手性药物的制备

手性药物的制备
手性药物的制备

手性药物的制备

摘要手性化合物对映异构体进入生命体后会表现出不同的药理学立体选择性,进而产生不同的生物活性、毒性及代谢等,因此对手性药物的深入研究必须将

其所有的光学对映体在相同条件下同时对照进行生物学评价试验,以确定是以

外消旋体还是以其某一光学活性体作为所要上市的新药。手性药物的制备是手

性药物研究及应用的基础和关键,手性技术的发展使得制备大量单一对映体成

为可能。

关键词手性药物制备途径新进展

1 手性药物按其对映异构体的生理作用一般分成如下几种类型:

(1)对映异构体具有完全不同的药理作用。如:其中一个异构体是药物而

另一异构体为毒物或另一类药物。乙胺丁醇构型有抗结核菌作用,而其对映(R·R)构型有致盲作用;多巴(Dopa 3)(S)—异构体用于治疗帕金森症(S)一异构体有严重的毒副作用。

(2)异构体中一个有活性,另一个则没有活性,活性异构体的药理活性是

外消旋体的2倍。如氯霉素左旋体有杀菌作用,右旋体无药效。

(3)对映体性质类似,但活性强弱不同的药理作用。新型优良的非甾体类

抗炎镇痛药荼普生,其(S)—异构体是(R)—异构体活性的35倍;普荼洛尔

的两个异构体都有β-阻滞作用,但S(-)异构体比R(+)异构体作用强100倍。

(4)两个异构体都具有近似的定性和定量的药理作用。如:异丙嗪二个异

构体有相同的抗组织胺的活性和毒性。

2 获取手性药物的途径

一般可从生物体中、酶催化和外消旋体拆分法获取手性药物,近年来,随

着合成方法的发展和先进分析技术的出现,越来越多的手性化合物可通过化学

合成方法得到,不对称合成已成为获取手性物质的重要手段,也成为最有希望、最具活力的研究领域。

2.1 从天然物中提取

在某些生物体中含有具备生理活性的天然产物,可用适当的方法提取而得到手性化合物,某些手性药物是从动植物中提取的氨基酸、萜类化合物和生物碱。如:具有极强抗癌活性的紫彬醇最初是从紫彬树树皮中发现和提取的,现已实现了不对称合成。

2.2 酶法转化

酶属于生物催化剂,是化学手性合成的强有力工具。酶促反应具有化学选择性、区域选择性和对映体选择性。用酶进行手性合成即称为酶法转化,也称生物转化。1992年Santaniello等评价了在各种反应中所用的酶,表明酶在手性合成中具有广泛的应用前景,绝大多数生物转化反应所需条件温和、产物单纯、易于纯化且不污染环境。酶是具备控制立体构型的生物催化剂,底物在特定酶的作用下可产生单一对异构体。如:Yamada等和Snamprogetti等在微生物中发现了能催化产生: = 氨甲酰基=2 = 氨基酸的海因酶。海因酶用于工业上生产2=苯甘氨酸和2=对羟基苯甘氨酸)。2=苯甘氨酸和2=对羟基苯甘氨酸是生产重要的临床用药半合成。内酰胺抗生素(氨苄青霉素、羟氨苄青霉素、氨苄头孢霉素、羟氨苄头孢霉素)的重要侧链。酶法转化已成为生物催化与有机化学合成交叉学科的新研究热点。目前,生物转化已涉及羟基化、环氧化、脱氢、氢化等氧化还原应,而且在水解、水合、酯化、酯转移、脱水、脱羧、酰化、胺化、异构化和芳构化等各类化学反应中的前景看好[1]。

2.3 酶法拆分手性药物

酶法拆分(enzymatic resolution)是一种比较成熟的生物合成单一对映体的方法。酶的活性中心是一个不对称环境,有利于识别消旋体,在一定条件下酶只能催化消旋体中的一个对映体发生反应而生成不同的化合物,从而使两个对映体分开。酶的固定化技术、多相反应器等新技术13趋成熟,大大促进了酶拆分技术的发展,脂肪酶、酯酶、蛋白酶、转氨酶等诸多酶类已能用于外消旋体的拆分。

2.4 酶催化合成手性药物

最近发展的主要是微生物或酶直接转化,或利用氧化还原酶、合成酶、裂

解酶、水解酶、羟化酶、环氧化酶等直接从前体化合物不对称合成各种复杂的

手性化合物。该法不需制备前体衍生物,可将前体100%地转化为手性目标产物,因此具有更大的工业价值。酶的体外定向进化技术、抗体酶、交联酶晶体、反

胶束酶、固定化酶、酶的修饰及非水相酶学等都是当今酶学研究的活跃领域,

这些技术的发展与完善必将推动手性药物转化的研究[2]。

2.5 不对称合成

Morrison和Mosherl将不对称合成定义为:“一个反应,其中底物分子整体中的非手性单元由反应剂以不等量生成立体异构产物的途径转化为手性单元。

也就是说,不对称合成是这样一个过程,它将潜手性单元转化为手性单元,使

得产生不等量的立体异构产物A 。不对称合成是获取手性药物最直接的方法。

不对称合成包括从手性分子出发来合成目标手性产物或在手性底物的作下将潜

手性化合物转变为含一个或多个手性中心的化合物,手性底物可以作为剂、催

化剂及助剂在不对称合成中使用,因而,手性合成可分为:手性源合成、手性

助剂法、手性试剂法及不对称催化法。

2.6 手性源合成

在手性源合成中,所有的合成转变都必须是高度立体选择性的,通过这些

反应最终将手性源分子转变成目标手性分子。碳水化合物、有机酸(如酒石酸、乳酸等)、氨基酸、萜类化合及生物碱是非常有用的手性合成起始原料,并可

用于复杂分子的全合成中。如:可以&%半胱氨酸作为手性源合成Biotin(维生

素H,eq5);周维善等利用从天然植物中提取的香茅醛为手性源经近二十步反

应合成了青蒿素[3]。

2.7 手性助剂法

手性助剂法利用手性辅助剂和底物作用生成手性中间体,经不对称反应后

得到新的反应中间体,回收手性剂后得到目标手性分子。用于控制醇醛缩合产

物立体构型的手性口恶唑烷酮(Evan试剂,eq7)就是利用了手性辅助剂来进行

不对称合成。以酮类化合物为原料,利用手性助剂———酒石酸酯制备药物(R)—荼普生是工业生产的一个实例(eq8)。缩酮的取代反应主要生成非对映异构体RRS,经重排和水解生成(S)—荼普生[4]。

2.8 手性试剂法

用手性试剂和前手性化合物作用生成新的手性化合物。如;q-蒎烯获得的

手性硼烷基化试剂(Ipc)BH(eq9)已用于前列腺素中间体的制备

2.9 不对称催化反应

在不对称合成的诸多方法中,最引入注目的是不对称催化法,它具有手性

增殖、高对映选择性、经济,易于实现工业化的优点,是最有希望、最有前途

的合成手性性药物的方法。不对称催化最强有力而独特的优势是手性增殖,通

过催化反应量级的手性原始物质来立体选择性地生产大量目标手性产物,不需

要像化学计量不对称合成那样消耗大量的手性试剂,日本高砂公司利用BINAP-

Rh催化的亚胺不对称异构化反应技术,在1983-1996年间已生产了近三万吨薄荷醇及其中间体,而消耗掉的手性配体仅250Kg。另外,不对称催化反应的普遍特点是潜手性底物来源广泛,价廉易得,立体选择性好,即可生成8%异构体也可

生成R-异构体,可适用于生产不同需要的目的产物。目前,已进行研究不对称

催化氢化、不对称氧化、不对称催化环丙烷化、不对称羰基化、不对称氢转移

等多种不对称催化反应。不对称催化发展迅速,20世纪80年代中,获工业应用

的不对称催化反应只有5种,至90年代初已增至14种以上,其中有不少反应已用于医药及医药中间体的生产。如何设计新型高效的手性配体、如何解决催化剂

的稳定性和回收问题是不对称合成的关键;由手性科学产生的不对称合成方法,如不对称放大、手性活化、手性组合化学、手性毒化、手性固载、手性有机小

分子催化等概念也为手性药物的发展提供新的研究方向[5]。

3 拆分外消旋体

不考虑工业生产,仅从获得纯对映体以供生物学评价的角度来考虑,通过

拆分外消旋体来制备光学活性体是最合适的方法,因为它可同时获得两个纯对

映体。拆分对映体的办法很多,主要分为非色谱法和色谱法两大类,其基本原

理大多是把对映体的混合物转换成非对映体,然后利用化学或物理性质上的差

异使之分开。常用的非色谱分离法主要有分布结晶法和非对映体选择结晶法,

也包括微生物或酶的消化[J].sI。但是这些方法耗时较长、过程繁复,而且也

不能制得较纯的对映体,因此难以被现代化工业普遍接受。从2O世纪8O年代开始,色谱法成为对映体分离的一个主要工具,包括气相色谱、液相色谱、超临

界色谱、毛细管电泳和分子烙印法等在内的几乎所有色谱和准色谱手段都已涉

足对映体分离这一领域[7].

