易学通·重难点一本过高一数学 (人教版必修3):第二章 抽样 含解析
人教A版高中数学必修三第2章2.1-2.1.2系统抽样4 答案和解析

人教A 版高中数学必修三第2章2.1-2.1.2系统抽样4 学校:___________姓名:___________班级:___________考号:___________一、单选题1.某商场想通过检查发票及销售记录的2%来快速估计每月的销售总额.采取如下方法:从某本发票的存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…发票上的销售额组成一个调查样本.这种抽取样本的方法是( )A .抽签法B .随机数法C .系统抽样法D .其他方式的抽样2.学校为了了解高二年级1 203名学生对某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段间隔k 为( )A .40B .30.1C .30D .12 3.在120个零件中,用系统抽样法从中抽取容量为20的样本,则每个个体被抽取的可能性为( )A .124B . 136C . 160D . 16 4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为125,则第1组中按此抽签方法确定的号码是( )A .7B .5C .4D .35.某学校高一年级共有480名学生,为了调查高一学生的数学成绩,采用系统抽样的方法抽取30名学生作为调查对象.将480名学生随机从1~480编号,按编号顺序平均分成30组(1~16号,17~32号,…,465~480号),若从第1组中用抽签法确定的号码为5,则第8组中被抽中学生的号码是()A .25B .133C .117D .88 6.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,3,...,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( )A .7B .9C .10D .15二、填空题7.某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数k80050=16,即每16人抽取一个人.在1~16中随机抽取一个数,如果抽到的是7,则从33 ~ 48这16个数中应取的数是.8.某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是9.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10. 现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k号码的个位数字相同,若m=6,则在第7组中抽取的号码是____.三、解答题10.某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取40册图书,检查其质量状况.请你设计一个抽取方案.11.一个总体中的1 000个个体编号为0,1,2,…,999,并依次将其分为10个小组,组号为0,1,2,…,9.抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x,那么第k(1≤k≤9,k∈N*)组抽取的号码的后两位数是x+33k的后两位数.(1)当x=24时,写出所抽样本的10个号码;(2)若所抽取样本的10个号码中有一个的后两位数是87,求x的取值范围.参考答案1.C【解析】上述抽样方法是将发票平均分成若干组,每组50张,从第一组中抽出了15号,以后各组抽15+50n(n为自然数)号,符合系统抽样的特点.2.C【解析】了解1203名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,∵1203除以40不是整数,∴先随机的去掉3个人,再除以40,得到每一段有30个人,则分段的间隔k为30,故选C.3.D【解析】由系统抽样的概念可知,总体中的每个个体被抽取的可能性都相等,都等于201 1206.选D.4.B【解析】用系统抽样知,每段中有8人,第16段应为从121到128这8个号码,125是其中的第5个号码,所以第一段中被确定的号码是5.考点:系统抽样.5.C【解析】根据系统抽样样本编号的确定方法进行求解,因为第1组抽出的号码为5,分组间隔为16,所以第8组应抽出的号码是(8-1)×16+5=117.选C.点睛:系统抽样则主要考查分组数和由第一组中抽取的样本推算其他各组应抽取的样本,即等距离的特性,解题的关键是的关键是掌握系统抽样的原理及步骤.6.C【解析】从960人中用系统抽样方法抽取32人,则抽样距为k=,因为第一组号码为9,则第二组号码为9+1×30=39,…,第n组号码为9+(n-1)×30=30n-21,由451≤30n-21≤750,得,所以n=16,17,…,25,共有25-16+1=10(人).考点:系统抽样.7.39【解析】因为采用系统抽样方法,每16人抽取一人,1~16中随机抽取一个数抽到的是7,所以在第k组抽到的是7+16(k-1),因此从33~48这16个数中应取的数是7+16×2=39.答案:398.16【解析】试题分析:容量为4,所以首先编号后分成4组,每组13人,因此组距为13,3号为第一组样本,因此第二组为16考点:系统抽样点评:系统抽样方法抽取的样本数据之差为组距,也就是每组的元素个数9.63【解析】本题的入手点在题设中的“第k组中抽取的号码的个位数字与m+k的个位数字相同”.