的所有可能结果是边长为60的正方形,可能会面的时间由图中阴影部分所表示,记“两人能见面”为事件A602-4527=因此,两人见面的概率P(A)=16602点评:显然,“以x轴和y轴分别表示甲、乙两人到达约会地点的时间”很关键,由这一句,将一个实际问题引入了数学之门,进一步分析会发现:要见面x,y必须满足|x-y|≤15,于是,结论也就顺其自然的产生了。
例2、A、B两列火车都要在同一车站的同一停车位停车10分钟,假设它们在下午一时与下午二时随机到达,求这两列火车必须等待的概率;解:以x轴和y轴分别表示A、B两列火车到达的时间两列火车必须等待,则|x-y|≤10,如图由于(x,y)的所有可能结果是边长为60的正方形,可能等待的时间由图中阴影部分所表示,记“两列火车必须等待” 为事件A 602-50211=因此,这两列火车必须等待的概率是P(A)= 23660点评:本题与例1相同,“火车必须等待”,那么它们的到达时间差必须不大于10分钟,于是,将A、B两列火车到达车站的时间分别用x,y 表示,结论很快产生。
例3、小明每天早上在六点半至七点半之间离开家去学校上学,小强每天早上六点到七点之间到达小明家,约小明一同前往学校,问小强能见到小明的概率是多少?解:如图,方形区域内任何一点的横坐标表示小强的到达时间,纵坐标表示小明离开家的时间,由于区域内任意一点的出现是等可能的,因此,符合几何概型的条件;由题意,只要点落在阴影部分内,就表示小强能见到小明,即事件A发生,用心爱心专心⎧6≤x≤7⎪所以,由⎨6.5≤y≤7.5⎪y>x⎩1602-⨯30272得P(A)=,=86027即小强能见到小明的概率是。
8点评:与前两例很相似,但又有很大不同;两人的出发时间不同,如何将“相见”转化为数学式子?深入分析会发现6≤x≤7是小强到的时间,6.5<y<7.5是小明离家时间,要相见必须y>x,于是产生了一个不等式组,结合图形,分析面积产生结论。
例4、水池的容积是20m,向水池注水的水龙头A和水龙头B水的流速都是1m/小时,它们在一昼夜内随机开0~24小时,求水池不溢出水的概率。
解:设水龙头A开x小时,水龙头B开y小时,当然,33x≥0,y≥0,水池不溢出水,则x+y≤20记“水池不溢出水”为事件A,则A所占区域面积为1⨯20⨯20=200,整个区域的面积为24⨯24=576 2200≈0.35 由几何概型的概率公式,得P(A)=576即水池不溢出水的概率约为0.91。
点评:由两个龙头引出两个变量x、y,再抓住“流速相等且都在一昼夜内随机开0~24小时”,于是符合“约会型”,可仿照“约会型”进行求解。
例5、某同学到公共汽车站等车上学,可乘坐8路、23路,8路车10分钟一班,23路车15分钟一班,求这位同学等车不超过8分钟的概率。
解:设横轴表示23路车的到站时间,纵轴表示 8路车的到站时间,记“8分钟内乘坐8路车或23 路车”为事件A,则A所占区域面积为8⨯10+7⨯8=136整个区域的面积为10⨯15=150136≈0.91 150即这位同学等车不超过8分钟的概率约为0.91。
那么,等车不超过8分钟的概率P(A)=点评:本题两路公共汽车的到站时间恰好是两个变量,再抓住两车的的到站时间间隔,即可以转化为“约会型”概率,再仿照“约会型”概率进行求解。
例6、在一条长为2的线段上,(1)任取两点,求它们到中点距离平方和小于1的概率;(2)任取三点,求它们到中点距离平方和小于1的概率;解:(1)设线段上两点到线段中点的距离分别为|x|,|y|,记“它们到中点距离平方和用心爱心专心小于1”为事件A,则事件A:(x,y)|x2+y2<1,由于|x|≤1,|y|≤1{}π12⋅ππ=因此P(A)=,即到中点距离平方和小于1的概率为 2442(2)设线段上三点到线段中点的距离分别为|x|,|y|,|z|,记“它们到中点距离平方和小于1”为事件B,则事件B:(x,y,z)|x2+y2+z2<1,由于|x|≤1,|y|≤1,|z|≤1{}4π3⋅1ππ3因此,P(B)=,即到中点距离平方和小于1的概率为=3662点评:第一小问涉及的问题有一定的难度,首先引入两个变量,再将两个变量“横、纵”化有一定的技巧,当“横、纵”化以后,“约会型”的样子就见到了。
当然也就可以借助于“约会型”概率问题进行求解。
第二小问是第一问类比产生的,有了第一小问的求解,第二小问也就很自然了。
用心爱心专心第二篇:几何概型《几何概型(第1课时)》教学设计青海省民和县高级中学刘永宏一、教学内容解析本节课是人教版普通高中课程标准试验教科书数学(必修3)第三章第三节几何概型(第一课时)。
概率这章的核心是运用数学方法去研究不确定现象的规律,让学生初步形成科学的态度,辩证的思想,随机的观念去观察分析研究客观世界的态度寻求并获取认识世界的初步知识和科学方法。
本节课是第1课时,注重几何概型概念的建构,是一节概念新授课,也是为更广泛的满足随机模拟的统计思想需要而新增加的内容,同时也为应用数学解决实际问题提供了新的思想和方法。