3.1 色谱法

液相色谱法:20世纪8O年代。随着手性固定相和添加剂研究的加速,以及

一些重要机制的阐明、理论问题的初步解决,利用高效液相色谱(HPLC)法对药

物对映体进行拆分和测定已取得了令人瞩目的进展,液相色谱逐渐发展成为对

映体分离的一种最重要手段,它具有重现性好、分离度较高、检测范围宽、流

动相种类多等优点。HPLC法分离药物对映体的方法可分为间接法和直接法两大类,前者又称手性试剂衍生化(CDR)法,后者又可分为手性流动相添加剂(CMPA)法和手性固定相(CSP)法 1。两者的共同特点是均以现代HPLC技术为基础,并引入不对称中心(或光活性分子)。引入手性环境使药物对映体间呈现物理特征的

差异是其HPLC拆分的基础。CDR法是指药物对映体在用HPLC分离前,先与有高光学纯度的手性衍生化试剂(CDA)反应形成非对映体,再以常规HPLC进行分离测定。目前常用的手性衍生化试剂有酰化试剂、胺类试剂、异(硫)氰酸酯类、氯甲酸

酯类、邻苯二醛和手性硫醇等。CMPA法是将手性试剂直接加入到流动相中,然

后再使用常规的正相或反相柱对手性物质进行拆分。常用的手性添加剂有环糊

精类手性试剂、手性冠醚、手性蛋白质及氨基酸、配位体金属离子交换剂、手

性离子对试剂和手性氢键试剂等。手性固定相是由担体键合高光学纯度的手性

对映体制作而成,主要分为蛋白质类键合相、Pirkh型手性固定相、环糊精手性键合固定相、纤维素和多糖衍生物手性固定相、冠醚类键合相、配位基交换相等”川。气相色谱(GC)法:是较早用来进行对映体分离的一种色谱方法,可分

为直接分离法和间接分离法。间接分离法又称CDR法;直接分离法是通过使用一个具有光学活性的环境,即手性固定相来提供拆分所需要的手性中心,因此称

作CSP法“z 。一般来说,GC法速度快、简单、灵敏,在分离对映体时分离度的

重复性和精密度都很高,对于可挥发的热稳定手性分子优势明显。但GC存在着

一些固有的局限性。其中包括要求被分离的样品是挥发性的;操作温度相对较高,因此使非对映异构体之间的相互作用能差别变小,对映体分离困难;柱温

高会引起手性固定相消旋,导致对映体选择性降低。一般来说,GC要实现制备

比较困难。相比之下,液相色谱则没有上述局限性。超临界流体色谱(src)法:SFC是一种以超临界流体为流动相的色谱法。超临界流体为一种在临界压力和临界温度以上相区的流体,其特性介于液体与气体之间。SFC具有高效、快速、操作条件易于变换等特点,已成为在手性分离方面与HPLC及GC相互补充并独具优

越性的一种手段Il 。超临界流体的黏度近于气体,可减少传质阻力;其密度与液体相似,因此又有强溶解能力,适于分离难挥发和热稳定性差的物质。与HPLC相比,SFC分析时间缩短,具有单位时间内更高的分离度”。SFC的分离方式主要有手性固定相法和手性流动相添加剂法“ i。可作流动相的超临界流体

物质较多、易得,对环境的污染及操作人员的毒性较少。SFC法的流动相易于去除,使其成为制备光学纯药物的有潜力的技术。目前手性固定相法的发展最快,几乎所有的HPLC和GC手性固定相都可用于SFC法手性拆分,但SFC需在高压下操作,对设备和技术的要求较高,这也限制了其在手性分离上的应用。

3.1.2 毛细管电泳(CE)法:

CE法是以高压电场为驱动力,以毛细管为分离通道,利用样品中各组分之

间淌度(或称迁移率)和分配行为的差异而实现分离。作为20世纪80年代以来新

兴的一种分离技术,CE法因具有高效、快速、简便等特点而被广泛应用于药物、生物、大分子、临床医学等领域。在手性分离方面,CE法显示了巨大的潜力。

按照CE的操作模式、分离方式可分为毛细管区带电泳(CZE)、毛细管凝胶电泳(CGE)、胶束电动色谱(MECC)和毛细管电色谱体系(CEC)。毛细管电泳在准确度、精密度、检测限、线性范围及重现性等方面均已达到甚至超过了HPLC,例如过

程控制中可测出0.2%的手性杂质”。但手性CE最大的缺点在于不能达到像HPLC那样规模的制品。其他色谱拆分法:包括

薄层色谱(TLC)法

快速柱色谱(flashchromatography)

模拟移动床色谱(simulated movingbedchromatogra.phy,SMB)法

逆流色谱(countercurrentchromatography,CCC)法

电分离微柱液相色谱(CEC)法等。

TLC是最简便的色谱技术之一,先进的TLC采用分子烙印技术,利用其作手性固定相;快速柱色谱法是通过泵产生压力(低压),加速流动相通过预填充柱子的洗脱速度,是一种快速制备柱层析形式;SMB法实际上是多根色谱柱的串联形成循环回路,从而提高效率、减少损失;CCC法是一种不用固态支撑体或载体的液液分离技术,在分离过程中完全消除了气相、液相色谱中常见的不可逆吸附现象,不会破坏分子,适用于分离极性大的手性化合物及生物大分子;CEC法是近年来综合了HPLC法和CE法的优势而发展起来的技术[8]。

3.2 非色谱法

诱导结晶拆分法:在外消旋体的过饱和溶液中,加入一定量的一种旋光体的纯晶体作为晶种,于是溶液中该旋光体含量较多,且在晶种的诱导下优先结晶析出,将这种结晶滤出后,则另一种旋光体在滤液中相对较多,再加入外消旋体制成过饱和溶液,于是另一种旋光体优先结晶析出,如此反复结晶,就可以把一对对映体完全分开。应用这种拆分法,消旋体必须是两个对映体独立存在的消旋混合物,消旋体的溶解度应比任何一种对映体大,在一种对映体结晶析出时,消旋体仍留在母液中,才能达到分离的目的。如加入一氨基物拆分氯霉素中间体DL一氨基物,加人D一或一甲基多巴拆分DL一多巴。化学拆分法:化学拆分通常是应用光学纯的拆分试剂与消旋体形成两个非对映体盐,通过分馏、结晶等法将两个盐分开,再将其转化成两个相应的对映体。例如,应用d一酒石酸拆分肾上腺素、苯肾上腺素、对羟基苯甘氨酸和乙胺丁醇中间体?肖旋氨基丁醇,应用d一樟脑磺酸拆分苯甘氨酸和四咪唑等。经典的化学拆分法最适用于酸或碱的外消旋体的拆分,20世纪80年代,日本化学家Toda将主一客化学引入化学拆分,发明了所谓“包结拆分法”(resolution inclusion method)。手性主体化合物通过氢键和分子间的次级作用(如霄一叮r作用)与客体分子中的一个对映异构体形成稳定的包结络合物(inclusion complex)而析出。包结络合物的形成在主一客分子之间存在强的分子识别和选择作用,从而实现对映体的分

