求解动力性指标的方法有几种

合集下载

飞机动力学仿真模型误差分析及调整

飞机动力学仿真模型误差分析及调整

Analysis and Correction of Errors in Dynamic Simulation Model of Aircraft
LIU Chun, WEI Hui
( Department of Aerospace Engineering,Shenyang Aerospace University,Shenyang Liaoning 110136 ,China) ABSTRACT: The accuracy of dynamic model has a decisive influence on fidelity of dynamic characteristics of aircraft in flight simulation. As the approximation and simplification in modeling and compute,there are certain inconformity between dynamic model and performance of aircraft in real flight. The sources of errors wre analysed and a method of revising these errors was given. Aimed at the main performance indexes of aircraft, the errors were reduced obviously by adjusting these parameters which have effect on the indexes appropriately. Therefore,the consistency between dynamic model and real flight performance is improved. KEYWORDS: Flight simulation; Dynamic model; Parameter adjustment; Performance index of aircraft

汽车理论习题

汽车理论习题

.目录第1章汽车动力性 (1)第2章汽车的燃油经济性 (9)第3章汽车动力装置参数的选择 (12)第4章汽车的制动性 (13)第5章汽车的操纵稳定性 (19)第6章汽车平顺性 (25)第7章汽车的通过性 (28)综合题 (29)第 1 章汽ft动力性第1章汽车动力性1.1 简述汽车动力性及其评价指标。

1.2 汽车行驶阻力是怎样形成的?1.3 试说明轮胎滚动阻力的定义、产生机理和作用形式。

1.4 滚动阻力系数与哪些因素有关?1.5 汽车的滚动阻力可以分为哪几种?1.6 能否在汽车受力分析图上画出滚动阻力,为什么?1.7 某轿车总质量m=1200kg,前轮载荷占整车载荷的 60%;车轮侧向力系数kα=1800kg/rad,前束角β=2°,该轿车两前轮互置前束角β后产生相应行驶阻力F v,如图1-1 所示。

(1)设轿车前进时侧向力与前束角的关系为F V=kαβ,试求因前束引起的行驶阻力;(2)若该轿车滚动阻力系数f=0.015,试求整车的滚动阻力F f;(3)试比较前束引起的行驶阻力与滚动阻力。

1.8 转弯时滚动阻力的大小取决于行驶速度和转向半径R,转弯时的滚动阻力系数f R=f+Δf。

设转弯时在离心力F C 作用下,前、后轮均有侧偏角,分别是α1 和α2,质心距前、后轮的距离分别是l a和l b,转向时用两轮模型分析侧向力引起的滚动阻力如图 1-2 所示。

试推导出附加滚动阻力系数⊗f =⊗FWu 2=gRL(lbsin α1 +l a sin α2 )的表达式(提示:先求出由F Y1 和F Y2 所引起的附加阻力ΔF)。

1.9 用受力图分析汽车从动轮在平路加速或减速行驶时的受力情况,并推导切向力方程式。

1.10 用受力图分析汽车驱动轮在平路加速或减速行驶时的受力情况,并推汽车理论习题集导切向力方程式。

1.11 解释汽车加速行驶时质量换算系数的意义。

汽车旋转质量换算系数由哪几部分组成?与哪些因素有关?1.12 汽车轮胎半径增大,其他参数不变时,对汽车的加速性能和爬坡性能有何影响?说明理由。

机构动力学及间隙机构简介

机构动力学及间隙机构简介

1.机械动力学简介1.1定义机械动力学是研究机械在力作用下的运动和机械在运动中产生的力,并从力与运动的相互作用的角度进行机械的设计和改进的科学。

它是机械科学的一个重要分支。

1.2机械动力学的发展机械动力学的发展是基于人类社会生产力发展基础之上的,尤其是工业革命以来,随着生产力的飞速发展,机械动力学也逐步形成了一门学科。

在古代时期,人们的生产力水平非常低下,缺乏先进的动力,机构的运行速度非常低,在这种笨重的低速机构中,运动产生的惯性力对机构的影响不是特别明显,这就导致人们一直忽略动力学这个问题。

随着两次工业革命的爆发,人们的动力得到了空前的发展,推动了人类社会进入机械化的时代,尤其是第二次世界大战之后,人类社会的生产力更是发生了翻天覆地的变化,人类对机器的需求逐渐向高速化、精密化、轻量化、自动化发展,在这种高速轻量机构中,运动产生的惯性力会对机构的正常运转产生严重影响,从而使人们的视野移向动力学这个问题上,促进了机械动力学的发展。