由题设可知:第7组的编号为60,61,62,63,…,69,而第7组中抽取的号码的个位数字与6+7=13的个位数字相同,故第七组抽取的号码是63.考点:随机抽样、系统抽样.10.见解析【解析】解:(1)分段:362除以40的商是9,余数是2,分段间隔为9.(2)先用简单随机抽样从这些书中抽取2册书不检查.(3)将剩下的书编号:000,001, (359)(4)从第一组(编号为000,001,…,008)中按照简单随机抽样的方法抽取1个编号,比如k.(5)顺序地抽取编号为k+9n(0≤n≤39)的书,总共得到40个样本.11.(1)24,157,290,323,456,589,622,755,888,921;(2){21,22,23,54,55,56,87,88,89,90}.【解析】(1)当x=24时,按规则可知所抽取样本的10个号码依次为:24,157,290,323,456,589,622,755,888,921.(2)当k=0,1,2,…,9时,33k的值依次为:0,33,66,99,132,165,198,231,264,297.又抽取样本的10个号码中有一个的后两位数是87,从而x可以为:87,54,21,88,55,22,89,56,23,90.∴x的取值范围是{21,22,23,54,55,56,87,88,89,90}.考点:系统抽样.。
人教A版高中数学必修三第2章2.1.1简单随机抽样 答案和解析

人教A版高中数学必修三第2章2.1.1简单随机抽样学校:___________姓名:___________班级:___________考号:___________一、单选题1.在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本2.下面的抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验3.下列抽样实验中,适合用抽签法的有( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验4.某班有34位同学,座位号记为01至34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是()495443548217379323788735209643842634916457245506887704744767217633502583921206A.23 B.09 C.02 D.165.从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该批产品的合格率为( )A.36% B.72%C.90% D.25%二、解答题6.上海某中学从40名学生中选1名作为上海男篮拉拉队的成员,采用下面两种方法:方法一:将这40名学生从1~40进行编号,相应的制作写有1~40的40个号签,把这40个号签放在一个暗箱中搅拌均匀,最后随机地从中抽取1个号签,与这个号签对应的学生幸运入选.方法二:将39个白球与一个红球混合放在一个暗箱中搅拌均匀,让40名学生逐一从中摸取一个球,摸到红球的学生成为拉拉队的成员.试问这两种方法是否都是抽签法?为什么?这两种方法有何异同?参考答案1.A【解析】试题分析:从5000份中抽取200份,样本的容量是200,抽取的200份是一个样本,每个居民的阅读时间就是一个个体,5000名居民的阅读时间的全体是总体.所以选A.【考点定位】统计基本概念.2.D【分析】根据简单随机抽样的概念与特征,逐项判断,即可得出结果.【详解】A选项,在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖;为系统抽样;B选项,某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格;为系统抽样;C选项,某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见;为分层抽样;D选项,用抽签法从10件产品中选取3件进行质量检验;为简单随机抽样;故选D【点睛】本题主要考查简单随机抽样,熟记概念与特征即可,属于基础题型.3.B【解析】A,D中个体的总数较大,不适合用抽签法;C中甲、乙两厂生产的两箱产品性质可能差别较大,因此未达到搅拌均匀的条件,也不适于用抽签法;B中个体数和样本容量较小,且同厂生产的两箱产品,性质差别不大,可以看作是搅拌均了.考点:简单随机抽样.4.D【解析】试题分析:从随机数表第一行的第6列和第7列数字35开始,由左到右依次选取两个数字,不超过34的依次为:21,32,09,16,17,第四个志愿者的座号为16,故选D.考点:随机抽样.5.C【解析】36×100%=90%406.见解析【解析】抽签法抽样时给总体中的N个个体编号各不相同,由此可知方法一是抽签法,方法二不是抽签法.因为抽签法要求所有的号签编号互不相同,而方法二中39个白球无法相互区分.这两种方法的相同之处在于每名学生被选中的机会都相等.考点:简单随机抽样.。
高中数学第二章统计2系统抽样1课件a必修3a高一必修3数学课件

2021/12/10
第二十九页,共三十八页。
第三步,从第 1 段即 1,2,…,10 这 10 个编号中,用简单随机抽样 的方法抽取一个号(如 5)作为起始号;
第四步,从 5 开始,再将编号为 15,25,…,795 的个体抽出,得到 一个容量为 80 的样本.