离包结拆分法拆分的化合物不只局限于有机酸和有机碱,它的应用对象更广泛。膜分离技术:氨基酸的生物转移通常由嵌于生物膜中的载体蛋白传递完成,这

种传递的对映体选择性非常高。人们模拟这种生物过程,为分离手性药物对映

体发明了膜分离技术。1994年,AkzoNebel公司开发了一种先进的膜分离技术”1,借助于单一旋光体有机溶剂(例如£一酒石酸酯或D一酒石酸酯)的流动,使

消旋体药物中的一种旋光体透过薄膜进入相应有机溶媒中,流出液经浓缩、分

离即可得到单一旋光性化合物。已报道的膜还包括光学拆分液膜、手性固定膜、纤维素衍生物固体膜、交联复合物手性膜材料。

4 酶催化不对称定向合成技术的新进展

近年来, 超临界流体技术在酶催化反应等领域得到了广泛应用。在许多的

情下, 酶催化反应在有机溶剂中因为反应太慢而不能应用于大规模工化生产。

但是在超临界流体中, 由于它传质阻力很小, 反应速度得以大大加快, 而且有

机溶剂在超临界流体中的溶解能力很好; 同时它的下游处理和溶剂回收也更加

方便,对手性化合物的合成和外消旋体拆分是一种很好的反应体系。很多情况下, 在临界流体中进行手性药物的合成比在有机溶剂中的合成效果更好, 有的ee值

甚至达到了99%。如Mase等人指出, 丙二酸二乙酯的酶催化反应如果在己烷等6 种不同有机溶剂中进行, 那么ee值几乎为0, 而在CO2 超临界流体中,ee值可

50% , 同时转化率也达到了41%。他解释这是因为酶的活性部位在超临界条件下随着压力的变化发生了结构转变。Hartmann 等人也认为在CO2 超临界流中的立体选择性要比在己烷中好, 他认为在己烷中酶的失活与氨基甲酸盐有一定的关。运用分子生物学技术, 通过基因工程中的定位突变技术结合化学修饰对天然酶

化学结构进行理性设计和改造, 扩大其应用范围是近年来颇受青睐的新技术,这项技术为酶催化定向合成注入了新的活力。以血红素蛋白的分子设计为例, 来

出现的新思路包括: (1) 氨基酸的选择突变与血红素修饰相结合; (2) 非天然

辅基的引入; (3) 非天然氨基酸的引入;(4) 辅基与蛋白肽链的共价结合; (5) 全新血红素蛋白的设计与构建等。例如, 在对肌红蛋白(Mb) 的研究中,单独采

用辅基的化学修饰方法可以使Mb的催化效提高34 倍, 单独采用定位突变的方法可以使Mb 的催化效率提高96 倍, 而同时使用2 种方法可以使Mb 的催化效率提高433 倍。在Mb 中引入天然辅基后, 这种非天然蛋白质对氧的亲和性比天然Mb

对氧的亲和性要高出2900倍[9]。

综上所述, 酶催化的立体选择反应在新药研究中已得到了广泛的应用, 利用酶法实现手性药物的生物合成与化的发展前景非常诱人, 相信随着生物技术的进一步发展, 将会有更多的酶被用于手性药物的合成。

5 结语

手性药物的科学研究价值与广阔的市场前景已引起了医学界的高度重视,迫切需要手性合成、手性拆分等新方法、新技术的不断发展。手性技术是化学工业和制药行业中的前沿学科,其发展必将在医药工业中发挥巨大的作用。

参考文献

[1]罗金岳.安鑫南植物精油和天然色素加工工艺[枷.北京:化学工业出版

社,2005:15

[2]《全国中草搿[编》编写组全国中草药汇编[M],北京:人民卫生出

社.1986:l03

[3]江苏薪医学院.中药大辞典[M]上海:上海科学技术出版社,1979:1770.

[4]陆冰真,翟束信薄层层析法在食品分析中的应用[M]北京:北京大学出艇

让.1993:39

[5]蔡建秀,黄艳艳,许婉珍.乌蕨黄酮类化合物薄层层析殛紫外光谱研究[J]泉州师范学院学报:自然科学.2005.6(6):缸一86

[6]傅正生.薛华丽,王长青,等薄屠色谱法和柱屡析法分离兰帅l红心萝卜

色素的研究[J]食品科学,2004,19(6):毋一垃

[7]王君玲,贾淑梅薄层色谱法厦其在药物、色素分离等方面的应用[J],锦

州师范学院学报.2咖。2005:15—16

[8]蔡朝容,陆文泽,黄静枸记叶中p胡萝卜素的分离与鉴定——薄层层析法[J]柳卅职业技术学院学报,2004,5(4):112—113.

[9]王海靶尹卫平,阳勇,等小米黄色素的初步研究——化学成分及应用研究.中国粮油学报,2004,19(3):26-30

手性药物

我报告的题目是手性技术与手性药物。 首先让我和大家一起来回忆一下药物给人类带来空前灾难的反应停事件。1953年,联邦德国Chemie制药公司研究了一种名为“沙利度胺”的新药,该药对孕妇的妊娠呕吐疗效极佳,Chemie公司在1957年将该药以商品名“反应停”正式推向市场。两年以后,欧洲的医生开始发现,本地区畸形婴儿的出生率明显上升,此后又陆续发现12000多名因母亲服用反应停而导致的海豹婴儿!这一事件成为医学史上的一大悲剧。 后来研究发现,反应停是一种手性药物,是由分子组成完全相同仅立体结构不同的左旋体和右旋体混合组成的,其中右旋体是很好的镇静剂,而左旋体则有强烈的致畸作用。 到底什么是手性药物?用什么技术或方法能够分别获得左旋体和右旋体来进行研究和安全有效地使用呢? 这就是今天我要报告的主题——手性技术和手性药物。 要阐明这一主题,首先我们要认识什么是手性药物。手性药物分子有一个共同的特点就是存在着互为实物和镜像关系两个立体异构体,一个叫左旋体,另一个叫右旋体。就好比人的左手和右手,相似而不相同,不能叠合。 目前临床上常用的1850多种药物中有1045多种是手性药物,高达62%。像大家所熟知的紫杉醇、青蒿素、沙丁胺醇和萘普生都是手性药物。 手性是宇宙的普遍特征。早在一百多年前,著名的微生物学家和化学家巴斯德就英明地预见“宇宙是非对称的……,所有生物体在其结构和外部形态上,究其本源都是宇宙非对称性的产物”。 因此,科学家推断,由于长期宇宙作用力的不对称性,使生物体中蕴藏着大量手性分子,如氨基酸、糖、DNA和蛋白质等。绝大多数的昆虫信息素都是手性分子,人们利用它来诱杀害虫。很多农药也是手性分子,比如除草剂Metolachlor,其左旋体具有非常高的除草性能,而右旋体不仅没有除草作用,而且具有致突变作用,每年有2000多万吨投放市场,其中1000多万吨是环境污染物。Metolachlor自1997年起以单旋体上市,10年间少向环境投放约1亿吨化学废物。研究还发现,单旋体手性材料可以作为隐形材料用于军事领域。 左旋体和右旋体在生物体内的作用为什么有这么大的差别呢?由于生物体内的酶和受体都是手性的,它们对药物具有精确的手性识别能力,只有匹配时才能发挥药效,误配就不能产生预期药效。正如“一把钥匙开一把锁!”因此,1992年美国FDA规定,新的手性药物上市之前必须分别对左旋体和右旋体进行药效和毒性试验,否则不允许上市。2006年1月,我国SFDA也出台了相应的政策法规。 怎样才能将非手性原料转变成手性单旋体呢?从化学角度而言,有手性拆分和手性合成两种方法。经典化学反应只能得到等量左旋体和右旋体的混合物,手性拆分是用手性拆分试剂将混旋体拆分成左旋体和右旋体,其中只有一半是目标产物,另一半是副产物,而且需要消耗大量昂贵的手性拆分试剂。化学家一直在探索,是否有更经济的方法,将非手性原料直接转化为手性单旋体呢? 上世纪60年代初,科学家们开始研究在极少量的手性催化剂作用下获得大量的单旋体,这就是手性合成

