数学建模优秀论文模板[全国一等奖模板]
数学建模全国赛07年A题一等奖论文

关于中国人口增长趋势的研究【摘要】本文从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了Logistic、灰色预测、动态模拟等方法进行建模预测。
首先,本文建立了Logistic阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合,对2007至2020年的人口数目进行了预测,得出在2015年时,中国人口有13.59亿。
在此模型中,由于并没有考虑人口的年龄、出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理论上很好,实用性不强,有一定的局限性。
然后,为了减少人口的出生和死亡这些随机事件对预测的影响,本文建立了GM(1,1) 灰色预测模型,对2007至2050年的人口数目进行了预测,同时还用1990至2005年的人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测,得出2030年时,中国人口有14.135亿。
与阻滞增长模型相同,本模型也没有考虑年龄一类的因素,只是做出了人口总数的预测,没有进一步深入。
为了对人口结构、男女比例、人口老龄化等作深入研究,本文利用动态模拟的方法建立模型三,并对数据作了如下处理:取平均消除异常值、对死亡率拟合、求出2001年市镇乡男女各年龄人口数目、城镇化水平拟合。
在此基础上,预测出人口的峰值,适婚年龄的男女数量的差值,人口老龄化程度,城镇化水平,人口抚养比以及我国“人口红利”时期。
在模型求解的过程中,还对政府部门提出了一些有针对性的建议。
此模型可以对未来人口做出细致的预测,但是需要处理的数据量较大,并且对初始数据的准确性要求较高。
接着,我们对对模型三进行了改进,考虑人为因素的作用,加入控制因子,使得所预测的结果更具有实际意义。
在灵敏度分析中,首先针对死亡率发展因子θ进行了灵敏度分析,发现人口数量对于θ的灵敏度并不高,然后对男女出生比例进行灵敏度分析得出其灵敏度系数为0.8850,最后对妇女生育率进行了灵敏度分析,发现在生育率在由低到高的变化过程中,其灵敏度在不断增大。
全国大学生数学建模竞赛A题优秀论文模板

2006高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员 (打印并签名) :1.2.3.指导教师或指导教师组负责人 (打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):2006高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):出版社的资源配置摘要资源配置是出版社每一年都需要做的重要决策,它直接关系到该出版社当年的经济利益和长远的发展战略。
由于市场信息(主要是需求和竞争力)的不完全,企业自身的数据收集和积累也不足,资源配置会很复杂。
本文针对出版社向9个分社分配书号问题,提出了以量化分析为基础的书号配制方案,并向出版社提供了有益的发展建议。
首先对数据进行了两个方面的处理分析,分别为教材满意度和市场信息分析。
其中市场信息分析包括2006年单位书号的销售量的预测和对产品强势度的预测。
我们从数据中提取并计算出了A出版社所属的72门课程的单位书号的销售数量和往年的产品市场强势度。
由于年代很少,我们引入了对原始数据的长度要求不大的灰色预测模型GM(1,1),对满意度、强势度、单位书号的销售量,预测出了较合理地数据。
优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。
建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。
本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。
关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。
从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。
但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。
其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。
二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。
他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。
同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。
但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。
因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。
三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。
建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。
把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。
全国大学生数学建模竞赛全国一等奖论文

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):甲型H1N1流感的预测、控制和影响模型摘要甲型H1N1流感是全国乃至全球人们最受关注的传染病,它的传播速度快,对人们的身体健康危害极大。