2021/12/10
第三十页,共三十八页。
2021/12/10
第二十页,共三十八页。
当总体容量能被样本容量整除时,分段间隔 k=Nn;当用系统抽样抽 取样本时,通常是将起始数 s 加上间隔 k 得到第 2 个个体编号(s+k),再 加 k 得到第 3 个个体编号(s+2k),依次进行下去,直到获取整个样本.
2021/12/10
第二十一页,共三十八页。
2021/12/10
第十页,共三十八页。
【解析】这 20 个小球分 4 组,每组 5 个,(1)若以 2 号为起点,则另 外三个球的编号依次为 7,12,17,这 4 球编号平均值为2+7+412+17= 9.5.(2)若以 3 号为起点,则另外三个球的编号依次为 8,13,18,这 4 球 编号平均值为3+8+413+18=10.5.
先将总体中的个体逐一编号,然后按号码顺序以一定的间隔 k 进行 抽取,先从第一个间隔中___随_机__(s_uí_jī地) 抽取一个号码,然后按此间隔 __逐__个__(z_hú_g抽è) 取即得到所需样本.
2021/12/10
第三页,共三十八页。
自我检测
某影院有 40 排座位,每排有 46 个座位,一个报告会上坐满了听众,
2021/12/10
第二十五页,共三十八页。
例 3 为了了解参加某种知识竞赛的 1 003 名学生的成绩,抽取一个 容量为 50 的样本,选用什么抽样方法比较恰当?简述抽样过程.
高中数学(人教版A版必修三)配套课件:第二章 习题课

超级记忆法-记忆规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影响,更容易储存记忆信息,由短时记忆转变为长时记忆。
如何利用规律实现更好记忆呢?
超级记忆法-记忆规律
TIP3:另外,还有研究表明,记忆在我们的睡眠过程中也并未停止,我们的大 脑会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常宝贵的,不要全部用来玩手机哦~ TIP4:早晨起床后,由于不受前摄抑制的影响,我们可以记忆一些新的内容或 者复习一下昨晚的内容,那么会让你记忆犹新。
1段用简单随 分别按简单随
操 器中,并搅拌均匀; 向上、向下)读,将编
机抽样确定起 机抽样或系统
作 第三步,每次从中 号范围内的数取出,
始个体编号l; 抽样的方法抽
步 抽取一个号签,连 编号范围外的数去掉,
第四步,按照 取样本;
骤 续不放回地抽取n次,直到取满n个号码为
一定的规则抽 第四步,综合
就得到一个容量为n 止,就得到一个容量
方向
资料
筛选
认知
高效学习模型-学习的完整过程
消化
固化
模式
拓展
小思考
TIP1:听懂看到≈认知获取; TIP2:什么叫认知获取:知道一些概念、过程、信息、现象、方法,知道它们 大概可以用来解决什么问题,而这些东西过去你都不知道; TIP3:认知获取是学习的开始,而不是结束。
为啥总是听懂了, 但不会做,做不好?
解析答案
类型二 系统抽样 例2 某学校有3 004名学生,从中抽取30名学生参加问卷调查,试用系统 抽样的方法完成对样本的抽取. 解 第一步,将3 004名学生编号为0000,0001,…,3003. 第二步,利用随机数法从中找出4个号,并将对应的4名学生排除. 第三步,将剩余的3 000名学生重新编号为0000,0001,…,2999,并将总体 均分成30组,每组含有100名学生. 第四步,在第一组中用简单随机抽样的方法抽取号码l. 第五步,将编号为l,l+100,l+200,…,l+2900对应的学生抽出,组成 样本.
