一元二次函数讲解教案数学
人教版九年级数学上册22.2.1《二次函数与一元二次方程》说课稿

人教版九年级数学上册22.2.1《二次函数与一元二次方程》说课稿一. 教材分析《二次函数与一元二次方程》是人教版九年级数学上册第22章的第2节,这一节内容是在学生已经学习了函数、方程等基础知识的基础上进行讲解的。
二次函数和一元二次方程是中学数学中的重要内容,也是高考的必考内容。
本节内容主要介绍了二次函数的定义、性质以及一元二次方程的解法。
通过本节内容的学习,使学生能够掌握二次函数和一元二次方程的基本概念和性质,能够运用一元二次方程解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于函数、方程等概念已经有了初步的认识。
但是,对于二次函数和一元二次方程的性质和应用可能还不是很清楚。
因此,在教学过程中,需要通过具体的例子和实际问题,引导学生理解和掌握二次函数和一元二次方程的概念和性质。
三. 说教学目标1.知识与技能:理解二次函数的定义和性质,掌握一元二次方程的解法,能够运用二次函数和一元二次方程解决实际问题。
2.过程与方法:通过观察、实验、探究等方法,培养学生的动手能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 说教学重难点1.教学重点:二次函数的定义和性质,一元二次方程的解法。
2.教学难点:二次函数和一元二次方程的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:利用多媒体课件、教学模具、实物模型等辅助教学。
六. 说教学过程1.导入:通过一个实际问题,引入二次函数和一元二次方程的概念。
2.讲解:讲解二次函数的定义和性质,演示一元二次方程的解法。
3.实践:让学生动手操作,进行实验和探究,加深对二次函数和一元二次方程的理解。
4.应用:通过解决实际问题,运用二次函数和一元二次方程的知识。
5.总结:对本节内容进行总结,强化学生的记忆。
七. 说板书设计板书设计要简洁明了,能够突出二次函数和一元二次方程的概念和性质。
二次函数教案(优秀5篇)

二次函数教案(优秀5篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!二次函数教案(优秀5篇)课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。
二次函数教案(3篇)

二次函数教案(3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数教案(3篇)作为一名无私奉献的老师,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
一元二次不等式教案5篇

一元二次不等式教案一元二次不等式教案5篇作为一名优秀的教育工作者,总不可避免地需要编写教案,借助教案可以更好地组织教学活动。
那么教案应该怎么写才合适呢?以下是小编整理的一元二次不等式教案,仅供参考,希望能够帮助到大家。
一元二次不等式教案1教学内容3.2一元二次不等式及其解法三维目标一、知识与技能1.巩固一元二次不等式的解法和解法与二次函数的关系、一元二次不等式解法的步骤、解法与二次函数的关系两者之间的区别与联系;2.能熟练地将分式不等式转化为整式不等式(组),正确地求出分式不等式的解集;3.会用列表法,进一步用数轴标根法求解分式及高次不等式;4.会利用一元二次不等式,对给定的与一元二次不等式有关的问题,尝试用一元二次不等式解法与二次函数的有关知识解题.二、过程与方法1.采用探究法,按照思考、交流、实验、观察、分析得出结论的方法进行启发式教学;2.发挥学生的主体作用,作好探究性教学;3.理论联系实际,激发学生的学习积极性.三、情感态度与价值观1.进一步提高学生的运算能力和思维能力;2.培养学生分析问题和解决问题的能力;3.强化学生应用转化的数学思想和分类讨论的数学思想.教学重点1.从实际问题中抽象出一元二次不等式模型.2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.教学难点1.深入理解二次函数、一元二次方程与一元二次不等式的关系.教学方法启发、探究式教学教学过程复习引入师:上一节课我们通过具体的问题情景,体会到现实世界存在大量的不等量关系,并且研究了用不等式或不等式组来表示实际问题中的不等关系。
回顾下等比数列的性质。
生:略师:某同学要把自己的计算机接入因特网,现有两种ISP公司可供选择,公司A每小时收费1.5元(不足1小时按1小时计算),公司B的收费原则是第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算)那么,一次上网在多少时间以内能够保证选择公司A的上网费用小于等于选择公司B所需费用。
中职数学教案:一元二次不等式(全3课时)

