第22章 第24课时 实际问题与二次函数(1)
人教版九年级上册 第二十二章 二次函数解决实际问题归纳和练习

二次函数解决实际问题归纳及练习一、应用二次函数解决实际问题的基本思路和步骤:1、基本思路:理解问题→分析问题中的变量和常量以及它们之间的关系→用函数关系式表示它们的关系→用数学方法求解→检验结果的合理性;解决最值问题应用题思路区别于一般应用题有两点:①设未知数在“当某某为何值时,什么最大(最小、最省)”的设问中,“某某”要设为自变量,“什么”要设为函数;②问的求解依靠配方法或最值公式而不是解方程。
(1)利用二次函数解决利润最大问题此类问题围绕总利润=单件利润×销售总量,设未知数时,总利润必然是因变量y,而自变量有两种情况:①自变量x是所涨价多少或降价多少;②自变量x是最终销售价格。
例:商场销售M型服装时,标价75元/件,按8折销售仍可获利50%,现搞促销活动,每件在8折的基础上再降价x元,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x(x﹥0)①求M型服装的进价②求促销期间每天销售M型服装所获得的利润W的最大值。
(2)利用二次函数解决面积最值例:已知正方形ABCD边长为8,E、F、P分别是AB、CD、AD上的点(不与正方形顶点重合),且PE⊥PF,PE=PF问当AE为多长时,五边形EBCFP面积最小,最小面积多少?练习1:某涵洞是抛物线形,它的截面如图所示,测得水面宽1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?2:某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m。
这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由.3、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?4、某公司试销某种“上海世博会”纪念品,每件按30元销售,可获利50%,设每件纪念品的成本为a 元。
人教版九年级数学上册第22章《 二次函数》

当二次项系数是待定字母时,求出字母的 值必须满足二次项系数不为0这一条件.
第二十二章 二次函数
1.若函数y=(m-1)x2+4x-5(m是常数)是二次函数,则 ( B) A.m≠-1 B.m≠1 C.m≠2 D.m≠-2
2.若y=(m-2)xm2-2是二次函数,则m的值是( B )
A.2
B.-2 C.2或-2 D.4
第二十二章 二次函数
1.根据实际问题列二次函数的解析式,一般要经历以下几 个步骤: (1)确定自变量与函数代表的实际意义; (2)找到自变量与因变量之间的等量关系,根据等量关 系列出方程或等式. (3)将方程或等式整理成二次函数的一般形式.
2.易错警示:一般情况下,二次函数中自变量的取值范 围是全体实数,但对实际问题的自变量的取值范围必 须使实际问题有意义.
两年后的产量 y=20(1+x)2,
即y=20x2+40x+20.
第二十二章 二次函数
二次函数的定义 一般地,形如y=ax2+bx+c(a,b,c是常 数,a≠0)的函数,叫做二次函数 (quadratic function).其中,x是自变量,a, b,c分别是函数解析式的二次项系数、一次 项系数和常数项.
数的二次项系数、一次项系数和常数项.
(1)y=7x-1;
(2)y=-5x2;
(3)y=3a3+2a2;
(4)y=x-2+x;
(5)y=3(x-2)(x-5);(6)y=x2+
1 x2
.
分析:判断一个函数是否是二次函数,要紧扣定义并将其 化简再判断.(1)是一次函数;(2)是二次函数,二 次项系数为-5,一次项系数和常数项为0;(3)中 自变量的最高次数是3,所以不是二次函数;(4)中 x-2不是整式,所以不是二次函数;把(5)整理得到 y=3x2-21x+30,是二次函数,二次项系数为3, 一次项系数为-21,常数项为30;(6)中,因为是 个分式,所以不是二次函数.
人教版数学九年级上册第二十二章《二次函数》课件(共22张)

2.一个圆柱的高等于底面半径,写出它的表面积 S 与底面半径 r 之间的关系式.
解:由圆柱的表面积=2×圆柱的底面积+圆柱的侧面积, 得 S=2πr2+2πr•r=4πr2.
3.如图,矩形绿地的长、宽各增加 x m,写出扩充后的绿地的面 积 y 与 x 的关系式.
解:由图可得,扩充后的绿地的面积y(m2)与 x(m) 之间的函数关系式是y=(30+x)(20+x)=x2+50x+600, 即 y=x2+50x+600.
这个函数与我们学过的函数不同,其中自变量x的最高次数是2. 这类函数具有哪些性质呢?这就是本章要学习的二次函数.
合作探究
n 个球队参加比赛,每两队之间进行一场比赛,比赛的场次数 m 与球队数 n 有什么关系?