人教版高中数学必修三 2.1《随机抽样》知识梳理+跟踪检测

人教版高中数学必修三 第二章 统计2.1《随机抽样》知识梳理知识点一:简单随机抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎨⎧随机数法抽签法 3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.知识点二:系统抽样1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k ,对编号进行分段.当N n(n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l(l ≤k);(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k),再加k 得到第3个个体编号(l +2k),依次进行下去,直到获取整个样本.知识点三:简单随机抽样1.分层抽样的概念 在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.人教版高中数学必修三第二章统计2.1《随机抽样》跟踪检测一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是1 5B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .126.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,87.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A. 22,100x s +B. 22100,100x s ++C. 2,x sD. 2100,x s +9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A.①②③B.①②④C.①③④D.①②③④10.下列抽样实验中,最适宜用系统抽样的是()A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93B.123C.137D.16712.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为()A.2个B.3个C.5个D.13个13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,614.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,5315.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,916.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. 18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.人.三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:60人进行更为详细的调查,应当怎样进行抽样?23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?2.1《随机抽样》跟踪检测解答一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况[答案] D2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量[答案] C3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对[答案] C[解析]按照一定的规律进行抽取为系统抽样.4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是15B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此 C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同[答案] A[解析] 无论采用哪种抽样,每个个体被抽到的概率相等.5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .12[答案] A[解析] 运动员共计98人,抽取比例为2898=27,因此男运动员56人中抽取16人.6.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,8[答案] C[解析] 由题意得x =15,16.8=51(9+15+10+y +18+24) y =8,选C. 7.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ) A. 22,100x s + B. 22100,100x s ++ C. 2,x s D. 2100,x s +[答案] D[解析] 设增加工资后10位员工下月工资均值为'x ,方差为2's , 则平均数()()()12101'10010010010x x x x =++++⋅⋅⋅++⎡⎤⎣⎦ ()1210110010010x x x x =++++=+; ()()()222212101'100'100'100'10s x x x x x x ⎡⎤=+-++-+⋅⋅⋅++-⎣⎦ ()()()22221210110x x x x x x s ⎡⎤=-+-+⋅⋅⋅+-=⎣⎦.故选D . 9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A .①②③B .①②④C .①③④D .①②③④[答案] D10.下列抽样实验中,最适宜用系统抽样的是( )A .某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B .某厂生产的2 000个电子元件中随机抽取5个入样C .从某厂生产的2 000个电子元件中随机抽取200个入样D .从某厂生产的20个电子元件中随机抽取5个入样[答案] C[解析] A 中总体有明显层次,不适用系统抽样法;B 中样本容量很小,适宜用简单随机抽样法中的随机数法;D 中总体数很小,故适宜用抽签法,只有C 比较适用系统抽样法.11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.167[答案] C[解析] 由图可知该校女教师的人数为()11070%150160%7760137⨯+⨯-=+= 故选C12.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为( )A .2个B .3个C .5个D .13个[答案] A[考点]分层抽样方法[分析]由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x ,即可得出结论.