初中数学必背公式大全

合集下载

初中数学必背重要公式

初中数学必背重要公式

初中数学必背重要公式一、有理数 (1)二、整式的加减 (3)三、一元一次方程 (3)四、几何图形初步 (3)五、相交线与平行线 (4)六、实数 (4)七、平面直角坐标系 (4)八、二元一次方程组 (5)九、不等式与不等式组 (5)十、三角形 (6)十一、全等三角形 (6)十二、轴对称 (6)十三、整式的乘法与因式分解 (7)十四、分式 (7)十五、二次根式 (8)十六、勾股定理 (8)十七、平行四边形 (8)十八、一次函数 (9)十九、数据的分析 (9)二十、一元二次方程 (10)二十—、二次函数 (10)一、有理数1、相反数与绝对值(1)数a 的相反数是-a。

若a、b 互为相反数,则 a+b=0;反之,若 a+b=0,则 a、b 互为相反数.a(a>0),(2)绝对值计算∣a∣= 0(a=0),-a(a<0),a(a≧0),a(a>0),或∣a∣= 或∣a∣=-a(a<0), ------------------ a(a≦0)2、两个有理数大小的比较(1)在数轴上,右边的数总比左边的数大.(2)正数大于 0,负数小于 0,正数大于一切负数.(3)两个负数比较,绝对值大的负数反而小.3、有理数的运算4、有理数运算律(2)如果 a=b ,那么 ac=bc ;如果 a=b ,那么 = (c≠0)5、科学记数法把一个大于 10 的数记作a×10n的形式,其中a 大于或等于 1 且小于 10,即 1 ≤| a| <10,n 是正整数.二、整式的加减1、合并同类项的法则合并同类项时,将同类项的系数相加,所得的和作为系数,字母与字母的指数不变.2、去括号法则括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不改变;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号. 3、整式的加减法则整式的加减实质就是去括号、合并同类项,若有括号,就要先去掉括号,然后再合并同类项,直到结果中没有同类项为止.三、一元一次方程1、等式的基本性质(1)如果a=b ,那么 a+c=b+c ,a-c=b-ca bc c2、解一元一次方程的步骤四、几何图形初步1、直线、线段公理(1) 直线公理:两点确定一条直线. (2) 线段公理:两点之间,线段最短.2、角五、相交线与平行线1.相交线与垂线2.平行线3.命题、定理、证明六、实数1、平方根和立方根2、实数的性质(1)数a 的相反数是-a,这里a 表示任意一个实数.(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0 的绝对值是 0.各象限内点的坐标特点P(a,b) ①点在第一象限,则a>0,b>0;②点在第二象限,则a<0,b>0; ○3点在第三象限,则a<0,b<0;④点在第四象限,则a>0,b<0角平分线上点的特点P(a,b)①在一、三象限的角平分线上,a=b;②在二、四象限的角平分线上,a=-b平面直角坐标系中对称点的坐标特点P(a,b)①关于x 轴对称,横坐标相同,纵坐标互为相反数,即(a,-b);○2关于y 轴对称,横坐标互为相反数, 纵坐标相同,即(-a,b);○3关于坐标原点对称,横纵坐标都互为相反数,即(-a,-b)与坐标轴平行的直线上的点的坐标特点○1 与x 轴平行的直线上的所有点的纵坐标相同;○2 与y 轴平行的直线上的所有点的横坐标相同八、二元一次方程组a1x+b1y=c1,对于二元一次方程组a2x+b2y=c2.a1 b1(1) 当≠ (a2,b2≠0)时,方程组有唯一解.a2 b2a1 b1 c1(2) 当 = = (a2,b2,c2≠0)时,方程组有无数组解.a2 b2 c2a1 b1 c1(3) 当= ≠ (a2,b2,c2≠0)时,方程组无解.a2 b2 c2九、不等式与不等式组1.不等式性质性质 1:不等式的两边同时加(或减)同一个数或同一个含有字母的式子,不等号的方向不变,即如果a>b,那么a±m>b±m.性质 2:不等式的两边同时乘(或除)同一个正数,不等号的方向不变,即如果a>b 且 m>0,那么a bam>bm 或 > .m m性质 3:不等式的两边同时乘(或除)同一个负数,不等号的方向改变,即如果a>b 且m<0,那么a bam<bm 或 < .m m2.