20世纪90年代以来,随着纳米技术的兴起,人类还发展起来了微机械系统,从而产生了微机械动力学。

1.3机械动力学概述机械动力学在当代获得了高速发展,呈现出全新的面貌。

一方面。

机械动力学在纵向已发展为包括动力学建模、动力学分析、动力学仿真、动力学设计、减振与动力学控制,以及状态监测和故障诊断等~系列领域的内容丰富的综合学科。

另一方面,在横向,形成了机构动力学、传动动力学、转子动力学、机器人动力学、机床动力学和车辆动力学等多个分支领域。

在余老师的课堂上,我们主要围绕机构动力学这个横向课题探讨了动力学建模,动力学分析、动力学设计等问题。

1.3.1研究内容⑴基本问题:①动力学正问题:给定力求运动,即已知输入转矩和工作阻力求解运动规律。

②动力学逆问题:给定运动反求力,即已知机器的运动状态和工作阻力求解输入转矩和运动副反力。

⑵专题问题:①机构的动力平衡机构在运转过程中,其各个部件由于存在实际的质量和转动惯量会产生周期性的惯性作用,这种惯性作用随着机构运转速度的提高而增加。

第四章导体的发热电动力及常用计算公式1

第四章导体的发热电动力及常用计算公式1
: 2 S

tk
0
I dt =
2 kt
C0 ρ m
ρ0
1 + βθ ∫θ w 1 + αθ d θ
θh
求解得:
1 S2

tk
0
2 I kt d t = Ah − Aw
C0 ρ m α − β β Ah = α 2 ln (1 + αθ h ) + α θ h = g (θ h ) ρ0 C0 ρ m α − β β Aw = α 2 ln (1 + αθ w ) + α θ w = g (θ w ) ρ0
20
4.3 导体的短时发热
引言
短时发热的含义: 短时发热的含义:
载流导体短路时发热, 载流导体短路时发热,是指从短路开始至短 路切除为止很短一段时间内导体发热的过程。 路切除为止很短一段时间内导体发热的过程。
短时发热的特点: 短时发热的特点:
短路电流大, 短路电流大,发热量多 时间短, 时间短,热量不易散发
tk
0
I d t = ∫ 2 I pt cos ωt + inp0e d t 0 2t − k tk Ta 2 2 1 − e Ta inp0 = Qp + Qnp ≈ ∫ I pt d t + 0 2
2 kt
tk
2
由于短路电流I 的表达式很复杂, 由于短路电流 kt的表达式很复杂,一般难于用简单的 26 解析式求解Q 工程上常采用近似计算法计算。 解析式求解 k,工程上常采用近似计算法计算。
5×1016 A[J/(Ωm4)]
1 Qk 2 S
25
1 Ah = Aw + 2 Qk S

动力弹塑性分析方法及其在结构设计中的应用

动力弹塑性分析方法及其在结构设计中的应用
3.3 结构阻尼
阻尼作为反映结构振动过程中能量耗散的动力特性之一,不同于结构质量和刚度等其他动力特性可 直接通过计算确定,在计算中通常需要抽象为数学模型,其常见的建立形式主要有振型阻尼和瑞雷阻 尼,瑞雷阻尼由质量阻尼项αM和刚度阻尼项βK线性组成如图5所示。
图5瑞雷阻尼示意
在以PERFORM-3D为代表的隐式算法软件中,应用振型阻尼矩阵或瑞雷阻尼都较为方便。两类阻尼 矩阵可分别单独应用,也可结合一起应用。为了节约计算时间,通常用初始弹性刚度矩阵直接形成瑞雷 阻尼矩阵或计算结构的初始线弹性自振周期与振型间接形成振型阻尼矩阵,两类阻尼矩阵都不随时间变 化,虽然理论上可以采用弹塑性响应过程中更新后的结构弹塑性总体刚度矩阵。将线弹性响应阶段的振 型阻尼矩阵用于弹塑性响应阶段,是一种近似方法,因为结构进入弹塑性阶段工作后,自振周期延长, 振型形状也出现变化。如果用瑞雷阻尼矩阵,对于刚度阻尼项βK必须加以关注,特别是用纤维模型模拟 的混凝土单元的刚度阻尼项,如用纤维模型模拟的钢筋混凝土柱和剪力墙单元等。这类单元的混凝土纤 维在初始线弹性响应阶段假设为尚未开裂,开裂后单元刚度显著下降,继续用单元开裂前的刚度矩阵就 会过高估计与此类单元相关的阻尼力与能耗。
通过隐式方法求解时,在每个时间增量步长内需要迭代求解耦联的方程组,计算成本较高,增加的
计算量至少与自由度数的平方成正比。在采用显式方式进行方程求解时,计算在单元层次进行,无需组 装整体刚度矩阵,更无需对刚度矩阵求逆,只需对通常可简化为对角阵的质量矩阵求逆,计算过程中直 接求解解耦的方程组,不需要进行平衡迭代,故一般不存在收敛性问题,每个计算步的计算速度较快, 但是需要非常小的时间步长,通常要比隐式小几个数量级,计算量至少与自由度数成正比[9]。随着分析 模型中单元与节点数量的增加,显式方法的优点越加突出。