手性药物拆分的研究进展

手性药物拆分的研究进展 许多药物具有光学活性(opitical activeity)。一般显示光学活性的药物分子,其立体结构必定是手性(chirality)的,即具有不对称性。手性是指其分子立体结构和它的镜像彼此不能重合。互为镜像关系而又不能重合的一对分子结构称为对映体(enantiomer)。虽然对映异构体药物的理化性质基本相同,但由于药物分子所作用的受体或靶位是由氨基酸、核苷、膜等组成的手性蛋白质和核酸大分子等,后者对与之结合的药物分子的空间立体构型有一定的要求。因此,对映异构体在动物体内往往呈现出药效学和药动学方面的差异。鉴于此,美国食品药品监督管理局规定,今后研制具有不对称中心的药物,必须给出手性拆分结果,欧盟也提出了相应的要求。因此,手性拆分已成为药理学研究和制药工业迫切需要解决的问题。 目前,利用酶法、超临界流体色谱(SFC)法、化学法、高效液相色谱(HPLC)法、气相色谱(GC)法、毛细管电泳(capillary electrophoreisis,CE)法和分子烙印法拆分对映体,已成为新药研究和分析化学领域的重要课题。笔者在本文综述了近年来利用上述方法拆分手性药物的研究进展。 1酶法 酶的活性中心是一个不对称结构,这种结构有利于识别消旋体。在一定条件下,酶只能催化消旋体中的一个对映体发生反应而成为不同的化合物,从而使两个对映体分开。该法拆分手性药物已有较久的历史,反应产物的对映过剩百分率可达100%。酶催化的反应大多在温和的条件下进行,温度通常在0~50℃,pH 值接近7.0。由于酶无毒、易降解、不会造成环境污染,适于大规模生产。酶固定化技术、多相反应器等新技术的日趋成熟,大大促进了酶拆分技术的发展。脂肪酶、酯酶、蛋白酶、转氨酶等多种酶已用于外消旋体的拆分。脂肪酶是最早用于手性药物拆分的一类酶,是一类特殊的酯键水解酶,具有高度的选择性和立体专一性,反应条件温和,副反应少,适用于催化非水相递质中的化学反应,在B 一受体阻滞药、非甾体类抗炎药和其他多种药物的手性拆分中都有广泛的应用。意大利的Batlistel等用固定于载体Amberlite AD-7上的脂肪酶对萘普生的乙氧基乙酯进行酶法水解拆分,对温度、底物浓度和产物抑制等进行了研究,最后使用500 mL的柱式反应器,在连续进行了1200h的反应后,得到了l8kg的光学纯S-萘普生,且酶活性几乎无损失。另外,酯酶具有很高的工业价值,其应用前景也极为广阔。Jiaxin等利用pseudomaonas cepacia脂肪酶拆分了一类酰基取代的1.环己烯衍生物,通过酶催化酯交换反应,得到产率较高的光学纯化合物,且提供了反应过程监测方法。这种方法可推广到该类化合物系列衍生物的合成与拆分。 2 SFC法 根据手性选择剂种类不同,该分离方式主要包括氨基酸和酰氨类手性固定相、Prikle型手性固定相、环糊精型键合固定相如聚甲基异丁烯酯等。由于SFC 法尚处于发展阶段,各种参(如温度、压力、流动相的组成和密度等) 对分离度的影响机制还未完全清楚。SFC法具有简单、高效、易于变换操作条件等优点,已成为与HPLC法和GC法互补的拆分方法,因其具有独特的优越性,应用前景极为广阔。Nozal等用Chiralpak AD柱和Chiralcel OD柱在SFC条件下拆分了驱肠蠕虫药阿苯唑亚砜化合物,并研究了甲醇、乙醇、乙丙醇及乙腈等有机溶剂对立体构型的影响。结果表明,在以Chiralpak AD柱为固定相时,用2丙醇可以获得最好的拆分效果;而在Chiralcel OD柱上用甲醇效果最好。

手性药物的合成与拆分的研究进展

手性药物的合成与拆分的研究进展 手性是自然界的一种普遍现象,构成生物体的基本物质如氨基酸、糖类等都是手性分子。手性化合物具有两个异构体,它们如同实物和镜像的关系,通常叫做对映异构体。对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。 目前市场上销售的化学药物中,具有光学活性的手性药物约占全部化学药40% } 50%,药物的手性不同会表现出截然不同的生物、药理、毒理作用,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性,因而具有十分广阔的市场前景和巨大的经济价值[Dl 1由天然产物中提取 天然产物的提取及半合成就是从天然存在的光活性化合物中获得,或以价廉易得的天然手性化合物氨基酸、菇烯、糖类、生物碱等为原料,经构型保留、构型转化或手性转换等反应,方便地合成新的手性化合物。如用乳酸可合成(R)一苯氧基丙酸类除草剂[}z}。天然存在的手性化合物通常只含一种对映体用它们作起始原料,经化学改造制备其它手性化合物,无需经过繁复的对映体拆分,利用其原有的手性中心,在分子的适当部位引进新的活性功能团,可以制成许多有用的手性化合物。 2手性合成 手性合成也叫不对称合成。一般是指在反应中生成的对映体或非对映体的量是不相等的。手J险合成是在催化剂和酶的作用下合成得到过量的单一对映体的方法。如利用氧化还原酶、合成酶、裂解酶等直接从前体化合物不对称合成各种结构复杂的手性醇、酮、醛、胺、酸、酉旨、酞胺等衍生物,以及各种含硫、磷、氮及金属的手性化合物和药物,其优点在于反应条件温和、选择性强、不良反应少、产率高、产品光学纯度高、无污染。 手性合成是获得手性药物最直接的方法。手J险合成包括从手性分子出发来合成目标手性产物或在手性底物的作用下将潜在手性化合物转变为含一个或多个手性中心的化合物,手性底物可以作为试剂、催化剂及助剂在不对称合成中使用。如Yamad等和Snamprogetti 等在微生物中发现了能催化产生N-氨甲酞基一D-氨基酸的海因酶( Hy-dantoinase)。海因酶用于工业生产D一苯甘氨酸和D一对轻基苯甘氨酸。D一苯甘氨酸和D一对轻基苯甘氨酸是生产重要的临床用药半合成内酞胺抗生素(氨节青霉素、轻氨节青霉素、氨节头炮霉素、轻氨节头炮霉素)的重要侧链,目前国际上每年的总产量接近SOOOto 3外消旋化合物的拆分 外消旋拆分法是在手性助剂的作用下,将外消旋体拆分为纯对映体。外消旋体拆分法是一种经典的分离方法,在工业生产中己有100多年的历史,目前仍是获得手性物质的有效方法之一。拆分是用物理化学或生物方法等将外消旋体分离成单一异构体,外消旋体拆分法又可分为结晶拆分法;化学拆分法;生物拆分法;色谱拆分法;膜拆分和泳技术。 3. 1结晶拆分法 3.1.1直接结晶法 结晶法是利用化合物的旋光异构体在一定的温度下,较外消旋体的溶解度小,易拆分的性质,在外消旋体的溶液中加入异构体中的一种(或两种)旋光异构体作为晶种,诱导与晶种相同的异构体优先(分别)析出,从而达到分离的目的。在。一甲基一L一多巴的工业生产中就是使两种对映体同时在溶液中结晶,而母液仍是外消旋的,把外消旋混合物的过饱和溶液通过含有各个对应晶种的两个结晶槽而达到拆分的目的[3]。结晶法的拆分效果一般都不太理想,但优点是不需要外加手性拆分试剂。若严格控制反应条件也能获得较纯的单一对应体。 3. 1. 2非对映体结晶法

毛细管电泳色谱在手性药物拆分中的应用

毛细管电泳色谱在手性药物拆分中的应用 摘要:毛细管电泳色谱法是手性药物拆分的重要方法之一,是一种高效、快速、简便的手性分离手段。该技术在药物对映体的拆分、定量方面发挥了重要作用。近年来,手性药物的毛细管电泳拆分技术得到快速发展,本文参阅了国内外相关文献,对毛细管电泳技术的手性拆分模式及主要手性选择剂作了简单介绍,并介绍了一些新的手性选择剂在手性药物拆分中的应用。 关键词:毛细管电泳手性试剂手性拆分