解:由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x , ∴x=2,故选A .[点评]本题考查分层抽样,抽样过程中每个个体被抽到的可能性相同,这是解决抽样问题的依据,样本容量、总体个数、每个个体被抽到的概率,这三者可以做到知二求一.13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,6[答案] D[解析]由题意,各种职称的人数比为160∶320∶200∶120=4∶8∶5∶3,所以抽取的具有高、中、初级职称的人数和其他人员的人数分别为40×4 20=8,40×820=16,40×520=10,40×320=6.14.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,53[答案] A[解析]样本中共有30个数据,中位数为4547462+=;显然样本中数据出现次数最多的为45,故众数为45;极差为68-12=56,故选A.15.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,9[答案] B[解析]各年龄段所选分别为20100×45=9,20100×25=5,20100×30=6.16.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36[答案] B[解析]设该单位老年职工有x人,从中抽取y人.则160+3x=430⇒x=90,即老年职工有90人,则90160=y32⇒y=18.故选B.二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. [答案]30[解析]由题意,知22+3+5×n=6,∴n=30.18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.[答案]760[解析]设该校女生人数为x,则男生人数为(1 600-x).由已知,2001 600×(1 600-x)-2001 600·x=10,解得x=760.故该校的女生人数是760人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.[答案] 5.7%[解析]∵990∶99 000=1∶100,∴普通家庭中拥有3套或3套以上住房的大约为50×100=5 000(户).又∵100∶1 000=1∶10,∴高收入家庭中拥有3套或3套以上住房的大约为70×10=700(户).∴3套或3套以上住房的家庭约有5 000+700=5 700(户).故5 700100 000=5.7%.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.[答案]3720[解析]由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下的年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20(人).21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.生活能否自理人数性别男女能178 278不能23 21人.[答案]60[解析]由表知500人中生活不能自理的男性比女性多2人,所以该地区15 000位老人生活不能自理的男性比女性多2×15 000500=60(人).三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:很喜爱喜爱一般不喜爱2 435 4 5673 926 1 07260人进行更为详细的调查,应当怎样进行抽样?解:可用分层抽样方法,其总体容量为12 000.“很喜爱”占2 43512 000,应取60×2 43512 000≈12(人);“喜爱”占4 56712 000,应取60×4 56712 000≈23(人);“一般”占3 92612 000,应取60×3 92612 000≈20(人);“不喜爱”占1 07212 000,应取60×1 07212 000≈5(人).因此采用分层抽样在“很喜爱”、“喜爱”、“一般”和“不喜爱”的2 435人、4 567人、3 926人和1 072人中分别抽取12人、23人、20人和5人.23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?解:(1)将624名职工用随机方式编号由000至623.(2)利用随机数法从总体中剔除4人.(3)将剩下的620名职工重新编号由000至619.(4)分段,取间隔k=62062=10,将总体分成62组,每组含10人.(5)从第一段,即为000到009号随机抽取一个号l.(6)按编号将l,10+l,20+l,…,610+l,共62个号码选出,这62个号码所对应的职工组成样本.24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?解:学生A的方法得到的样本不能够反映不上网的居民情况,是一种方便样本,所得的结果代表性差,不能很准确地获得平均每户居民的月用水量;学生B 的方法实际上是普查,花费的人力物力要多一些,但是如果统计过程不出错,可以准确地得到平均每户居民的月用水量;在小区的每户居民都装有电话的情况下,学生C的方法是一种随机抽样方法,所得的样本具有代表性,可以比较准确地获得平均每户居民的月用水量.在小区的每户居民都装有电话的情况下,建议用随机抽样的方法获取数据,即用学生C的方法,以节省人力物力,并且可以得到比较精确的结果.5、已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能为( )A. 0.4.3ˆ2yx =+ B. 2 2.4ˆy x =- C. 9ˆ2.5yx =-+ D. 0.3 4.4ˆy x =-+ [答案] A[解析] 变量x 与y 正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.∵变量x 与y 正相关,∴可以排除C,D;样本平均数3x =, 3.5y =,代入A 符合,B 不符合,故选A.。
人教A版高中数学必修3《二章 统计 2.1 随机抽样 阅读与思考 .如何得到敏感性问题的诚实反应》示范课课件_4

诚信作为一种基本价值观和道德观,是立身之本、 处世之道,具有不可抗拒的人格魅力和强大的向 心力、凝聚力。它同平等、和谐、民主、自由等 基本价值观念一样,是完善个人德行、提升民族 素质的一个十分重要的道德行为准则!一个不诚 信的人怎会有健全的人格和身心统一的自我?一 个不诚信的民族又怎能立于世界民族之林?诚信 是实现自我和民族发展的重要途径,舍弃诚实只 会导致个人的失败和民族的毁灭。“人无信不诚, 民无信不立,国无信不兴。”
颗,各位调查者随即从袋子中摸取 一个棋子(然后放回),摸到黑棋子 的回答第一个问题。摸到白棋子的 回答第二个问题,回答是的在笔记 本上画“√”,回答否的什么也不 做。
问题1:每位学生从箱子中摸出一个黑棋子或白棋子的 概率是多少?