新能源汽车试验学 第三章 动力性试验

新能源汽车试验学 第三章 动力性试验

LOGO
某国坡度达到36%的城市道路
某汽车爬30%标准坡
第三节 爬坡试验
LOGO
一、试验工况及指标要求
越来越多的公路通过架桥梁挖隧道来跨越山谷穿越山脊,即使是爬山公路也会通过线路盘旋环 绕大山的方式来减小道路坡度,这时除了最大爬坡度性能,企业和用户更加关注汽车在爬坡公路 上影响通勤效率的指标,如坡道最高车速、坡道加速性能等。
第二节 加速试验
一、试验设备
转鼓试验台也叫底盘测功机
优点:不受外界试验条件与环境条件的影响;
试验周期短;
节省人力;
精度高、效率快。
适合用于汽车的动力系统固有现象试验,
适合带有危险性的汽车临界试验等。
时间±0.001s, 车速±0.01km/h, 距离±0.1%, 牵引力±0.1%, 加速度±0.005m/s2
其他
01
广义动力性 加速踏板不全开的动力性试验
加速MAP测试:加速踏板10%、20%、30%、……90%、100%
加速响应测试:踩下加速踏板到加速度达到规定值的时间
行驶感觉测试:如加速过程中加速度对时间的变化率的平顺性
行驶难易程度的测试:如匀速行驶加速踏板控制区间的大小
……
02 测试边界控制 不同环境温度 不同海拔高度 不同动力电池SOC 开空调 ……
第一节 概述
动力性 试验方法 分类——
国标
01
最高车速 GB/T 12544 《汽车最高车速试验方法》
1km最高车速
30分钟最高车速
02
加速
GB/T 12543
《汽车加速试验方法》
原地起步加速
超车加速
03
最大爬坡度 GB/T 12539-2018 《汽车爬陡坡试验方法》

关于Lyapunov指数计算方法的比较_张海龙


混沌从本质上说是指在确定性系统中出现的一种貌似无规则 、 类似随机的现象. 混沌系统的基本特点 Lyapunov 指数 两个靠近的初值产生的轨道随时间推移按指数方式分离 , 是运动对初值条件极为敏感, ( LE ) 就是定量描述这一现象的量, 是衡量系统动力学特性的一个重要定量指标, 它表征了系统在相空间 [1 , 2 ] . 中相邻轨道间收敛或发散的平均指数率 如何快速、 准确地计算出 LE 是分析混沌系统的关键, 近年来国内学者对 LE 的计算方法做了很多研 [3 ] , Yan Wen logistic lyapunov Liao[4]利用 wolf 法计算出几种 究 利用定义法求解了 模型的最大 指数( LLE ) 、 Wang[5] 在比较 wolf 法与小数据量法后选择采用小数据量法计算出 logistic 模型的 典型混沌系统 LLE 、 LLE 、 Xie[6]在实际应用中又提出改进的小数据量法 . 对于不同系统可以选择不同的计算方法 , 虽然各种方 法均取得了较好的计算结果, 不同的计算方法可以适用于不同的系统中 , 但是目前对多种 LE 计算方法的 综合比较和选择依据的说明很少. 本文讨论混沌吸引子的 Lyapunov 指数计算问题, 主要是对实际应用中 wolf 法、 即定义法、 正交法和小数据量法, 以典型的 Lorenz 系统为例, 分别用各 常用的几种方法进行比较, 种方法计算其 Lyapunov 指数或者最大 Lyapunov 指数, 详细比较出各种求解精度、 求解复杂度和抗干扰能 力的差异, 从而给出各方法的适用范围和选择依据 . 关于其他动力学系统的 Lyapunov 指数计算结果, 由于 这里不再给出. 篇幅的限制,
— 6 —
张海龙, 等: 关于 Lyapunov 指数计算方法的比较