分析:每个球队要与其他 (n-1) 个球队各比赛一场,甲队对乙队的比赛与乙
队对甲队的比赛是同一场比赛,所以比赛的场次数为
形如 y=ax²+bx+c (a,b,c是常数,a≠ 0)的函数叫做二次函数.其中 x 是自变量,a,b,c 分别是二次项系数、一次项系数和常数项.
(1)等号左边是变量y,右边是关于自变量x的整式; (2)a,b,c为常数,且a≠ 0; (3)等式的右边最高次数为 2,可以没有一次项和常数项,但 不能没有二次项.
实际问题与二次函数第1课时

实际问题与二次函数
学习目标
1、懂得商品经济问题中的等量关系的寻找方法;
2、会应用二次函数的性质解决实际问题。
学法指导
一、复习
1、求下列函数的最大值或最小值:
(1)
322-+-=x x y ; (2)x x y 42+=
2、某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价为每件40元,则每周的利润为多少?
二、问题探究
探究:某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?
分析:调整价格包括哪几种情况?
1、涨价
解:设每件涨价x 元,利润为y 元,则
因此, =y
自变量取值范围为:
所以,当x = ________时,y 最大,也就是说,在涨价的情况下,涨价____元,即定价_________元时,利润最大,最大利润是___________.
2、降价
解:设每件降价a元,利润为b元,则
b()
因此,
所以,当a = ________时,b最大,也就是说,在降价的情况下,降价____元,即定价_________元时,利润最大,最大利润是___________.
∴综合以上两种情况,定价为元时,可获得最大利润为元. 牛刀小试:
某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价提高多少元时,才能在半个月内获得最大利润?
小结:谈谈你的收获
自己的收获:
对同伴的建议:
自己的疑惑:。
人教版九年级数学上册第22章 二次函数1 二次函数

【题型四】根据实际问题列二次函数
例4 已知一块矩形绿地的长为x m,面积为y ㎡.
(1)若该矩形绿地的长为宽的2倍,则宽为_____m,y与x之间的关
>
=
系式为___________,自变量x的取值范围是__________;
( − )
(2)若该矩形绿地的长比宽多6 m,则宽为__________m,y与x之间
−
=
>
的关系式为___________,自变量x的取值范围是________.
例5 王先生存入银行2万元,先存一个一年定期,一年后银行将本
息自动转存为又一个一年定期(年利率不变).设一年定期的存款年
利率为x,两年后王先生得本息和y万元,写出y与x之间的关系式.
解:y=2(1+x)²
二次函数
一般形式
y=ax2+bx+c(a ≠0,a,b,c是常数)
y=ax2;
特殊形式
y=ax2+bx;
y=ax2+c(a ≠0,a,b,c是常数).
【教材习题】完成课本29页练习1,2题.
【作业本作业】完成 对应练习.
【实践性作业】找一张自己喜欢的照片,量一量它的长和宽,假
设要在这张照片的四周镶一条金色纸边,制成一幅矩形挂画,设
(一般地,在一个变化过程中,如果有两个变量x与y,并且对于
x的每一个确定的值,y都有唯一确定的值与其对应,我们就说
y 是x的函数)
2.我们学过哪些函数?它们的关系式是怎样的?
(一次函数:y=kx+b(k≠0);正比例函数:y=kx(k≠0)
已知长方形窗户的周长为6 m,窗户面积为y ㎡,窗户
九年级数学上册第二十二章二次函数22.3实际问题与二次函数第1课时二次函数与图形面积教案(新版)新人教版

22.3 第1课时 二次函数与图形面积01 教学目标1.会求二次函数y =ax 2+bx +c 的最小(大)值.2.能从实际问题中分析、找出变量之间的二次函数关系,并能利用二次函数及性质解决与面积有关的最小(大)值问题.02 预习反馈阅读教材P 49~50(探究1),完成下列问题.1.一般地,当a >0时,抛物线y =ax 2+bx +c 的顶点是最低点,也就是说,当x =-b 2a 时,二次函数y =ax 2+bx +c 有最小值4ac -b 24a;当a <0时,抛物线y =ax 2+bx +c 的顶点是最高点,也就是说,当x =-b 2a 时,二次函数y =ax 2+bx +c 有最大值4ac -b 24a.2.从地面竖直向上抛出一小球,小球的高度h(单位:m )与小球的运动时间t(单位:s )之间的关系式是h =30t -5t 2(0≤t≤6),其图象如图所示.(1)小球运动的时间是3s 时,小球最高; (2)小球运动中的最大高度是45m .3.