问题2:在过程中回答第一个问题和第二个问题的人大 约各有几个?
问题3:摸到黑棋子回答阳历生日是奇数的概率大约是 多少?回答第1个问题的人中大约有多少人回答“是”?
学生考试过程中是否有作弊现象的调查
探究与实验
问题:在期中考试后,为了调查高 一7班学生考试中是否有作弊现象 ,我们应该采用怎样的调查方式才 能获得真实的调查结果?
根据这个问题 ,我们设计了两个问题: 问题1:你的阳历生日是否为奇数? 问题2:你在考试过程中是否有作弊现象?
我们调查的对象是高一7班全体学生,总体为57人 ,样本容量为20人。
具体步骤: 1.先将57位学生的总体进行编号; 2. 从选定的数开始按一定的方法读下去,得到的数码若 不在编号中,则跳过; 若在编号中,则取出;如果得到的号 码前面已经取出,也跳过;如此继续下去,直到取满为止; 3.根据选定的号码抽取样本。
针对这两个问题,我们设计了一个游戏
高一数学人教版必修三课件 第二章 统计 2-1-1
3.1.3
二倍角的正弦、余弦、 正切公式
方法归纳 判断一个抽样是否为简单随机抽样的依据是其四个特征
3.1.3
二倍角的正弦、余弦、 正切公式
1.下列抽样方式是否是简单随机抽样? (1)在某车间包装一种产品,在自动包装的传送带上每隔 30分 钟抽一包产品,称其质量是否合格; (2) 某班有 56 名同学,指定个子最高的 5 名同学参加学校组织
只适合总体容量较少的抽样类型.
3.简单随机抽样中每个个体入样的可能性都相等,均为n/N, 但是这里一定要将每个个体入样的可能性、第n次每个个体入
样的可能性、特定的个体在第n次被抽到的可能性这三种情况
区分开来,避免在解题中出现错误.
3.1.3
二倍角的正弦、余弦、 正切公式
简单随机抽样的概念
下面的抽样方法是简单随机抽样吗?为什么? (1)从无数个个体中抽取 20 个个体作为样本; (2)从 50 台冰箱中一次性抽取 5 台冰箱进行质量检查; (3)一彩民选号,从装有 36 个大小、形状都相同的号签的盒子 中无放回地抽取 6 个号签.
3.1.3
二倍角的正弦、余弦、 正切公式
3.抽签法的优点、缺点各是什么? 解:优点:简单易行,当总体个数不多的时候搅拌均匀很容易, 每个个体有均等的机会被抽中,从而保证样本的代表性.缺 点:当总体个数较多时很难搅拌均匀,产生的样本代表性差 的可能性很大.
3.1.3
二倍角的正弦、余弦、 正切公式
1.简单随机抽样是一种最简单、最基本的抽样方法,简单随 机抽样有两种选取个体的方法:放回和不放回,我们在抽样 调查中用的是不放回抽样,常用的简单随机抽样方法有抽签 法和随机数法. 2.随机数表法的优点与抽签法相同,缺点上当总体容量较大 时,仍然不是很方便,但是比抽签法公平,因此这两种方法
高中数学必修3(人教A版)第二章统计2.1知识点总结含同步练习及答案
⑤确定样本:从总体中找出与号签上的号码对应的个体,组成样本.
随机数表法是随机数表由数字 0 ,1 ,2,3,⋯,9 这 10 个数字组成,并且每个数字在表中 各个位置上出现的机会都是一样的,通过随机数表,根据实际需要和方便使用的原则,将几个数
组成一组,然后通过随机数表抽取样本.随机数表的优点是简单易行,它很好的解决了当总体中
样.因为 50 名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单 随机抽样中“等可能抽样”的要求.(3)是简单随机抽样.因为总体中的个体数是有限的,并且
是从总体中逐个进行抽取的,是不放回、等可能的抽取.