本文根据香港甲流疫情数据进行分析,对其传播的预测与控制进行研究并建出模型,并提出模型建立的关键和困难以及对卫生部门所采取的预防措施作出评定估计。
针对问题一,为了了解甲流的传播情况,先作出已确诊的病例散点图。
根据散点图的情况,分别建立了马尔萨斯模型:()t e t x 0175.08.1107=,阻滞增长模型:()t e i t i λ-⎪⎪⎭⎫ ⎝⎛-+=11110,SIS 模型:⎥⎦⎤⎢⎣⎡---=)11(σλi i dt di ,SIR 模型: ()()⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=0000s s i i s d ds N s d d i t i i tiλμλ, 以及SIR 模型的改进模型:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧-+=-+==-+=-=βεωωωβωωωεββεωβωωβ)()()(g s p dt d qi g dt di qi dt dr g g g s p gt dg s p dt ds. 从SIR 模型的改进模型中,可以得出控制传染源、切断传播途径、保护易感人群、隔离等措施进行预防和控制H1N1甲流的传播。
数学建模优秀论文模板(新)

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他我赛区评阅编号(由赛区组委会评阅前进行编号):2010高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):题目(黑体不加粗三号居中)摘要(黑体不加粗四号居中)(摘要正文小4号,写法如下)内容要点:1、研究目的:本文研究……问题。
2、建立模型思路、:首先,本文……。
然后针对第一问……问题,本文建立……模型:在第一个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么模型在第二个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么模型3、求解思路,使用的方法、程序针对模型的求解,本文使用什么方法,计算出,并只用什么工具求解出什么问题,进一步求解出什么结果。
4、建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验等)5、在模型的检验模型中,本文分别讨论了以上模型的精度和稳定性6、最后,本文通过改变,得出什么模型。
关键词:结合问题、方法、理论、概念等一、问题重述(第二页起黑四号)内容要点:1、问题背景:结合时代、社会、民生等2、需要解决的问题问题一:问题二:问题三:二、问题分析内容要点:什么问题、需要建立什么样的模型、用什么方法来求解三、模型假设与约定内容要点:1、根据题目中条件作出假设2、根据题目中要求作出假设写作要求:细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。
将一些问题理想化、简单化。
1、论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解2、所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考3、假设应验证其合理性。
数学建模国家一等奖 论文

地面搜索问题的优化模型摘要本文针对地面搜索过程中人员安排和路线选择问题,建立了优化模型,并给出了相应算法,用LINGO软件编程,在确保所有地点都不遗漏且不重复的情况下,合理安排人员和线路,使得搜索用时最短。
问题一的求解中,把20个搜索队员排成一行,向前搜索。
从局部和总体两个方面对人员行进和路线选择。
在局部方面,考虑到人员行进中90度和180度转弯的情况,给出了两种转弯策略,并计算出这两种转弯的情况需要多耗费的时间;在总体方面,把需要进行搜索的区域分割成的126个方格,利用一笔画原理,判断出这些方格可以用一条不重复的线路走完。
考虑到转弯需要多耗费时间,建立了以转弯次数最少,并且从起始点开始不重复行走到达集结点的模型,利用LINGO软件进行编程求解,得到了最少转弯的模型。
考虑到具体情况,对上述模型得到的路线进行适当调整,得到最终的搜索线路安排图。
根据图表,计算出20个队员进行搜索需要50.117小时,无法在48内完成搜索任务。
考虑到队员和组长距离不超过1000米,设计一种让20名搜索队员组成的队伍和新增人员组成的队伍进行交替行进的模型,以确保让整个搜索过程控制在48小时以内。
最后给出了该行进模型的相应算法,通过计算,得出增加2个队员可以确保搜索在48小时内完成。
问题二的求解中,首先对50名人员分3组进行分析,由于矩形区域被分割后形成的小区域恰好能被20人组成的一个队列一次搜索覆盖,以及10人组成的一个队列一个来回的搜索覆盖,于是3组可分为:2个队伍为20人,1个队伍为10人。
随后进行队伍搜索区域的划分,根据各个队伍人数确定该组分配到的方格的数量,划分出各个队伍的搜索区域。
然后对三个区域进行搜索路径的优化求解,改进问题一的模型,求出三个区域的搜索路径。
再根据实际情况,对路径进行适当修改,得出20人的2个队伍,需要19.816小时,10人的队伍需要20.294小时。
根据先完成搜索任务的队伍能否有足够的时间来帮助未完成搜索任务的队伍提早完成任务的时间要求,判断出该解是可以接受的。
【全国大学生数学建模竞赛获奖优秀论文作品学习借鉴】2015年全国数学建模竞赛A题全国一等奖论文17
4.3. 对问题 3 的分析
问题 3 相比于问题 2,附件的数据中没有给出日期,并且要求根据数据求出 观测数据时的日期。而太阳赤纬角在周年运动中任何时刻的具体值都是严格已知 的,并且可以通过日期(距离 1 月 1 日的天数)计算。在太阳方位角的计算中, 将日期转化为一个参数,通过问题 2 中的拟合同时求出,得到经纬度的值以及日 期。