icar03 风阻系数

icar03 风阻系数icar03 风阻系数是汽车工程中一个重要的参数,用来描述汽车在行驶中受到的空气阻力大小。

本文将从什么是风阻系数、风阻系数的影响因素、测量和计算方法、以及提高风阻系数的方法等方面进行深入探讨。

一、什么是风阻系数风阻系数是指汽车在运动过程中由于空气阻力而产生的力和速度平方之比。

它是衡量汽车空气动力学性能的一个重要指标,对汽车的燃油消耗和行驶稳定性有着直接影响。

二、风阻系数的影响因素1.车身形状:车身形状对风阻系数起着决定性的影响。

流线型的车身能够减小空气阻力,降低风阻系数;而角度锐利、凹凸不平的车身则会增加空气阻力,提高风阻系数。

2.车身细节设计:车身细节设计也会影响风阻系数。

例如,凹拓风镜、下舱盖覆盖板、后尾翼等可以减小空气湍流的产生,降低风阻系数。

3.底盘设计:底盘的设计对风阻系数同样起着重要作用。

光滑的底盘可以减小底部湍流的产生,降低风阻系数;而开放式的底盘则会增加湍流,提高风阻系数。

4.其他因素:车辆的尺寸、车窗的数量和大小、车轮的设计等也会对风阻系数产生一定的影响。

三、测量和计算方法风阻系数通常通过实验和计算两种方法进行测量。

实验方法主要通过风洞试验进行。

在一个封闭的实验环境中,通过调整风洞中的风速和汽车的速度,测量车身承受的空气阻力大小,从而计算出风阻系数。

计算方法则是通过数值模拟和计算机仿真来进行。

利用计算流体力学(CFD)等技术,将汽车的车身几何形状导入计算模型,并通过求解流体力学方程来计算空气动力学参数,包括风阻系数。

四、提高风阻系数的方法1.优化车身形状:通过改变车身形状,使其更加流线型,减小角度和空气阻力。

这可以通过减小车身前后的面积差异、改变车窗的形状、设计光滑的车顶和尾部等方式实现。

2.改进细节设计:对车身的细节设计进行优化,例如使用凹拓风镜、安装底部覆盖板、添加空气动力学套件等。

3.提高车身刚度:通过提高车身刚度,降低车身的变形和湍流产生,减小风阻系数。

化学反应的活化能与反应速率常数的计算

化学反应的活化能与反应速率常数的计算在化学领域,了解反应速率以及反应机理对于探索化学反应的特性和性质非常重要。

而活化能和反应速率常数是评估化学反应速率的两个关键指标。

本文将介绍活化能和反应速率常数的计算方法及其在化学反应研究中的重要性。

一、活化能的计算活化能是指化学反应中,需要克服的能垒才能使反应发生的最低能量。

常见的活化能计算方法有两种:通过实验测定活化能和利用Arrhenius方程计算活化能。

1. 实验测定活化能实验测定活化能通常基于温度变化对反应速率的影响。

通过在不同温度下进行反应,并测定反应速率随温度的变化关系,可以得到一个关于温度的Arrhenius方程:k = A * exp(-Ea/RT)其中,k为反应速率常数,A为指前因子,Ea为活化能,R为理想气体常量,T为反应温度。

通过实验测定多组数据,在Arrhenius方程中取对数得到:ln(k) = ln(A) - (Ea/RT)将反应速率常数ln(k)与温度的倒数1/T绘制图像,斜率为-Ea/R,可通过计算斜率得到活化能Ea的数值。

2. Arrhenius方程计算活化能若已知多组反应速率常数k和温度T的数据,可以利用Arrhenius 方程求解活化能Ea的数值。

将Arrhenius方程改写为对数形式:ln(k) = ln(A) - (Ea/RT)通过将ln(k)和1/T绘制成线性图像,斜率为-Ea/R,可通过计算斜率得到活化能Ea的数值。