2013年第27届世界大学生运动会在俄罗斯举行,为了支持这次运动会,某大学从报名的 20 名大 三学生中选取 6 人组成志愿小组,请用抽签法设计抽样方案. 解:(1)将 20 名志愿者编号,编号为 1,2,3,4,⋯,20; (2)将 20 个号码分别写在 20 张形状相同的卡片上,制成号签; (3)将 20 张卡片放入一个不透明的盒子里,搅拌均匀; (4)从盒子中逐个不放回地抽取 6 个号签,并记录上面的号码;
A.2
B.3
C.6
D.7
解:C
间隔相等,所以 126 − 8 × 15 = 6.
4.分层抽样
描述: 将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在 总体中所占比例进行简单随机抽样或系统抽样,这种抽样的方法叫做分层抽样.当总体由明显差 别的几部分组成时,为了使抽取样本更好地反映总体的情况,常采用分层抽样.
③简单随机抽样是一种不放回抽样.
④简单随机抽样是一种等可能的抽样,每个个体被抽取到的可能性均为
n N
.
常用的简单随机抽样方法有抽签法和随机数表法.
高中数学 第二章 统计 2.12.1.1 简单随机抽样课件 新人教版必修3
解析:在简单随机抽样中,每一个个体被抽中的可能 性都相等,与第几次抽样无关.
答案:B
5.采用简单随机抽样,从 6 个标有序号 A、B、C、 D、E、F 的球中抽取 1 个球,则每个球被抽到的可能性 是________.
解析:每个个体抽到的可能性是一样的.
答案:16
类型 1 简单随机抽样的概念
[典例 1] 下面的抽样方法是简单随机抽样吗?为什 么?
[变式训练] 下列抽取样本的方式属于简单随机抽
样的是( ) (1)从无限多个个体中抽取 100 个个体; (2)盒子中有 80 个零件,从中选出 5 个零件进行质量
检验,在抽样操作时,从中任意拿出一个零件进行质量 检验后再把它放回盒子里;
(3)从 8 台电脑中不放回地随机抽取 2 台进行质量检 验(假设 8 台电脑已编好号,对编号随机抽取).
(3)是简单随机抽样.因为总体中的个体数是有限的, 并且是从总体中逐个进行抽取的,是不放回、等可能地进 行抽样.
归纳升华 判断一个抽样是否是简单随机抽样,一定要看它是否 满足简单随机抽样的四个特点,这是判断的唯一标准. (1)简单随机抽样的样本总体个数有限. (2)简单随机抽样的样本是从总体中逐个抽取. (3)简单随机抽样是一种不放回抽样. (4)简单随机抽样的每个个体抽样机会均等.
A.(1) C.(3)
B.(2) D.以上都不对
解析:根据简单随机抽样的签法的应用 [典例 2] 2016 年,某师范大学为了支援西部教育事 业,现从报名的 18 名免费师范毕业生中选取 6 人组成志 愿小组,请用抽签法确定志愿小组成员,写出抽样步骤.
解:抽样步骤是: 第一步,将 18 名志愿者编号,号码是 1,2,…,18;
2.简单随机抽样
高中数学人教A版必修3第二章2.1.1_2.1.3随机抽样、系统抽样、分层抽样课件(共26张PPT)
通常利用l+k,l+2k,l+3k,... 这种不断添加分段间隔的方 式确定样本编号.本题最终选
取的编号为: 9,19,29,39,49,...,499
系统抽样的概念
• 将总体平均分成几部分,然后按照一定的规则,从每一部分抽 取一个个体作为样本,这种抽样的方法叫做系统抽样。
系统抽样,实质上是将转化思想.
将500名学生按 1,2,3,...,500进行编
号.
10人一组(即k=10), 将500名学生分为50组. 即:第1组10名学生的编 号为1~10,第2组学生的 编号为11~20,以此类推.
在第一组10名同学中,采 用简单随机抽样(抽签法 或随机数法),确定第一 个个体的编号l(l≤k).
假设抽到的是9.