一元一次不等式组的解集不等式组(a<b)数轴表示解集口诀x>a,x>b a bx>b 同大取大x<a,x<b a bx<a 同小取小锐角三角形按角分类三角形按边分类不等边三角形等腰三角形底边和腰不相等的等腰三角形等边三角形x>a,x<ba ba<x<b 大小小大中间找x<a,x>ba b无解小小大大找不到十、三角形1、三角形的分类2、三角形三边关系三角形中任意两边的和大于第三边,三角形中任意两边的差小于第三边. 3、三角形内角和定理三角形三个内角的和等于180°.4、直角三角形的性质与判定性质;直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形. 5、三角形的外角性质(1)三角形的外角和为360°.(2)三角形的一个外角等于和它不相邻的两个内角的和.(3)三角形的一个外角大于和它不相邻的任何一个内角. 6、多边形的内角和与外角和(1) n 边形的内角和是(n-2)×180°.(2) n 边形的外角和为360°.十一、全等三角形1.全等三角形角形的判定方法内容符号适用范围定理 1 三条边分别对应相等的两个三角形全等SSS 所有三角形定理 2 两边及其夹角分别对应相等的两个三角形全等SAS 所有三角形定理 3 两角及其夹边分别对应相等的两个三角形全等ASA 所有三角形定理 4 两角及其中一个角的对边对应相等的两个三角形全等AAS 所有三角形定理 5 斜边和一条直角边对应相等的两个直角三角形全等HL 直角三角形2.角平分线的性质及判定(1)性质:角的平分线上的点到角的两边的距离相等.(2)判定:角的内部到角的两边距离相等的点在角的平分线上.十二、轴对称1.轴对称和线段垂直平分线的性质及判定轴对称的性质○1 关于某条直线对称的两个图形是全等形;○2 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点连线的垂直平分线;轴对称的判定若两个图形的对应点的连线被同一直线垂直平分,那么这两个图形关于这条直线对称线段的垂直平分线性质:线段垂直平分线上的点与这条线段两个端点的距离相等判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上2.三角形的性质及判定等腰三角形的性质○1 等腰三角形是轴对称图形;○2 等腰三角形的两个底角相等:○3 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等等边三角形的性质等边三角形的三个内角都相等,且都等于 60°等边三角形的判定○1 三条边都相等的三角形是等边三角形:○2 三个角都相等的三角形是等边三角形:○3 有一个角是 60°的等腰三角形是等边三角形直角三角形的性质○1 在直角三角形中,30°角所对的直角边等于斜边的一半:○2 直角三角形斜边上的中线等于斜边的一半十三、整式的乘法与因式分解1. 幂的有关法则2. 乘法公式3. 因式分解十四、分式1.分式的基本性质分式的分子与分母同乘(或除以)一个不等于 0 的整式,分式的值不变.即2.分式的运算法则十五、二次根式十六、勾股定理1.勾股定理如果直角三角形的两条直角边长分别是 a,b,斜边长为 c,那么a2 +b2=c2.2.勾股定理的逆定理如果三角形的三边长 a,b,c 满足a2 +b2=c2那么这个三角形就是直角三角形. 十七、平行四边形1.几种特殊四边形常用的判定方法平行四边形1 两组对边分别平行的四边形是平行四边形:2 两组对边分别相等的四边形是平行四边形:3 两组对角分别相等的四边形是平行四边形:4 对角线互相平分的四边形是平行四边形:5 一组对边平行且相等的四边形是平行四边形矩形1 有一个角是直角的平行四边形是矩形;○2 有三个角是直角的四边形是矩形○3 对角线相等的平行四边形是矩形菱形1 一组邻边相等的平行四边形是菱形:2 对角线互相垂直的平行四边形是菱形:3 四条边都相等的四边形是菱形正方形1 有一组邻边相等的矩形:2 对角线互相垂直的矩形:3 有一个角为直角的菱形:4 对角线相等的菱形2.中位线三角形的中位线平行于第三边,并且等于第三边的―半.十八、一次函数1.正比例函数的图象和性质2.—次函数的图象和性质十九、数据的分析二十、一元二次方程二十—、二次函数23. 二次函数y=ax2 +bx+c 的性质有关抛物线: y=ax2 +bx+c 的符号问题:(1) a 的符号:由抛物线的开口方向确定①开口向上 a>0:②开口向下 a<0。