The Application of Capillary Electrophoresis in Chiral Drug Separation Abstract:Capillary Electrophoresis is one of the crucial methods in chiral drug analysis. It is an important method with highly efficient, rapid and convenient features. This technology plays a crucial role in enantiomeric separation and quantitative analysis. In recent years, the application of capillary electrophoresis in chiral drug analysis has been developing rapidly. According to recent references, this paper makes a brief discription about the application of capillary electrophoresis in chiral drug separation. Keywords: Capillary electrophoresis; Chiral reagent; Chiral separation; 引言 手性是自然界的基本属性,也是生命系统最重要的属性之一,比如蛋白质、氨基酸、多糖、核酸、酶等生命活动重要基础物质都是手性的。据统计,在研发1200种新药中,有820种是手性的,占世界新药开发的68 %以上[1],而用于治疗的手性化合物中约88 %为外消旋体,作为单一对映体用药的只占手性药物的11%左右[2]。手性药物的立体结构与其生物活性有着密切的关系。药物在吸收、分布、代谢与排泄过程中,通过与体内大分子的不同立体结合,产生不同的药理作用和不良反应。如著名的“反应停事件”,沙利度胺只有( S ) -对映体具有致畸作用,( R ) -对映体具有镇静作用而无致畸作用。 目前,手性药物的拆分方法主要有经典结晶法、化学拆分法、生物拆分法、膜分离法、手性液-液拆分法和色谱法等[3, 4],其中色谱法由于简便快捷、分离效

手性药物研究技术指导原则

2 一、概述 三维结构的物体所具有的与其镜像的平面形状完全一致,但在三维空间中不能完 全重叠的性质,正如人的左右手之间的关系,称之为手性,具有手性的化合物即称 为手性化合物。手性是自然界的一种基本属性,组成生物体的很多基本结构单元都 具有手性,如组成蛋白质的手性氨基酸除少数例外,大都是L-氨基酸;组成多糖和 核酸的天然单糖也大都是D构型。作为调节人类的相关生命活动而起到治疗等作用 的药物,如果在参与体内生理过程时涉及到手性分子或手性环境,则不同的立体异 构体所产生的药理效应就可能不同。手性化合物除了通常所说的含手性中心的化合 物外,还包括含有手性轴、手性平面、螺旋手性等因素的化合物。在本指导原则中 所指的手性药物主要是指含手性中心的化合物,其它类型的手性药物研发也可参考 本指导原则的基本要求。 手性药物是指分子中含有手性中心(也叫不对称中心)的药物,它包括单一的立 体异构体、两个以上(含两个)立体异构体的不等量的混合物以及外消旋体。不同 构型的立体异构体的药理作用也可能不同,大致可分为以下几种情况【1】 : (1)药物的药理作用完全或主要由其中的一个对映体产生。如S-萘普生的镇 痛作用比其R 异构体强35倍。 (2)两个对映体具有完全相反的药理作用。如新型苯哌啶类镇痛药-哌西那朵 的右旋异构体为阿片受体的激动剂,而其左旋体则为阿片受体的拮抗剂。 (3)一个对映体有严重的毒副作用。如驱虫药四咪唑的呕吐副作用即由其右旋 体产生。 (4)两个对映体的药理作用不同,但合并用药有利。如降压药-萘必洛尔的右 旋体为β-受体阻滞剂,而左旋体能降低外周血管的阻力,并对心脏有保护作用;抗 高血压药物茚达立酮【2】 的R异构体具有利尿作用,但有增加血中尿酸的副作用,而S异构体却有促进尿酸排泄的作用,可有效降低R异构体的副作用,两者合用有利。进 一步的研究表明,S与R异构体的比例为1:4或1:8时治疗效果最好。 (5)两个对映体具有完全相同的药理作用【3】 。如普罗帕酮的两个对映体即具有 相同的抗心率失常作用。 正是由于手性药物的不同立体异构体在药效、药代及毒理等方面都可能存在差 异,美国FDA在其关于开发立体异构体新药的政策【4】 中要求在对手性药物进行药理毒 理研究时,应分别获得该药物的立体异构体,进行必要的比较研究,以确定拟进一 步开发的药物。所以手性药物药学研究的主要任务就是为药物的筛选与进一步研究 提供足够数量与纯度的立体异构体。本指导原则是在一般化学药物药学相关技术指 导原则的基础上,充分考虑手性药物的特殊性而起草的,其目的是为手性药物的药 学研究提供一般性的指导。本指导原则中所涉及的手性药物主要针对单一的立体异 构体、两个以上(含两个)立体异构体组成的不等量混合物。 由于手性药物的研发是一项探索性很强的工作,情况也比较复杂,所以在使用本 指导原则时,还应具体问题具体分析,在遵循药物研发的自身规律以及手性药物一 般要求的基础上,根据所研制药物的特点,进行针对性的研究。如采用本指导原则 以外的研究手段与方法,则该方法或手段的科学性和可行性必须经过必要的验证。

手性药物质量控制研究技术指导原则

手性药物质量控制研究技术指导原则 一、概述 三维结构的物体所具有的与其镜像的平面形状完全一致,但在三维空间中不能完全重叠的性质,正如人的左右手之间的关系,称之为手性。具有手性的化合物即称为手性化合物。手性是自然界的一种基本属性,组成生物体的很多基本结构单元都具有手性,如组成蛋白质的手性氨基酸除少数例外,大都是L-氨基酸;组成多糖和核酸的天然单糖也大都是D构型。作为调节人类的相关生命活动而起到治疗作用的药物,如果在参与体内生理过程时涉及到手性分子或手性环境,则不同的立体异构体所产生的生物活性就可能不同。手性化合物除了通常所说的含手性中心的化合物外,还包括含有手性轴、手性平面、手性螺旋等因素的化合物。在本指导原则中所指的手性药物主要是指含手性中心的药物,其它类型的手性药物也可参考本指导原则的基本要求。 手性药物是指分子结构中含有手性中心(也叫不对称中心)的药物,它包括单一的立体异构体、两个以上(含两个)立体异构体的不等量的混合物以及外消旋体。不同构型的立体异构体的生物活性也可能不同,大致可分为以下几种情况【1】: 1)药物的生物活性完全或主要由其中的一个对映体产生。如S -萘普生在体外试验的镇痛作用比其R异构体强35倍。 2)两个对映体具有完全相反的生物活性。如新型苯哌啶类镇痛药-哌西那朵的右旋异构体为阿片受体的激动剂,而其左旋体则为阿片受体的拮抗剂。

3)一个对映体有严重的毒副作用。如驱虫药四咪唑的呕吐副作用是由其右旋体产生的。 4)两个对映体的生物活性不同,但合并用药有利。如降压药-萘必洛尔的右旋体为β-受体阻滞剂,而左旋体能降低外周血管的阻力,并对心脏有保护作用;抗高血压药物茚达立酮【2】的R异构体具有利尿作用,但有增加血中尿酸的副作用,而S异构体却有促进尿酸排泄的作用,可有效降低R异构体的副作用,两者合用有利。进一步的研究表明,S与R异构体的比例为1:4或1:8时治疗效果最好。 5)两个对映体具有完全相同的生物活性【3】。如普罗帕酮的两个对映体都具有相同的抗心率失常作用。 正是由于手性药物的不同立体异构体在药效、药代及毒理等方面都可能存在差异,美国FDA在其关于开发立体异构体新药的政策【4】中要求在对手性药物进行药理毒理研究时,应分别获得该药物的各立体异构体,进行必要的比较研究,以确定拟进一步开发的药物。所以手性药物药学研究的主要任务就是为药物的筛选与进一步研究提供足够数量与纯度的立体异构体。本指导原则是在一般化学药物药学指导原则的基础上,并充分考虑手性药物的特殊性而起草的,其目的是为手性药物的药学研究提供一般性的指导。本指导原则中所说的手性药物主要针对单一的立体异构体、两个以上(含两个)立体异构体组成的不等量混合物。 由于手性药物的研发是一项探索性很强的工作,情况也比较复杂,所以在使用本指导原则时,还应具体问题具体分析:在遵循药品研发的自身规律以及手性药物一般要求的基础上,根据所研制药物的