明。
• 答:对于容量较大的总体,系统抽样更加便于操作。但系统抽样有时又会因为编号变化 的周期性,导致样本代表性差。例如:男生女生交替排成一路纵队进行编号,用系统抽 样,可能会导致抽到的全部为男生或全部为女生;如果将全班同学按体重顺序进行编号, 此时用系统抽样是合理的。另外,实际生产生活中,对生产线上的产品进行检测时,往 往也采用系统抽样,便于操作。
2.1 随机抽样
2.1.1 简单随机抽样 2.1.2 系统抽样 2.1.3 分层抽样
目录
CONTENTS
1
统计学的产生与发展
2 简单随机抽样
3 系统抽样
4 分层抽样
5
随机抽样的应用
统计学的产生与发展
背景知识--你了解统计学吗?
• 统计一词起源于国情调查,最早意为国情学。 • 统计:指对某一现象有关的数据的搜集、整理、计算、分析、解释、表述
开始
4、分层抽样的一般步骤:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点列表:
重点 名称 重要指数
重点1 简单随机抽样 ★★★
重点2 分层抽样 ★★★★
重点详解:
1.简单随机抽样
(1)简单随机抽样:一般地,设一个总体含有N个个体,从中逐个________地
抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会
________,就把这种抽样方法叫做简单随机抽样.
(2)最常用的简单随机抽样方法有两种:________法和________法.
抽签法(抓阄法):一般地,抽签法就是把总体中的N个个体________,把号
码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取______个号
签,连续抽取________次,就得到一个容量为n的样本.
随机数法:随机数法就是利用______________、随机数骰子或计算机产生的
随机数进行抽样.
简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效
的.
2.系统抽样
(1)一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下
列步骤进行系统抽样:
①先将总体的N个个体________.有时可直接利用个体自身所带的号码,如
学号、准考证号、门牌号等;
②确定分段间隔k,对编号进行分段.当Nn(n是样本容量)是整数时,取k=
Nn,如果遇到N
n
不是整数的情况,可以先从总体中随机地剔除几个个体,使得总
体中剩余的个体数能被样本容量整除;
③在第1段用______________抽样方法确定第一个个体编号l(l≤k);
④按照一定的规则抽取样本.通常是将l加上________得到第2个个体编号
________,再________得到第3个个体编号________,依次进行下去,直到获取
整个样本.
(2)当总体中元素个数较少时,常采用____________,当总体中元素个数较多
时,常采用______________.
3.分层抽样
(1)分层抽样的概念:一般地,在抽样时,将总体分成________的层,然后按
照一定的________,从各层独立地抽取一定数量的个体,将各层取出的个体合在
一起作为样本,这种抽样方法是一种分层抽样.
(2)当总体是由__________的几个部分组成时,往往选用分层抽样的方法.
(3)分层抽样时,每个个体被抽到的机会是________的.
【答案】
1.(1)不放回 都相等
(2)抽签 随机数 编号 1 n 随机数表
2.(1)①编号 ③简单随机
④间隔k (l+k) 加k (l+2k)
(2)简单随机抽样 系统抽样
3.(1)互不交叉 比例 (2)差异明显 (3)均等
重点1:简单随机抽样
【要点解读】
1、 简单随机抽样对于总体比较少的情况比较适用
2、 要注意“搅拌均匀”
3、 用随机数表法要注意编号的方法
【考向1】抽签法
【例题】某大学为了支援我国西部教育事业,决定从应届毕业生报名的18名
志愿者中选取6名组成志愿小组.请用抽签法和随机数表法设计抽样方案.
解:(抽签法)
第一步:将18名志愿者编号,编号为1,2,3,…,18;
第二步:将18个号码分别写在18张外形完全相同的纸条上,并揉成团,制
成号签;
第三步:将18个号签放入一个不透明的盒子里,充分搅匀;
第四步:从盒子中逐个抽取6个号签,并记录上面的编号;
第五步:所得号码对应的志愿者就是志愿小组的成员.
(随机数表法)
第一步:将18名志愿者编号,编号为01,02,03,…,18;