初中数学必背重要公式

初中数学必背重要公式

初中数学必背重要公式初中数学是数学学习的基础阶段,掌握好这个阶段的重要公式对于后续的学习至关重要。

本文将根据初中数学必背的重要公式,阐述其含义、推导过程和应用范围,以帮助读者更好地理解和运用这些公式。

一、乘法公式1、平方差公式:(a+b)(a-b)=a^2-b^2 该公式用于两个数相乘,其中两个数的差等于它们的平方差。

在因式分解、计算代数式值等场合中应用广泛。

2、完全平方公式:(a+b)的平方 = a的平方 + 2ab + b的平方该公式用于两个数相加,它们的和的平方等于它们的平方和加上它们的积的2倍。

在计算二次方程、三角形和矩形的面积等方面有重要应用。

二、勾股定理勾股定理:直角三角形两条直角边的平方和等于斜边的平方。

即,如果一个三角形的两个角度相等且均为90度,那么这两个角度所对应的两条边的平方和等于第三条边的平方。

在计算直角三角形的面积、解决实际问题等方面有广泛应用。

三、分式运算1、分式的乘法:分式相乘,分子的积作为积的分子,分母的积作为积的分母。

2、分式的除法:分式相除,把除式的分子分母颠倒位置后与被除式相乘。

3、分式的乘方:分式乘方等于分子分母分别乘方。

四、二次根式1、最简二次根式:不含能开方的因数或因式,不含分母的二次根式称为最简二次根式。

2、二次根式的乘法:二次根式相乘,等于被开方数的积的算术根。

3、二次根式的除法:二次根式相除,等于被开方数的商的算术根。

五、三角函数1、正弦定理:三角形边长与角度的关系,即任意两边之比等于第三边边长的正弦值除以余弦值。

2、余弦定理:三角形边长与角度的关系,即任意两边之和等于第三边边长的余弦值乘以正弦值。

3、三角函数的基本关系:正弦定理、余弦定理和正切定理是三角函数的基本关系,用于解决与三角形边长和角度相关的问题。

六、不等式1、不等式的性质:不等式具有传递性、加法单调性、乘法单调性和不等式的可加性等性质,用于解决不等式问题。

2、一元一次不等式的解法:将不等式转化为若干个不等式组的解集,从而得到原不等式的解集。

初中数学必背公式及定理

初中数学必背公式及定理

初中数学必背公式及定理1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离一样的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角〕31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,则这两个角所对的边也相等〔等角对等边〕35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°则它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于*条直线对称的两个图形是全等形43 定理 2 如果两个图形关于*直线对称,则对称轴是对应点连线的垂直平分线44定理3 两个图形关于*直线对称,如果它们的对应线段或延长线相交,则交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,则这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,则这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于〔n-2〕×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=〔a×b〕÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过*一点,并且被这一点平分,则这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,则在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=〔a+b〕÷2 S=L×h83 (1)比例的根本性质如果a:b=c:d,则ad=bc如果ad=bc,则a:b=c:d84 (2)合比性质如果a/b=c/d,则(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),则(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边〔或两边的延长线〕,所得的对应线段成比例88 定理如果一条直线截三角形的两边〔或两边的延长线〕所得的对应线段成比例,则这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边〔或两边的延长线〕相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似〔ASA〕92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似〔SAS〕94 判定定理3 三边对应成比例,两三角形相似〔SSS〕95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,则这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