一个直角三角形的两条直角边长的和为20 cm ,其中一直角边长为x cm ,面积为y cm 2,则y 与x 的函数的关系式是y =12x(20-x),当x =10时,面积y 最大,为50cm 2.03 新课讲授例1 (教材P49探究)用总长为60 m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化.当l 是多少米时,场地的面积S 最大?【思路点拨】 先写出S 关于l 的函数解析式,再求出使S 最大的l 值.【解答】 ∵矩形场地的周长是60 m ,一边长为l m ,则另一边长为(602-l )m ,∴场地的面积S =l (602-l )=-l 2+30l (0<l <30).∴当l =-b 2a =-302×(-1)=15时,S 有最大值4ac -b 24a =-3024×(-1)=225.答:当l 是15 m 时,场地的面积S 最大.【点拨】 在实际问题中,求函数的解析式时,一定要标注自变量的取值范围,同时在求函数的最值时,一定要注意顶点的横坐标是否在自变量的取值范围内.【跟踪训练1】 (22.3第1课时习题)如图,假设篱笆(虚线部分)的长度为16 m ,则所围成矩形ABCD 的最大面积是(C)A .60 m 2B .63 m 2C .64 m 2D .66 m 2例2 (教材P49探究的变式)如图,用长为6 m 的铝合金条制成一个“日”字形窗框,已知窗框的宽为x m ,窗户的透光面积为y m 2(铝合金条的宽度不计).(1)求出y 与x 的函数关系式;【思路点拨】由题意可知,窗户的透光面积为长方形,根据长方形的面积公式即可得到y 和x 的函数关系式.【解答】 ∵大长方形的周长为6 m ,宽为x m , ∴长为6-3x2m.∴y =x ·(6-3x )2=-32x 2+3x (0<x <2).【点拨】 求y 与x 的函数关系式时,一定不能漏掉自变量的取值范围.(2)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积. 【思路点拨】 由(1)中的函数关系可知,y 和x 是二次函数关系,根据二次函数的性质即可得到最大面积.【解答】 由(1)可知,y 和x 是二次函数关系. ∵a =-32<0,∴函数有最大值.当x =-32×(-32)=1时,y 最大=32 m 2,此时6-3x2=1.5.答:窗框的长和宽分别为1.5 m 和1 m 时,才能使得窗户的透光面积最大,此时的最大面积为1.5 m 2.【点拨】 要考虑x =1是不是在自变量的取值范围内.【跟踪训练2】 如图,点C 是线段AB 上的一点,AB =1,分别以AC 和CB 为一边作正方形,用S 表示这两个正方形的面积之和,下列判断正确的是(A )A .当C 是AB 的中点时,S 最小 B .当C 是AB 的中点时,S 最大 C .当C 为AB 的三等分点时,S 最小D .当C 是AB 的三等分点时,S 最大04 巩固训练1.为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100 m ,则池底的最大面积是(B )A .600 m 2B .625 m 2C .650 m 2D .675m 22.如图,利用一面墙(墙的长度不超过45 m ),用80 m 长的篱笆围成一个矩形场地,当AD =20m 时,矩形场地的面积最大,最大面积为800m 2.3.(22.3第1课时习题)手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm ,菱形的面积S (单位:cm 2)随其中一条对角线的长x (单位:cm)的变化而变化.(1)请直接写出S 与x 之间的函数关系式(不要求写出自变量x 的取值范围); (2)当x 是多少时,菱形风筝面积S 最大?最大面积是多少? 解:(1)S =-12x 2+30x .(2)∵S =-12x 2+30x =-12(x -30)2+450,且a =-12<0,∴当x =30时,S 有最大值,最大值为450.即当x 为30 cm 时,菱形风筝的面积最大,最大面积是450 cm 2.05 课堂小结1.主要学习了如何将实际问题转化为数学问题,特别是如何利用二次函数的有关性质解决实际问题的方法.2.利用二次函数解决实际问题时,根据面积公式等关系写出二次函数表达式是解决问题的关键.。
26.3实际问题与二次函数(1)