由于概率统计的应用性强,在数学课程中,加强概率统计的份量成为必然,是学生已掌握一般型随机事件及概率的统计定义,以及古典概型的基础上的进一步发展,是等可能事件从有限向无限的延伸。
对学生去全面系统的掌握概率知识以及辨证思想的进一步形成具有良好的作用。
二、教学目标设置由于本节内容极能体现新课程理念,可以成为“知识与技能、过程与方法及情感态度价值观”三个目标有机融合的重要载体,从而实现三位一体的课程功能。
根据上述分析,我确定本节课的三维教学目标如下:(一)知识与技能:(1)体会几何概型的意义。
(2)了解几何概型的基本特点与古典概型的异同点、会进行简单的几何概型计算。
(二)过程与方法:学生通过自主探究,讨论交流,经历概念产生与发展的过程,进一步培养学生观察、分析、类比等逻辑推理能力,通过对本节知识的探究与学习,感知用图形解决概率问题的方法,渗透化归、数形结合等思想方法。
(三)情感、态度与价值观:本节课选材取例均来源于生活,学生积极参与探究,进一步树立数学是来源于生活而又服务于生活的意识,让学生感受生活中处处有数学,体会数学对自然与社会所产生的作用,使学生充分认识数学的价值,习惯用数学的眼光解决生活中的问题。
为了达到上面的教学目标和根据课程标准的要求,因此把学生能够正确区分几何概型及古典概型两者的区别和学生初步掌握并运用几何概型解决有关概率的基本问题作为教学重点。
教学难点是在几何概型中把实验的基本事件和随机事件与某一特定的几何区域及其子区域对应,确定适当的几何测度。
三、学生学情分析从学生的思维特点看,很容易把本节内容与古典概型的特点,计算方法等方面进行类比因此两者有联系这是积极因素,应因势利导,但是几何概型的计算方法与古典概型有本质的区别,这对学生的思维是一个突破。
几何概型的关键是建立合理的几何模型解决相关概率问题,通过建立基本事件与相应元素的对应,达到求解相关概率问题的目的,体现了数形结合的数学思想,是概率问题与几何问题的一种完美结合,学生前面已掌握了一般性的随机事件及概率的统计定义的基础上又学习了古典概型,在古典概型向几何概型的过渡和实际背景如何转化为相应区域的长度、面积、体积是会有一些困难,为了调动学生学习的兴趣,加深对知识的理解和应用,问题情境和例题,习题的选择都与日常生活息息相关。
四、教学策略分析高一的学生知识经验已较为丰富,具备了一定的自主探究能力和概括归纳能力,利用自主探索与合作交流的方式,由个别到一般,进行归纳的思路学习本节知识,教师在引导中唤醒学生的主体意识,发挥学生的主体能力及作用,让学生在参与中学会学习、学会合作、学会创新,真正成为课堂的主体。
因此采用“学生为主体,教师为主导”的“问题——探究”学习模式。
将几何概型的教学利用以旧引新、对比迁移、知识运用等方式,让学生感受数学知识形成的过程,让学生经历概念数学化的过程,从而让学生的思维从感性上升到理性,感知用图形解决概率问题的方法。
在教学过程利用不同的问题将概念形成的过程教学层层递进,促进学生的学习方式的转变,将学习的主动权较完整地交还给学生。
对于基础差和课前准备不充分的学生课堂上教师应指导和帮助,必要时课后做有针对的训练和辅导,学生才能逐渐地掌握方法和知识。
五、教学过程分析(一)复习问题一:古典概型的两个基本特点是什么?计算公式如何?m和n指什么?目的是复习古典概型的特点及计算公式为问题二作铺垫。
问题二:(赌博游戏):甲乙两赌徒掷骰子,规定掷一次谁掷出6点朝上则谁胜,请问甲、乙赌徒获胜的概率谁大?设计的目的是检查学生对古典概型的公式计算的掌握情况,从生活中的实例出发,自然顺利的提出对于有无限多个试验结果的情况相应的概率应如果求呢?(二)创设情境,引入新课,板书课题问题情境一:下图中有两个转盘,甲乙两人玩转盘游戏。
规定当指针指向B区域时,甲获胜,否则乙获胜。
在两种情况下分别求甲获胜的概率是多少?问题情境二:射箭比赛的箭靶是涂有五个彩色的分环.从外向内为白色、黑色、蓝色、红色,靶心是金色,金色靶心叫“黄心”.奥运会的比赛靶面直径为122cm,靶心直径为12.2cm.运动员在70m外射箭,假设每箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率是多少?问题情境三:有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率.问题情境中的转盘和射箭问题、取水问题因为这三个问题比较贴近实际生活,本着由易到难的原则,容易接受,让学生明白这三个问题的基本事件,同时也复习一下频率的计算方法。
用概率的统计定义是学生知道做试验计算频率这是研究概率所常用的方法。
然后让学生直观感知,此类问题与古典概型的区别和联系,进一步提出了三个问题为形成概念做准备。
(三)合作交流,探究概念学生讨论问题四:1、这三个概率问题与古典概型有什么区别?2、有没有和古典概型相同的地方呢?3、这三个例题的概率与什么有关?设计学生讨论交流活动的目的自己总结出古典概型与的几何概型区别与联系。