初中数学-中考数学必背公式大全

初中数学-中考数学必背公式大全

中考数学必背公式大全(1)1 同角或等角的补角相等2 同角或等角的余角相等3 过两点有且只有一条直线4 两点之间线段最短5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS)有三边对应相等的两个三角形全等26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 定理线段垂直平分线上的点和这条线段两个端点的距离相等38 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上39 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半40 直角三角形斜边上的中线等于斜边上的一半41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形69 正方形性质定理1 正方形的四个角都是直角,四条边都相等70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 对角线相等的梯形是等腰梯形75 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等76 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰77 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边78 等腰梯形性质定理等腰梯形在同一底上的两个角相等79 等腰梯形的两条对角线相等80 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形81 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d82 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d83 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b84 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半85 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。

初中数学146个常见定理和公式大全

初中数学146个常见定理和公式大全

初中数学146个常见定理和公式大全1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理三角形两边的和大于第三边【戳下方链接↓↓↓,免费领取小学初中学习资料历年真题和试听课程!还能与其他同学家长一起交流分享学习经验哦!】16.推论三角形两边的差小于第三边17.三角形内角和定理三角形三个内角的和等于180°18.推论1直角三角形的两个锐角互余19.推论2三角形的一个外角等于和它不相邻的两个内角的和20.推论3三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23.角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24.推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25.边边边公理(SSS)有三边对应相等的两个三角形全等26.斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27.定理1在角的平分线上的点到这个角的两边的距离相等28.定理2到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31.推论1等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33.推论3等边三角形的各角都相等,并且每一个角都等于60°34.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1三个角都相等的三角形是等边三角形36.推论2有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1关于条直线对称的两个图形是全等形43.定理2如果两个图形关于直线对称,那么对称轴是对应点连线的垂直平分线44.定理3两个图形关于直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247.勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48.定理四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理n边形的内角的和等于(n-2)×180°51.推论任意多边的外角和等于360°52.平行四边形性质定理1平行四边形的对角相等53.平行四边形性质定理2平行四边形的对边相等54.推论夹在两条平行线间的平行线段相等55.平行四边形性质定理3平行四边形的对角线互相平分56.平行四边形判定定理1两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3对角线互相平分的四边形是平行四边形59.平行四边形判定定理4一组对边平行相等的四边形是平行四边形60.矩形性质定理1矩形的四个角都是直角61.矩形性质定理2矩形的对角线相等62.矩形判定定理1有三个角是直角的四边形是矩形63.矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65.菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1四边都相等的四边形是菱形68.菱形判定定理2对角线互相垂直的平行四边形是菱形69.正方形性质定理1正方形的四个角都是直角,四条边都相等70.正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71.定理1关于中心对称的两个图形是全等的72.定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理如果两个图形的对应点连线都经过其中一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83.(1)比例的基本性质如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85.(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91.相似三角形判定定理1两角对应相等,两三角形相似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93.判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94.判定定理3三边对应成比例,两三角形相似(SSS)95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96.性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97.性质定理2相似三角形周长的比等于相似比98.性质定理3相似三角形面积的比等于相似比的平方99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101.圆是定点的距离等于定长的点的集合102.圆的内部可以看作是圆心的距离小于半径的点的集合103.圆的外部可以看作是圆心的距离大于半径的点的集合104.同圆或等圆的半径相等105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106.和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107.到已知角的两边距离相等的点的轨迹,是这个角的平分线108.到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109.定理不在同一直线上的三点确定一个圆。