补充练习: 1.如图(1)所示,要建一个长方形的养鸡场,鸡场的一边靠墙,如果用 50m 长的篱笆围成中间有一道篱笆的养鸡 场,没靠墙的篱笆长度为 xm. (1)要使鸡场的面积最大,鸡场的应为多少 米? (2)如果中间有 n(n 是大于 1 的整数)道篱笆 隔墙,要使鸡场面积最大,鸡场的长应为 多少米? (3)比较(1)、(2)的结果,你能得到什么结论? 2.某产品每件成本 10 元,试销阶段每件产品的销售价 x(元)• 与产 品的日销售量 y(件)之间的关系如下表: x(元) 15 20 30 … y(件) 25 20 10 … 若日销售量 y 是销售价 x 的一次函数. (1)求出日销售量 y(件)与销售价 x(元)的函数关系式; (2) 要使每日的销售利润最大, 每件产品的销售价应定为多少元? • 此时每日销售利润是多少元? 四、小结归纳 1.利用二次函数解决实际问题中最值问题的一般步骤. 2.学完本节课你有什么疑惑? 五、作业设计 复习巩固作业和综合运用为全体学生必做; 拓广探索为成绩中上等学生必做; 学有余力的学生, 要求模仿编拟课堂上出现的一些补充题目进行重复 练习. 补充作业: 1.已知平行四边形 ABCD 的周长为 8cm,∠B=30°,若 边长 AB=x(cm). (1)写出□ABCD 的面积 y 与 x 的函数关系式,并求自变量 x 的取值范 围. (2)当 x 取什么值时,y 的值最大?并求最大值. (3)求二次函数的函数关系式. 2.某超市购进一批 20 元/千克的绿色食品, 如果以 30•元/千克销售,那么每天可售出 400 千克.由销 售经验知,每天销售量 y(千克)•与销售单价 x (元) (x≥30)存在如图所示的一次函数关系式. (1)试求出 y 与 x 的函数关系式; (2)设超市销售该绿色食品每天获得利润 P 元,当销售单价为何值 时,每天可获得最大利润?最大利润是多少? (3)根据市场调查,该绿色食品每天可获利润不超过 4480 元,•现 该超市经理要求每天利润不得低于 4180 元,请你帮助该超市确定绿 色食品销售单价 x 的范围(•直接写出答案) . 学生独立完成,教师巡视 使学生巩固提 指导,了解学生掌握情况, 高, 并集中订正. 了解学生掌握情 况
人教版九年级上册数学《实际问题与二次函数》教学说课研讨课件复习(拱桥问题)
(2)结合实际意义,确定自变量的取值范围;
(3)在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.
做一做下面的题目,看谁做得又快又准确。
A组
建立函数关系式:y=(20-x)(300+18x),
即:y=-18x2+60x+6000.
例 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?
6000
综合可知,应定价65元时,才能使利润最大。
(3)单件利润=售价-进价.
例 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?
涨价销售①每件涨价x元,则每星期售出商品的利润y元,填空:
单件利润(元)
销售量(件)
第二十二章 二次函数
前 言
学习目标
1.根据实际问题,找出变量之间存在的关系,列出函数关系式并确定自变量的取值范围。2.通过二次函数顶点公式求实际问题中的极值。
重点难点
重点:列出二次函数关系式,并确定自变量的取值范围。难点:通过二次函数顶点公式求实际问题中的极值。
如图是一座抛物线形拱桥,当拱桥顶离水面2m时,水面宽4m。水面下降1m, 水面宽度为多少?水面宽度增加多少?
每星期利润(元)
正常销售
涨价销售
20
300
22.3二次函数与实际问题
4.体会二次函数是一类最优化问题的模型,感受数学的应用价值,增强数学的应用意识。
课时重难点
教学重点;
用二次函数做最值来解决实际应用问题。
教学难点:
将实际问题转化为实际问题,并用二次函数性质进行决策。
设计思路
本节课的难点在于学生不能用数学思维去理解生活问题,不能很快根据生活问题找出相关关系式,因此教师在教学过程中,应该很好引导学生去探究实际问题的等量关系,解决问题,并归纳建立数学模型的方法步骤。
在此过程中运用合作探究的方法,生生合作、师生合作以及讲练结合的方法及时运用新知、巩固新知,从而能够较为熟练地掌握待定系数法。
教学方法:
合作探究法、讲练结合法
教学过程
教学环节
教师活动
学生活动
设计意图
温故知新
运用PPT展示图表,学生通过填表进一步熟悉
图像及其性质(开口方向、对称轴、顶点坐标、最值)
2.二次函数 ,y=2x2-8x+5分别有最大值还是最小值?当x为何值时,y的值最小(大)?
学生通过PPT展示的表格分别回顾以上函数的基本性质和特征。(本题较为简单,可让中等生口答。)
通过练习使学生熟练掌握二次函数的图像性质,为新课的学习扫清障碍。
提出问题,导入新课
引入:用总长为60m的篱笆围成矩形场地,矩形的面积S随矩形一边长 的变化而变化,当 是多少时,场地的面积S 最大?
通过情境问题直接导入新课,引发学生思考,同时提示学生本节课的主要内容。
直接提问能激发学生学习兴趣,同பைடு நூலகம்也点明了本节课的主旨,方便学生抓住重点。
新课探究