手性药物的结晶拆分方法

手性药物的结晶拆分方法--直接结晶法---逆向结晶法 在优先结晶法中,通过加入不溶的添加物即晶种形成晶核,加快或促进与之晶型或立体构型相同的对映异构体结晶的生长。而逆向结晶法则是在外消旋体的饱和溶液中加入可溶性某一种构型的异构体[如(R)—异构体],添加的(R)—异构体就会吸附到外消旋体溶液中的同种构型异构体结晶体的表面,从而抑制了这种异构体结晶的继续生长,而外消旋体溶液中相反构型的(S)—异构体结晶速度就会加快,从而形成结晶析出。例如在外消旋的酒石酸钠铵盐的水溶液中溶入少量的(S)—(—)—苹果酸钠铵或(S)—(—)—天冬酰胺时,可从溶液中结晶得到(R,R)—(十)—酒石酸钠铵。 逆向结晶中的添加物必须和溶液中的化合物在结构和构型上有相关之处。这样所添加的物质才能嵌入生长晶体的晶格中,取代其正常的晶格组分并能阻止该晶体的生长。逆向结晶是一种晶体生长的动力学现象,添加物的加入造成了结晶速度上的差别。由于逆向结晶是晶体生长的动力学的现象,因此当结晶时间无限制的延长下之,最终得到的仍是外消旋的晶体。从化合物的性质上来看,逆向结晶只能用于能形成聚集体的化合物。在结晶法的拆分过程中,若能将优先结晶法中“加入某种单—对映异构体晶体可诱导相同构型结晶生长”的原理和逆向结晶中“加入另一个对映异构体溶液可抑制相同构型的对映异构体生长”的原理相结合,可使结晶拆分的效率大大提高 手性药物的结晶拆分方法--直接结晶法---优先结晶法 优先结晶方法(preferential crystallization)是在饱和或过饱和的外消旋体溶液中加入一个对映异构体的晶种,使该对映异构体稍稍过量因而造成不对称环境,结晶就会按非稍的过程进行,这样旋光性与该晶种相同的异构体就会从溶液中结晶出来。优先结晶方法是在巴士德的研究基础上发现的。文献最早报道的优先结晶方法是用于肾上腺素的拆分。1934年Duschinsky第一次用该方法分离得到盐酸组氨酸,使人们认识到该方法的实用性。但直到1963年工业化学家Secor对该方法进行综述后,才引起人们关注并逐渐发展成为众所周知的科学实用方法。Secor根据优先结晶法是聚集物的结晶的原理,可用其溶解度曲线的相图来进行结晶分离过程的分析。20世纪60~70年代,优先结晶方法在工业生产上大规模的用于由丙烯腈制备L—谷氨酸的拆分,每年的产量可达1.3万吨。这一技术不仅在工业生产上有非常显著的应用价值,在'实验室也可用于拆分数克到数十克的光学活性的化合物。应当指出的是,优先结晶方法仅适用于拆分能形成聚集体的外消旋体,而且该聚集体是稳定的结晶形式。换句话讲,假若该外消旋体可以是以聚集物或外消旋化合物的形式存在,但在某一定的温度范围内,只可以以聚集物的形式结晶出来,而刁;是产生外消旋化合物的结晶。例如盐酸组氨酸在45℃以上温度进行的优先结晶拆分。减肥药物芬氟拉明(fenfluramine,6)及其前体去乙基芬氟拉明(7)的拆分研究说明了优先结晶拆分的局限性。在对(6)和(7)与非手性的有机酸形成的50多个盐进行聚集物性质研究时,发现只有五个(6)的盐和三个(7)的盐是聚集体,但其中有两个盐不能使用优先结晶法结晶,这两个盐是(6)的苯氧乙酸盐和(7)的二氯乙酸盐。(6)的苯氧乙酸盐在室温下以不稳定的聚集体和稳定的外消旋化合物的形式发生共结晶,而(7)的二氯乙酸盐在结晶过程中会发生异手性(heterochiral growth)生长,即—种对映异构体的晶体生长在另一种异构体晶体的表面,得到晶体的光学纯度很低。聚集体通常在一定的温度范围内是稳定的,一旦超过该温度范围则叫咱S形成聚集体的亚稳态的形式,这种亚稳态的形式也可以用优先结晶的方法拆分,但得到的将是亚稳态多晶型的形式。例如盐酸组氨酸在25℃时的结晶。也有些化合物,例如外消旋的3—(3—氯苯基)—3—羟基丙酸(8),可以形成热力学稳定的聚旧体的形式,但在溶剂中结晶时总是生成亚稳态的外消旋化合物,而且该外消旋化合物的溶解度约是其对映异构体的7倍,这种情况难以用优先结晶法进行结晶。优先结晶法是一种高效、简单而又快捷的拆分方法,晶种的加入造成两个对映异构体具有不同的结晶速率是该动态过程控制的关键。延长结晶时间可提高产品的产率,但产品的光学纯度有所下降。从优先结晶法中得到晶体后,如要进一步提高产物的光学纯度,可经过反复的重结晶实现。 在实际应用过程中,尤其在工、限生产过程中,利用优先结晶方法的特点进行循环往复的结晶分离。这一方法从20世纪50年代起用于抗生素氯霉素(chloramphenicol,9)的中间体D—苏型?1—对硝基苯基—2—氨基—1,3—丙二醇(10)的拆分,至今工业生产中仍然在使用。循环优先结晶方法又称为“交*诱导结晶拆分

CFDA指导原则汇编 20141229

国家食品药品监督管理总局药品审评中心 汇编 ●非临床研究(7项) ●化药(51项) ●审评一般原则(6项) ●技术标准/技术要求(13项) ●生物制品(26项) ●中药、天然药物(16项) ●药品注册相关法律、法规(36项) ●综合学科(8项)

非临床研究(7项) 药物安全药理学研究技术指导原则(征求意见稿)20140513 颁布 药物单次给药毒性研究技术指导原则(征求意见稿)20140513颁布 药物重复给药毒性研究技术指导原则(征求意见稿)20140513颁布 药物非临床药代动力学研究技术指导原则(征求意见稿)20140513颁布 药物毒代动力学研究技术指导原则(征求意见稿)20140513颁布 药物QT间期延长潜在作用非临床研究技术指导原则(征求意见 20140513颁布稿) 药物安全药理学研究技术指导原则及起草说明(征求意见稿)20140513颁布

化药(51项) ◆化学药物长期毒性试验技术指导原则2007-08-13 颁布◆合成多肽药物药学研究技术指导原则2007-08-23 颁布◆药物遗传毒性研究技术指导原则2007-08-23 颁布◆已有国家标准化学药品研究技术指导原则2007-08-23 颁布◆化学药物综述资料撰写的格式和内容的技术指导原则——临 2007-08-23 颁布床研究资料综述 ◆化学药物综述资料撰写的格式和内容的技术指导原则——药 2007-08-23 颁布理毒理研究资料综述 ◆化学药物综述资料撰写的格式和内容的技术指导原则——药 2007-08-23 颁布学研究资料综述 ◆化学药物临床药代动力学研究技术指导原则2007-08-23 颁布◆化学药物一般药理学研究技术指导原则2007-08-23 颁布◆化学药物稳定性研究技术指导原则2007-08-23 颁布◆化学药物原料药制备和结构确证研究技术指导原则2007-08-23 颁布◆化学药物制剂人体生物利用度和生物等效性研究技术指导原 2007-08-23 颁布则 ◆化学药物刺激性、过敏性和溶血性研究技术指导原则2007-08-23 颁布◆化学药物残留溶剂研究技术指导原则2007-08-23 颁布◆化学药物质量控制分析方法验证技术指导原则2007-08-23 颁布