数学计算公式大全初中必背

数学计算公式大全初中必背

数学计算公式大全初中必背
在初中数学学习中,掌握一些常见的数学计算公式可以帮助同学们更好地理解和解决数学题。

下面就来总结一些初中必背的数学计算公式,希望对大家的学习有所帮助。

1. 代数公式
1.1 二次方程求根公式
对于二次方程ax2+bx+c=0,其根的求法是:
x=−b±√b2−4ac
2a
1.2 两点间距离公式
如果两点P1(x1,y1)和P2(x2,y2),则点之间的距离为:
√(x2−x1)2+(y2−y1)2 2. 几何公式
2.1 三角形周长
对于三角形,周长为三边之和,即a+b+c。

2.2 三角形面积
三角形面积计算公式为:
1
2
×底×高
2.3 圆的面积和周长
圆的面积计算公式为:
πr2
其中r为半径。

圆的周长计算公式为:
2πr
3. 比例公式
3.1 百分比
×100%将分数用百分数表示时,需要将分子除以分母,再乘以100,即:分子
分母
3.2 比例
比例表示两个数量之间的关系,一般表示为a:b。

4. 统计公式
4.1 平均数
一组数的平均数计算方法为将所有数相加,再除以数的个数。

4.2 中位数
如果一组数已经从小到大排列,中位数就是位于中间的那个数。

如果数的个数是偶数,则中位数为中间两个数的平均值。

以上是初中数学学习中需要掌握的一些常见数学计算公式,希望大家能够多加练习,提高数学计算能力,取得更好的学习成绩。

数学公式大全初一必背

数学公式大全初一必背

数学公式大全初一必背数学是一门基础学科,对于初中学生来说,掌握数学公式是非常重要的。

本文将为初一学生总结一份数学公式大全,帮助他们提高学习效率和解题能力。

1. 数字运算1.1. 加法加法是数学中最基础的运算之一,两个数相加得到一个新的数。

加法的性质有:•交换律:a + b = b + a•结合律:(a + b) + c = a + (b + c)•零元素:a + 0 = a,其中0为零元素1.2. 减法减法是加法的逆运算,根据减法定义,有a - b = c,其中a为被减数,b为减数,c为差。

减法的性质有:• a - 0 = a• a - a = 01.3. 乘法乘法是将两个数相乘得到一个新的数。

乘法的性质有:•交换律:a × b = b × a•结合律:(a × b) × c = a × (b × c)•分配律:a × (b + c) = a × b + a × c1.4. 除法除法是乘法的逆运算,根据除法定义,有a ÷ b = c,其中a为被除数,b为除数,c为商。

除法的性质有:• a ÷ 1 = a• a ÷ a = 12. 表达式与方程2.1. 表达式表达式是由数字和运算符组成的算式。

常见的表达式形式有:• a + b:加法表达式• a - b:减法表达式• a × b:乘法表达式• a ÷ b:除法表达式2.2. 方程方程是数学中的等式,由两个表达式用等号连接而成。

常见的方程形式有:• a + b = c:加法方程• a - b = c:减法方程• a × b = c:乘法方程• a ÷ b = c:除法方程3. 几何图形3.1. 点、线、面几何图形研究的对象主要有点、线和面。