对于不同时刻的太阳高度角 [2] ,已知杆长,有 tanh H L
结合公式(1)(2)(3)(4)(5),即可求得杆在不同时刻的影子长度关于北京经 纬度、当地时间以及测量日期四个参数的函数关系式
L Htan(arcsin( n m )) nm
6
5.1.2. 模型的求解
北京的纬度为北纬 3954'26'' ,经度为11623'29'' 。以正午 12 点为基准,t0 时
五. 模型的建立与求解
5.1. 问题 1 模型的建立与求解——空间向量模型 5.1.1. 模型的建立
影长随时间的变化是在地球自转和公转影响下产生的地理物理现象,根据地 球的特征,将地球看做一个球体,建立一个空间直角坐标系,地心为坐标系原点, 球的方程为 x2 y2 z2 1,构造空间向量模型。地球自西向东自转,在空间直 角坐标系中,选取一个时间点作为标准,用 x、y 轴坐标的变化来描述地球的自 转(24 小时内时间变化)过程中某一点位置的变化。
针对问题 3:首先,根据附件 2 和附件 3 建立直角坐标系,用日期序数表示 赤纬角;其次,在问题 2 得到的 y 关于 x 与经纬度的函数方程的基础上,增函数 方程的未知参数个数日期序数,得到新的函数方程;然后,用 MATLAB 进行非 线性最小二乘拟合,拟合得到经纬度以及日期序数;最后,根据拟合参数计算杆 长,通过标准差选择最优解。
中国农大_数学建模民生杯一等奖论文
承诺书我们仔细阅读了“民生杯”数学建模与计算技术应用大赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。
我们的参赛报名号为:15参赛组别(本科、专科或研究生):本科参赛队员(签名) :队员1:訾海队员2:田凯强队员3:周金辉获奖证书邮寄地址:北京市海淀区清华东路17号中国农业大学编号专用页参赛队伍的参赛号码:(请各个参赛队提前填写好):竞赛统一编号(由竞赛组委会送至评委团前编号):竞赛评阅编号(由竞赛评委团评阅前进行编号):目录摘要 (4)一、问题分析 (5)二、模型假设和建立 (5)2.1 模型假设及变量说明 (5)2.2 缺失数据的补充 (5)2.3 模型的建立 (9)2.3.1 第Ⅰ类模型:逐步回归法 (9)2.3.1.1 单指标逐步回归模型: (10)2.3.1.2 多指标逐步回归模型: (13)2.3.2 第Ⅱ类模型:聚类回归法 (17)2.3.2.1单指标聚类回归模型 (20)2.3.2.2多指标聚类回归模型 (20)2.3.3.1主成分分析法介绍 (21)2.3.3.1.2主成分分析数学模型 (21)2.3.3.1.3主成分分析的求解原理 (22)2.3.3.1.4 主成分分析运用的判定条件 (23)2.3.3.1.5确定主成分个数的方法 (23)2.3.3.1.6确定权重计算综合得分 (23)2.3.3.3.2主成分的确定 (25)2.3.3.3.3计算得分系数 (27)三、模型的评价准则 (30)四、模型的优缺点 (31)五、参考文献 (31)六、附录 (31)洗衣粉去污功效研究摘要本文通过对86种产品的21个溶液属性数据和18中污渍的去污能力数据进行分析,建立了三大类反映溶液属性和去污能力之间关系的模型:一、利用逐步回归思想,选取单个及多个指标来代表所有指标,建立了单指标模型和多指标模型;二、利用聚类分析思想对庞大数据分类,再对各类数据利用逐步回归法,选择单个或者多个指标,建立单指标模型和多指标模型;三、利用主成分分析思想分别提取了21个溶液属性指标的4个主成分和18个去污功效指标的4个主成分,再运用多元统计分析的思想建立两类主成分之间的关系。
大学生数学建模竞赛全国一等奖获奖论文之物理和数学的结合
数码相机定位摘要本文是双目定位的具体模型和方法进行了研究,分别给出了针孔线性模型、椭圆线性回归模型、RAC模型等并对其进行研究。
对于问题一,在针孔线性模型的基础上,通过对数码相机内外部参数的标定,确定靶标到靶标像的坐标转化关系,建立其坐标转换模型。
对于问题二,利用图像处理所得的像素模拟图表确定20组特征点的坐标在世界坐标系和图像坐标系的坐标,代入上述转换关系来确定系数矩阵M,进而求得圆心在像平面的像坐标,然后利用畸变校正模型对结果进行校正。
结果为左上圆(119.0938,69.6890)、中间圆(155.7689,72.4757)右上圆(234.6404,78.4603)、左下圆(105.4604,185.3796)右下圆(214.5271,184.9706)。
对于问题三,建立椭圆线性回归模型对靶标的像进行拟合,得到的图像中心坐标即为圆心在像平面的像坐标。
结果分析还表明该方法的精度和稳定性都比较好。
结果如下:左上圆(120.0039,69.2536)、中间圆(155.1462,73.0654)右上圆(236.2001,77.8279)、左下圆(103.4572,182.3599)右下圆(216.8469,179.6788)。
模型三与模型一的结果相差最大为2.945%。
很好地验证了模型一的结果的准确性对于问题四,利用RAC模型,确定出单个相机的外部参数,得出其旋转矩阵和平移向量,即完成单个相机的定标,然后利用其几何转化由相机各自的旋转矩阵和平移向量求解出两个相机的相对位置。
关键词:针孔线性模型像素模拟图表畸变校正曲线拟合RAC模型一.问题的重述与分析已知:一靶标和用一位置固定的数码相机摄的它的像,如题目中图3所示。
其中靶标如下,取1个边长为100mm的正方形,分别以四个顶点(对应为A、C、D、E)为圆心,12mm为半径作圆。
以AC边上距离A点30mm处的B为圆心,12mm为半径作圆,如题目中图1.1所示。
2021年全国大学生数学建模竞赛国家一等奖论文-手机“套餐”优
2021年全国大学生数学建模竞赛国家一等奖论文-手机“套餐”优一、问题重述手机现已成为人们日常工作、社交、经营等社会活动中必备的工具之一,近年来通信业务量飞速增长。
手机资费问题一直是人们关心的热点问题,多少年来资费方案始终没有实质性变化。