二、反应速率常数的计算反应速率常数是描述化学反应速率的物理量,用于表示单位时间内反应物消耗或生成的量。

在确定反应速率常数时,常见的方法有实验测定和使用理论计算公式。

1. 实验测定反应速率常数实验测定反应速率常数时,需要根据具体反应方程式设计实验,并测定反应物浓度随时间的变化。

通过分析实验数据,可以得到反应速率常数的数值。

2. 理论计算反应速率常数理论计算反应速率常数通常使用动力学理论中的几种方法,如过渡态理论、碰撞理论等。

汽车理论复习题答案(1-3章)教材

汽车理论习题答案(1-3章)
2011-10-17
ቤተ መጻሕፍቲ ባይዱ
一、概念解释
• 1汽车使用性能:
汽车应该满足高运输生产率、低运输成本、安 全可靠和舒适方便的工作要求。汽车为了适应这 种工作要求,而发挥最大工作效益的能力叫做汽 车的使用性能。汽车的主要使用性能通常有:汽 车动力性、汽车燃料经济性能、汽车制动性、汽 车操纵稳定性、汽车平顺性和汽车通过性能。
2 滚动阻力系数:
3 汽车驱动与附着条件:
4 汽车动力性及评价指标:
• 汽车动力性,是指在良好、平直的路面上行驶时 ,汽车由所受到的纵向外力决定的、所能达到的 平均行驶速度。汽车动力性的好坏通常以汽车加 速性、最高车速及最大爬坡度等项目作为评价指 标。动力性代表了汽车行驶可发挥的极限能力。
5 汽车动力因数:
5 写出带结构参数和使用参数的汽车行驶方 程式(注意符号定义)。
6 列出可用于计算汽车最高车速的方法,并 加以说明。
三、简答题
• 1 写出图解法计算汽车加速性能的步骤(最好列表说明)
2 选择汽车发动机功率的基本方法
3 写出制作汽车的驱动力图的步骤(最好列 表说明)
4 如果汽车质心正好处于前后轴中间位置(a=b),
• 变速器速比 i增加,汽车的动力性提高,但一般 燃料经济性下降;档位数增加有利于充分利用发 动机的功率,使汽车的动力性提高,同时也使燃 料经济性提高;但档位数增加使得变速器制造困 难,一般可采用副变速器解决,或采用无级变速 器。
6 确定传动系最小传动比的基本方法
7 请以减速器速比为例,叙述汽车后备功率 对汽车动力性和燃油经济性的影响 • 减速器速比增减使得相同发动机转速对应 的车速下降,功率平衡图中的功率曲线在 速度轴向左移,从而使后备功率增加,动 力性提高,而燃料经济性下降;反之,则 后备功率减小,动力性下降,燃料经济性 提高。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求解动力性指标的方法有几种汽车的动力性主要指的以下三个指标
1、最高车速
指在无风条件下,在水平、良好的沥青或水泥路面上,汽车所能达到的最大行驶速度。

按我国的规定,以1.6公里长的试验路段的最后500米作为最高车速的测试区,共往返四次,取平均值
2、加速能力 (加速时间)
指汽车在行驶中迅速增加行驶速度的能力,通常用加速时间和加速距离来表示。

加速能力包括两个方面,即原地起步加速性和超车加速性。

现多介绍原地起步加速性的参数。

因为起步加速性与超车加速性的性能是同步的,起步加速性性能良好的汽车,超车加速性也一样良好。

原地起步加速性是指汽车由静止状态起步后,以最大加速强度连续换档至最高档,加速到一定距离或车速所需要的时间,它是真实反映汽车动力性能最重要的参数。

有两种表示方式:车速0加速到1000米(或400米,或1/4英里)需要的秒数;车速从0加速到100公里/小时(80公里/小时、100公里/小时)所需要的秒数,时间越短越好。

超车加速性是指汽车以最高档或次高档由该档最低稳定车速或预定车速全力加速到一定高速度所需要的时间。

这里特别要指出的是,加速性能的测试与驾驶员的驾车换档技术与环境有密切的联系。

驾驶员技术水平的不同,行驶路面的不同,甚至气候条件的不同,所反映出来的加速时间也会不同。

车厂给出的参数往往是样车所能达到的最佳值,因此作为用户来说,这个参数仅能做为参考。

3、爬坡能力
指汽车在良好的路面上,以1档行驶所能爬行的最大坡度。

对越野汽车来说,爬坡能力是一个相当重要的指标,一般要求能够爬不小于60%或30的坡路;对载货汽车要求有30%左右的爬坡能力;轿车的车速较高,且经常在状况较好的道路上行驶,所以不强调轿车的爬坡能力,一般爬坡能力在20%左右。

相关文档
最新文档