•点:几何图形中最小的单位,没有长度、面积和体积。

•线:由一系列点按照一定规律连接而成,没有宽度。

初中数学必背方程式

初中数学必背方程式

初中数学必背方程式正棱锥侧面积:S=1/2c*h',正棱台侧面积:S=1/2(c+c')h'。

正弦定理:a/sinA=b/sinB=c/sinC=2R,注:其中R表示三角形的外接圆半径。

余弦定理 b2=a2+c2-2accosB,注:角B是边a和边c的夹角。

初中数学必背方程式1.圆台侧面积:S=1/2(c+c')l=pi(R+r)l,球的表面积:S=4pi*r2;2.圆柱侧面积:S=c*h=2pi*h,圆锥侧面积:S=1/2*c*l=pi*r*l;3.弧长公式:l=a*r,a是圆心角的弧度数r〉0,扇形面积公式:s=1/2*l*r;4.锥体体积公式:V=1/3*S*H,圆锥体体积公式:V=1/3*pi*r2h;5.斜棱柱体积:V=S'L,注:其中,S'是直截面面积,L是侧棱长;6.柱体体积公式:V=s*h,圆柱体:V=pi*r2h;7.正弦定理:a/sinA=b/sinB=c/sinC=2R,注:其中R表示三角形的外接圆半径;8.余弦定理:b2=a2+c2-2accosB,注:角B是边a和边c的夹角;9.圆的标准方程:(x-a)2+(y-b)2=r2,注:(a,b)是圆心坐标;10.圆的一般方程:x2+y2+Dx+Ey+F=0,注:D2+E2-4F〉0;11.抛物线标准方程:y2=2px,y2=-2px,x2=2py,x2=-2py;12.直棱柱侧面积:S=c*h,斜棱柱侧面积:S=c'*h;13.正棱锥侧面积:S=1/2c*h',正棱台侧面积:S=1/2(c+c')h'。

三角函数公式(1)两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)(2)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a口诀巧记忆初中数学知识点1、有理数的加法:同号相加一边倒;异号相加"大"减"小"。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 7 页 初中数学必背公式大全 1 同角或等角的补角相等 2 同角或等角的余角相等 3 过两点有且只有一条直线 4 两点之间线段最短 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 第 2 页 共 7 页

27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 38 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 39 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 40 直角三角形斜边上的中线等于斜边上的一半 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47 勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48 定理 四边形的内角和等于360° 49 四边形的外角和等于360° 50 多边形内角和定理 n边形的内角的和等于(n—2)×180° 51 推论 任意多边的外角和等于360° 第 3 页 共 7 页

52 平行四边形性质定理1 平行四边形的对角相等 53 平行四边形性质定理2 平行四边形的对边相等 54 推论 夹在两条平行线间的平行线段相等 55 平行四边形性质定理3 平行四边形的对角线互相平分 56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60 矩形性质定理1 矩形的四个角都是直角 61 矩形性质定理2 矩形的对角线相等 62 矩形判定定理1 有三个角是直角的四边形是矩形 63 矩形判定定理2 对角线相等的平行四边形是矩形 64 菱形性质定理1 菱形的四条边都相等 65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66 菱形面积=对角线乘积的一半,即S=(a×b)÷2 67 菱形判定定理1 四边都相等的四边形是菱形 68 菱形判定定理2 对角线互相垂直的平行四边形是菱形 69 正方形性质定理1 正方形的四个角都是直角,四条边都相等 70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71 定理1 关于中心对称的两个图形是全等的 72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称

74 对角线相等的梯形是等腰梯形 75 平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

76 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 第 4 页 共 7 页

77 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边 78 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 79 等腰梯形的两条对角线相等 80 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 81 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 82 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d 83 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b

84 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半 85 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h 86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) 94 判定定理3 三边对应成比例,两三角形相似(SSS) 95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比 98 性质定理3 相似三角形面积的比等于相似比的平方 第 5 页 共 7 页

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

101 圆是定点的距离等于定长的点的集合 102 圆的内部可以看作是圆心的距离小于半径的点的集合 103 圆的外部可以看作是圆心的距离大于半径的点的集合 104 同圆或等圆的半径相等 105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107 到已知角的两边距离相等的点的轨迹,是这个角的平分线 108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 109 定理 不在同一直线上的三点确定一个圆。 110 垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111 推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112 推论2 圆的两条平行弦所夹的弧相等 113 圆是以圆心为对称中心的中心对称图形 114 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

115 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116 定理 一条弧所对的圆周角等于它所对的圆心角的一半 117 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 118 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

119 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径 120 推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 121 推论1 经过圆心且垂直于切线的直线必经过切点

相关文档
最新文档