手性药物拆分技术的研究进展

手性药物拆分技术的研究进展 摘要:简要阐述了手性药物的世界销售市场。综述了目前实验室和工业生产领域手性药物的拆分方法,包括:结晶拆分法,化学拆分法,动力学拆分法,生物拆分法,色谱拆分法,手性萃取拆分法和膜拆分法等,并简要介绍了每种方法的应用情况及优缺点。 关键词:手性药物; 外消旋体; 手性拆分 自然界存在各种各样的手性现象,比如蛋白质、氨基酸、多糖、核酸、酶等生命活动重要基础物质,都是手性的。据统计,在研发的1200种新药中,有820种是手性的,占世界新药开发的68%以上[ 1 ]。美国FDA在1992年发布了手性药物指导原则,该原则要求各医药企业今后在新药研发上,必须明确量化每一对映异构体的药效作用和毒理作用,并且当两种异构体有明显不同作用时,必须以光学纯的药品形式上市。随后欧共体和日本也采取了相应的措施。此项措施大大促进了手性药物拆分技术的发展,手性药物的研究与开发,已经成为当今世界新药发展的重要方向和热点领域[ 2 ]。当前大多数药物是以外消旋体的形式出现,即药物里含有等量的左右两种对映体。但是近年来单一对映体药物市场每年以20%以上的速度增长。1993年全球100个热销药中,光学纯的药物仅仅占20%;然而到了1997年, 100个中就有50个是以单一对映体形式存在,手性药物已占到世界医药市场的半壁江山。在1993年,手性药物的全球销售额只有330亿美元;到了1996年,手性药物世界市场已增长到730亿美元; 2002年总销售额更是达到1720亿美元, 2010年可望超过2500亿美元[ 3~5 ]。广阔的应用前景和巨大的市场需求触发了更多的医药企业和学者探索更新更高效地获得单一手性化合物的方法。 不同的立体异构体在体内的药效学、药代动力学和毒理学性质不同,并表现出不同的治疗作用与不良反应,研究与开发手性药物是当今药物化学的发展趋势。随着合理药物设计思想的日益深入,化合物结构趋于复杂,手性药物出现的可能性越来越大;另一方面,用单一异构体代替临床应用的混旋体药物,实现手性转换,也是开发新药的途径之一[ 1 - 3 ]。1985~2004年上市的550个新化学合成药物中,有313个药物具有手性中心,其中以单一异构体上市的手性药物为167个,手性药物数量呈逐年上升趋势; 2005年世界药物的销售总额为6 020亿美元,而手性药物的销售总额为 2 250亿美元,占全球制药市场销售总额的37% , 2010年可望超过 5 000亿美元[ 4 - 6 ]。总之, 手性药物大量增长的时代已经来临,手性药物制备技术的发展亦日趋完善,这为以制备和生产手性药物为主要内涵的手性工业的建立和发展奠定了基础。 手性药物的制备技术由化学控制技术和生物控制技术两部分组成。手性药物的化学控制技术可分为普通化学合成、不对称合成和手性源合成3类;手性药物的生物控制技术包括天然物的提取分离技术和控制酶代谢技术。以前手性化合物为原料,经普通化学合成可得到外消旋体,再将外消旋体拆分制备手性药物中间体或手性药物,这是工业生产手性药物的主要方法。1985~2004年上市的58个含有一个手性中心的手性药物中,有27个手性药物是通过手性拆分法生产的[ 4 ]。 1结晶法拆分 结晶法拆分包括直接结晶法拆分( direct crys ta llization resolution )和非对映异构体拆分( dias te reom er crys tallization resolution) ,分别适用于外消旋混合物( conglom e rate)和外消旋化合物( racem ic compound)的拆分。在一种外消旋混合物的过饱和溶液中,直接加入某一对映体的晶种,即可得到一定量的该对映体,这种直接结晶的拆分方法仅适用于外消旋混合物,其应用几率不到10%。外消旋化合物较为常见,大约占所有外消旋体的90%。通过与非手性的酸或碱成盐可以使部分外消旋化合物转变为外消旋混合物,扩大直接结晶法拆分的应用范围。 对于外消旋化合物,可采用与另一手性化合物(即拆分剂, reso lving agent)形成非对映异

手性药物药学研究技术指导原则(0506)

附件二 手性药物质量控制研究技术指导原则

手性药物质量控制研究技术指导原则 一、概述 三维结构的物体所具有的与其镜像的平面形状完全一致,但在三维空间中不能完全重叠的性质,正如人的左右手之间的关系,称之为手性。具有手性的化合物即称为手性化合物。手性是自然界的一种基本属性,组成生物体的很多基本结构单元都具有手性,如组成蛋白质的手性氨基酸除少数例外,大都是L-氨基酸;组成多糖和核酸的天然单糖也大都是D构型。作为调节人类的相关生命活动而起到治疗作用的药物,如果在参与体内生理过程时涉及到手性分子或手性环境,则不同的立体异构体所产生的生物活性就可能不同。手性化合物除了通常所说的含手性中心的化合物外,还包括含有手性轴、手性平面、手性螺旋等因素的化合物。在本指导原则中所指的手性药物主要是指含手性中心的药物,其它类型的手性药物也可参考本指导原则的基本要求。 手性药物是指分子结构中含有手性中心(也叫不对称中心)的药物,它包括单一的立体异构体、两个以上(含两个)立体异构体的不等量的混合物以及外消旋体。不同构型的立体异构体的生物活性也可能不同,大致可分为以下几种情况【1】: 1)药物的生物活性完全或主要由其中的一个对映体产生。如S-萘普生在体外试验的镇痛作用比其R异构体强35倍。 2)两个对映体具有完全相反的生物活性。如新型苯哌啶类镇痛药-哌西那朵的右旋异构体为阿片受体的激动剂,而其左旋体则为阿片受体的拮抗剂。 3)一个对映体有严重的毒副作用。如驱虫药四咪唑的呕吐副

作用是由其右旋体产生的。 4)两个对映体的生物活性不同,但合并用药有利。如降压药-萘必洛尔的右旋体为β-受体阻滞剂,而左旋体能降低外周血管的阻力,并对心脏有保护作用;抗高血压药物茚达立酮【2】的R异构体具有利尿作用,但有增加血中尿酸的副作用,而S异构体却有促进尿酸排泄的作用,可有效降低R异构体的副作用,两者合用有利。进一步的研究表明,S与R异构体的比例为1:4或1:8时治疗效果最好。 5)两个对映体具有完全相同的生物活性【3】。如普罗帕酮的两个对映体都具有相同的抗心率失常作用。 正是由于手性药物的不同立体异构体在药效、药代及毒理等方面都可能存在差异,美国FDA在其关于开发立体异构体新药的政策【4】中要求在对手性药物进行药理毒理研究时,应分别获得该药物的各立体异构体,进行必要的比较研究,以确定拟进一步开发的药物。所以手性药物药学研究的主要任务就是为药物的筛选与进一步研究提供足够数量与纯度的立体异构体。本指导原则是在一般化学药物药学指导原则的基础上,并充分考虑手性药物的特殊性而起草的,其目的是为手性药物的药学研究提供一般性的指导。本指导原则中所说的手性药物主要针对单一的立体异构体、两个以上(含两个)立体异构体组成的不等量混合物。 由于手性药物的研发是一项探索性很强的工作,情况也比较复杂,所以在使用本指导原则时,还应具体问题具体分析:在遵循药品研发的自身规律以及手性药物一般要求的基础上,根据所研制药物的特点,进行针对性的研究。如采用本指导原则以外的研究手段与方法,则该方法或手段的科学性和可行性必须经过必要的验证。

药物研究技术指导原则

药物研究技术指导原则 至2007年11月,SFDA共颁布了48项“药物研究技术指导原则”,如下: 化学药物适用指导原则 [化01]化学药物长期毒性试验技术指导原则(2005年发布) [化02]化学药物非临床药代动力学研究技术指导原则(2005年发布) [化03]化学药物和生物制品临床试验的生物统计学技术指导原则(2005年发布) [化04]化学药物急性毒性试验技术指导原则(2005年发布) [化05]化学药物临床试验报告的结构与内容技术指导原则(2005年发布) [化06]化学药物杂质研究技术指导原则(2005年发布) [化07]化学药物制剂研究技术指导原则(2005年发布) [化08]化学药物质量标准建立的规范化过程技术指导原则(2005年发布) [化09]化学药物质量控制分析方法验证技术指导原则(2005年发布) [化10]化学药物残留溶剂研究技术指导原则(2005年发布) [化11]化学药物刺激性、过敏性和溶血性研究技术指导原则(2005年发布) [化12]化学药物制剂人体生物利用度和生物等效性研究技术指导原则(2005年发布) [化13]化学药物原料药制备和结构确证研究技术指导原则(2005年发布) [化14]化学药物稳定性研究技术指导原则(2005年发布) [化15]化学药物一般药理学研究技术指导原则(2005年发布) [化16]化学药物临床药代动力学研究技术指导原则(2005年发布) [化17]化学药物综述资料撰写的格式和内容的技术指导原则——对主要研究结果的总结及评价(2006年发布) [化18]化学药物综述资料撰写的格式和内容的技术指导原则——立题的目的与依据(2006年发布) [化19]化学药物综述资料撰写的格式和内容的技术指导原则——药学研究资料综述(2006年发布) [化20]化学药物综述资料撰写的格式和内容的技术指导原则——药理毒理研究资料综述(2006年发布) [化21]化学药物综述资料撰写的格式和内容的技术指导原则——临床研究资料综述(2006年发布) [化22]已有国家标准化学药品研究技术指导原则(2006年发布) [化23]手性药物质量控制研究技术指导原则(2006年发布) [化24]细胞毒类抗肿瘤药物非临床研究技术指导原则(2006年发布) [化25]抗HIV药物非临床药效学研究技术指导原则(2006年发布) [化26]合成多肽药物药学研究技术指导原则(2007年发布) [化27]化学药物口服缓释制剂药学研究技术指导原则(2007年发布) [化28]吸入制剂质量控制研究技术指导原则(2007年发布) 中药、天然药物适用指导原则 [中01]中药、天然药物长期毒性研究技术指导原则(2005年发布) [中02]中药、天然药物急性毒性研究技术指导原则(2005年发布) [中03]中药、天然药物申请临床研究的医学理论及文献资料撰写原则(2005年发布) [中04]中药、天然药物局部刺激性和溶血性研究技术指导原则(2005年发布) [中05]中药、天然药物临床试验报告的撰写原则(2005年发布) [中06]中药、天然药物提取纯化研究技术指导原则(2005年发布)