但是2021年1月以来上海、北京、广东等地的移动和联通两大运营商都相继推出了“手机单向收费方案”---各种品牌的“套餐”,手机“套餐”的花样琳琅满目,让人眼花缭乱。
人们不禁要问:手机“套餐”究竟优惠几何?请参照中国移动公司现行的资费标准和北京的全球通“畅听99套餐”、上海的“全球通68套餐”方案,建立数学模型,分析研究下列问题:(1) 给出北京、上海各“套餐”方案的资费计算方法,并针对不同(通话量)需求的用户,分析说明各种“套餐”方案适应于什么样的用户?(2) 提出你们对各种资费方案的评价准则和方法, 据此对北京、上海推出的“套餐”方案与现行的资费标准作分析、比较,并给出评价。
(3) 北京移动公司2021年5月23日又推出了所谓的全球通“被叫全免费计划”方案,即月租50元,本地被叫免费,其他项目资费均同现行的资费标准,还要求用户至少在网一年。
你们又如何评价这个方案?并说明理由。
(4) 如果移动公司聘请你们帮助设计一个全球通手机的资费方案, 你们会考虑哪些因素? 根据你们的研究结果和北京、上海的实际情况,在现有“套餐”方案运营商的收入降低不超过10%的条件下,用数学建模方法设计一个你们认为合理的“套餐”方案。
二、问题分析我们对手机“套餐”的各种资费方案,作了详细的调查,并得到了大量的数据和资料。
利用已有的资料和题目的要求进行分析,并根据北京、上海各“套餐”的实际情况以及题目要求,理论推导出计算资费方法的数学模型,看哪种资费方案更“省钱”。
根据已有方案建立设计的模型,并推出新的、可行的“套餐”方案,既满足客户的“省钱” ,又要满足运营商的设计目标。
制定评价准则,建立相应数学模型,并对北京、上海推出的“套餐”方案与现行的资费标准进行分析、比较和评价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
WORD格式 专业资料整理 完美格式整理版
Haozl觉得数学建模论文格式这么样设置 版权归郝竹林所有,材料仅学习参考 版权:郝竹林 备注☆※§等等字符都可以作为问题重述左边的。。。。。一级标题
所有段落一级标题设置成段落前后间距13磅 二级标题设置成段落间距前0.5行后0.25行
图和表的标题采用插入题注方式题注样式在样式表中设置居中五号字体 Excel中画出的折线表字体采用默认格式宋体正文10号 图标题在图上方段落间距前0.25行后0行 表标题在表下方段落间距前0行后0.25行
行距均使用单倍行距 所有段落均把4个勾去掉
注意Excel表格插入到word的方式在Excel中复制后,粘贴,word2010粘 贴选用使用目标主题嵌入当前 Dsffaf 所有软件名字第一个字母大写比如Excel 所有公式和字母均使用MathType编写 公式编号采用MathType编号格式自己定义
公式编号在右边显示
学习好帮手WORD格式
专业资料整理 完美格式整理版
农业化肥公司的生产与销售优化方案 摘要要求总分总 本文针对储油罐的变位识别与罐容表标定的计算方法问题,运用二重积分法和最 小二乘法建立了储油罐的变位识别与罐容表标定的计算模型,分别对三种不同变位情 况推导出的油位计所测油位高度与实际罐容量的数学模型,运用matlab软件编程得出 合理的结论,最终对模型的结果做出了误差分析。 针对问题一要求依据图4及附表1建立积分数学模型研究罐体变位后对罐容表的影 响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。我们作图分析出实验储油 罐出现纵向倾斜4.1时存在三种不同的可能情况,即储油罐中储油量较少、储油量一般、 储油量较多的情况。针对于每种情况我们都利用了高等数学求容积的知识,以倾斜变位 后油位计所测实际油位高度为积分变量,进行两次积分运算,运用MATLAB软件推导出 了所测油位高度与实际罐容量的关系式。并且给出了罐体倾斜变位后油位高度间隔为1cm的罐容标定值(见表1),最后我们对倾斜变位前后的罐容标定值残差进行分析,得 到样本方差为 4 2.387810,这充分说明残差波动不大。我们得出结论:罐体倾斜变位
后,在同一油位条件下倾斜变位后罐容量比变位前罐容量少243L。 表1.1 针对问题二要求对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学 模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度和横向偏转角度)之 间的一般关系。利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据所建 立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。我 们根据实际储油罐的特殊构造将实际储油罐分为三部分,左、右球冠状体与中间的圆柱体。运用积分的知识,按照实际储油罐的纵向变位后油位的三种不同情况。利用MATLAB编程进行两次积分求得仅纵向变位时油量与油位、倾斜角的容积表达式。然后我们通 过作图分析油罐体的变位情况,将双向变位后的油位h与仅纵向变位时的油位 h建立关
0
系表达式 h1.5(1.5h)cos,从而得到双向变位油量与油位、倾斜角、偏转角
0
的容积表达式。利用附件二的数据,采用最小二乘法来确定倾斜角、偏转角的值, 用matlab软件求出 0 3.3、 0
4α=3.3 0,β=时总的平均相对误差达到最小,其最
小值为0.0594。由此得到双向变位后油量与油位的容积表达式V,从而确定了双向变位 后的罐容表(见表2)。 本文主要应用MATLAB软件对相关的模型进行编程求解,计算方便、快捷、准确, 整篇文章采取图文并茂的效果。文章最后根据所建立的模型用附件2中的实际检测数据 进行了误差分析,结果可靠,使得模型具有现实意义。
关键词:罐容表标定;积分求解;最小二乘法;MATLA;B误差分
学习好帮手WORD格式 专业资料整理 完美格式整理版