手性药物及手性技术

手性药物及手性技术 当前,手性药物(Chiral Drugs)的研究与开发已成为世界新药发展的方向和热点领域。作者曾发表文章,介绍了手性药物市场的增长和当前国内外手性药物发展的动向和趋势,阐述了加速手性技术开发,迎接世界制药工业挑战的必要和紧迫。本文将结合手性药物市场最新发展和手性技术的最新成就,探讨药品和精细化学品工业面临的挑战和机会。 一世界手性药物工业发展迅速 (1)手性药物市场首次超过1000亿美元: 自1992年以来,手性药物市场一直保持快速增长的态势。1995年,其销售额为557亿美元,比1994年增长23%,占世界药品市场总额2585亿美元的22%。1999年,手性药物市场第一次超过1000亿美元,单一异构体药物销售额达到1150亿美元,比1998年的994亿美元增长16%,占世界药品市场3600亿美元的32%。从1995~1999年,5年内单一异构体药物销售额翻了一番,占世界药品市场份额从1/5到1/3,这是一个重要的里程碑。预计今后几年仍将以年8%的速度增长,到2003年将达到1460亿美元。 (2)科学发现和药政规定推动手性药物的发展: 手性工业不断增长的首要原因在于基础生物化学的研究进展。药物化学家们试图影响的生物信使分子和细胞表面受体,即药物作用的靶分子都是手性的,因此药物分子与这些靶分子的不对称性必须相匹配。另外,分子药理学研究发现,含有手性因素的化学药物对映体,在人体内的药理活性、代谢过程和毒性存在着显著差异。在通常情况下,只有一个对映体具有药理作用,而另一个对映体不仅无药理作用,还会产生一定副作用。 手性药物市场不断增长的第二个原因是美国FDA的规定。1992年FDA发布手性药物指导原则,要求所有在美国上市的消旋体新药,生产者均需提供详细报告,说明药物中所含对映体各自的药理作用、毒性和效果。因此,制药公司对于内在的手性药物分子,必须作出适当的选择,是以其单一异构体形式开发,还是以其消旋体形式开发。显然,单一异构体的试验次数比较单纯,经济上更合算。 二手性药物正在成为制药公司谋求利益和提升地位的工具 (1)外消旋转化: 所谓外消旋转化,就是将已经批准以消旋体形式上市的药物转化成单一异构体形式批准上市。制药公司将手性(Chirality)作为一种工具,通过外消旋转化延长其“重磅炸弹”药品(年销售在10亿美元以上的药品)的专利保护期,从而控制一个产品的生命周期。最近的一个突出的例子是AstraZeneca公司对其抗溃疡药物奥美拉唑(Omeprazole,Prilosec)的二次开发。该公司申请了(s)-异构体(Esomeprazole)的专利,已于2000年在欧洲和美国上市(商品名: Nexium)。 AstraZeneca是对本公司原创药物进行外消旋转化,Sepracor公司则是对其它公司的药物进行转化,该公司称之为“生命周期经营战略”。这种战略就是当发现其它公司上市的外消旋体药物的药理活性只存在于一种对映体时,该公司就将该异构体进行专利(除非原创公司已有了专利); 而后再将此单一异构体药物许可给原创公司,如果原创公司不接受许可,则转让给其它公司,或自己独立上市。一个最成功的例子是对Lilly公司的抗抑郁药氟西汀(Fluoxetine,Prozac)的转化。1998年1月,Sepracor申请了(s)-对映体的专利,并将此专利许可给原创公司Lilly。原开发商不接受许可的例子也是有的,如Sepracor对Glaxo 和Schering公司的支气管扩张药沙丁胺醇(Albuterol,Proventil)进行了转化,申请了左旋体(Levalbuterol)的专利,并进行临床试验,于1999年3月获FDA批准上市(商品名: Xopenex)。Schering不接受此专利许可,于1999年11月转让给了Abbott公司。 Sepracor在实行外消旋转化战略的同时,还对一些手性药物的放大工艺进行研究。例如,对GlaxoWellcome开发的抗抑郁药安非他酮(Amfebutamone,Wellbutrin)的(s)-异构体

【2019年整理】手性药物质量控制研究技术指导原则

手性药物质量控制研究技术指导原则 手性药物质量控制研究技术指导原则 一、概述 三维结构的物体所具有的与其镜像的平面形状完全一致,但在三维空间中不能完全重叠的性质,正如人的左右手之间的关系,称之为手性。具有手性的化合物即称为手性化合物。手性是自然界的一种基本属性,组成生物体的很多基本结构单元都具有手性,如组成蛋白质的手性氨基酸除少数例外,大都是L-氨基酸;组成多糖和核酸的天然单糖也大都是D构型。作为调节人类的相关生命活动而起到治疗作用的药物,如果在参与体内生理过程时涉及到手性分子或手性环境,则不同的立体异构体所产生的生物活性就可能不同。手性化合物除了通常所说的含手性中心的化合物外,还包括含有手性轴、手性平面、手性螺旋等因素的化合物。在本指导原则中所指的手性药物主要是指含手性中心的药物,其它类型的手性药物也可参考本指导原则的基本要求。 手性药物是指分子结构中含有手性中心(也叫不对称中心)的药物,它包括单一的立体异构体、两个以上(含两个)立体异构体的不等量的混合物以及外消旋体。不同构型的立体异构体的生物活性也可能不同,大致可分为以下几种情况【1】: 1 )药物的生物活性完全或主要由其中的一个对映体产生。如S-萘普生在体外试验的镇痛作用比其R异构体强35倍。

2)两个对映体具有完全相反的生物活性。如新型苯哌啶类镇痛药-哌西那朵的右旋异构体为阿片受体的激动剂,而其左旋体则为阿片受体的拮抗剂。 3)一个对映体有严重的毒副作用。如驱虫药四咪唑的呕吐副作 用是由其右旋体产生的 4)两个对映体的生物活性不同,但合并用药有利。如降压药- 萘必洛尔的右旋体为伕受体阻滞剂,而左旋体能降低外周血管的阻 力,并对心脏有保护作用;抗高血压药物茚达立酮【2】的R异构体具有利尿作用,但有增加血中尿酸的副作用,而S异构体却有促进尿酸排泄的作用,可有效降低R异构体的副作用,两者合用有利。进一步的研究表明,S与R异构体的比例为1:4或1:8时治疗效果最好。 5)两个对映体具有完全相同的生物活性【3】。如普罗帕酮的两个对映体都具有相同的抗心率失常作用。 正是由于手性药物的不同立体异构体在药效、药代及毒理等方面都可能存在差异,美国FDA在其关于开发立体异构体新药的政策【4】中要求在对手性药物进行药理毒理研究时,应分别获得该药物的各立体异构体,进行必要的比较研究,以确定拟进一步开发的药物。所以手性药物药学研究的主要任务就是为药物的筛选与进一步研究提供足够数量与纯度的立体异构体。本指导原则是在一般化学药物药学指导原则的基础上,并充分考虑手性药物的特殊性而起草的,其目的是为手性药物的药学研究提供一般性的指导。本指导原则中所说的手性药物主要针对单一的立体异构体、两个以上(含两个)立体异构体组成的不等量混合物。 由于手性药物的研发是一项探索性很强的工作,情况也比较复杂,所以在使用本指导原则时,还应具体问题具体分析:在遵循药品研发的

相关文档
最新文档