目录 1背景知识...........................................错误!未定义书签。 1.1相关数据.........................................错误!未定义书签。 1.2相关数据..........................................................1 1.3问题概括..........................................................1
2问题分析............................................................4 3模型假设............................................................4 4名词解释和符号说明..................................................5 4.1名词解释..........................................................5 4.2符号说明..........................................................5 5模型建立与求解......................................................6 数据预处理............................................................6 5.1问题一的分析与求解................................................9 5.1.1问题分析......................................................9 5.1.2模型Ⅰ0-1线性规划模型.........................................9 5.1.3模型求解......................................................9 5.2问题二的分析与求解................................................9 5.2.1问题分析......................................................9 5.2.2模型Ⅱ客户满意度最优模型......................................9 5.2.3模型求解.....................................................10 5.3问题三的分析与求解...............................................10 5.3.1问题分析.....................................................10 5.3.2模型Ⅲ价格波动模型..........................................10 5.3.3模型求解.....................................................10
6误差分析...........................................................11 6.1误差分析.........................................................11 6.1.1问题一的误差分析.............................................11 6.1.2问题二的误差分析.............................................11 6.2灵敏度分析.......................................................11 6.2.1问题三的误差分析.............................................11 6.2.2问题四的误差分析.............................................11
7模型评价与推广.....................................................12 7.1模型优点.........................................................12 7.2模型缺点.........................................................12 7.3模型推广.........................................................12 参考文献.............................................................13 附录.................................................................14 附录1................................................................14 附录2................................................................14 附录3................................................................14
学习好帮手