中等专业学校2024-2025-1教案编号:备课组别数学组课程名称基础模块(上)所在年级一年级主备教师授课教师授课系部现代服务部授课班级授课日期课题§2.3一元二次不等式(1)教学目标1.了解方程、不等式、函数的图像之间的联系;2. 掌握一元二次不等式的图像解法.重点方程、不等式、函数的图像之间的联系难点一元二次不等式的解法教法引导探究,讲练结合教学设备多媒体一体机教学环节教学活动内容及组织过程个案补充教学内容一回顾思考复习导入问题一次函数的图像、一元一次方程与一元一次不等式之间存在着哪些联系?解决观察函数26y x=-的图像:方程260x-=的解3x=恰好是函数图像与x轴交点的横坐标;在x轴上方的函数图像所对应的自变量x 的取值范围,恰好是不等式260x->的解集{|3}x x>;在x轴下方的函数图像所对应的自变量x的取值范围,恰好是不等式260x-<的解集{|3}x x<.()0或()0(a≠感受新知二次函数的图像、一元二次方程与一元二次不等式之间存在着哪些联系?中等专业学校2024-2025-1教案编号:备课组别数学组课程名称基础模块(上)所在年级主备教师授课教师授课系部授课班级授课日期课题§2.3一元二次不等式(2)教学目标1.了解方程、不等式、函数的图像之间的联系2. 掌握一元二次不等式的图像解法.重点方程、不等式、函数的图像之间的联系难点一元二次不等式的解法.教法引导探究,讲练结合教学设备多媒体一体机教学环节教学活动内容及组织过程个案补充教学内容一、动脑思考探索新知解法利用一元二次函数2y ax bx c=++()0a>的图像可以解不等式20ax bx c++>或20ax bx c++<.(1)当240b ac∆=->时,方程20ax bx c++=有两个不相等的实数解1x和2x12()x x<,一元二次函数2y ax bx c=++的图像与x轴有两个交点1(,0)x,2(,0)x (如图(1)所示).此时,不等式20ax bx c++<的解集是()12,x x,不等式20a x bx c++>的解集是12(,)(,)x x-∞+∞;(1)(2)(3)0(,)x +∞24b ac ∆=-一元二次函数y ax =)所示).此时,不等式2(,)x +∞0(,)x +∞0([)2,x +∞R 0< 12,)x∅]2,x }0x224,b ac x -. 例题讲解解下列各一元二次不等式:0. 首先判定二次项系数是否为正数,再研究对应一元二次方程解的情况,最后对照表格写出不等式的解+∞.(3,))29x<可化为,且方程2x()-.3,33)53x x-0.故方程22xx+的解集为300的解集为.是什么实数时,2x-有意义.0.解方程.由于二次项系数为[)1,+∞.[)-有意义.1,+∞时,20.、本节课主要学习了一元二次不等式解法;、一元二次不等式的特点及解的过程中注意事项;中等专业学校2024-2025-1教案编号:备课组别数学组课程名称基础模块(上)所在年级主备教师授课教师授课系部授课班级授课日期课题§2.3一元二次不等式(3)教学目标1. 掌握利用二次函数图象求解一元二次不等式的方法。
初中数学_二次函数的图象与一元二次方程教学设计学情分析教材分析课后反思

初中数学_二次函数的图象与一元二次方程教学设计学情分析教材分析课后反思《二次函数与一元二次方程》教学设计【课题】九年级下册5.6《二次函数与一元二次方程》(第1课时)一、教材分析本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。
教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。
这一节是反映函数与方程这两个重要数学概念之间的联系的内容。
二、学情分析1、知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,特别的,八年级时学生已经了解到了一次函数和一元一次方程的解之间的关系。
因而,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的基础上进行交流合作学习应该不是难题。
2、学生学习本节课的知识障碍就是建立二次函数与一元二次方程之间的联系,渗透数形结合的思想。
三、教学目标知识与技能:1.探索二次函数y=ax2+bx+c及其图象与一元二次方程ax2+bx+c=0的关系2.能根据二次函数y=ax2+bx+c的系数,判断它的图象与x轴的位置关系3.应用二次函数和一元二次方程的关系解决相关问题过程与方法:经历探索二次函数y=ax2+bx+c及其图象与一元二次方程ax2+bx+c=0的关系的过程,培养学生分析问题,解决问题的能力。
情感态度和价值观:使学生在数学应用增强自信心,在合作学习中增强集体责任感,加强学生数形结合思想的应用。
四、教学重难点重点:应用二次函数和一元二次方程的关系解决相关问题难点:理解二次函数y=ax2+bx+c及其图象与一元二次方程ax2+bx+c=0根的关系五、教法学法教法:类比探究法、归纳总结法、讲练结合法学法:合作探究法、小组讨论法六、教学内容与过程(一)、立体式复习检测(1)一次函数y=-3x+6的图象与x轴的交点(,)一元一次方程-3x+6=0的根为________(2)不解方程,判断方程x2-3x+3=0根的情况是________(3)解方程: x2-2x-3=0(4)(中考·白银)若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是________【师生活动】:同桌提问判别式△与方程实数根的关系,然后请4位同学分别板书以上4个题目,其他同学在导学案完成以上题目。
《因式分解法解一元二次方程》教案

3、淘金者:你能用分解因式法解下列方程吗?
(1)x2-4=0;(2)(x+1)2-25=0。
这种解法是不是解这两个方程的最好方法?你是否还有其它方法来解?
4争先赛:写出方程的根
(1)(x-2)(x-5)=0(2)(x+1)(x-4)=0
(3)(y+2)(2y-1)=0(4)(x-a)(x-b)=0
反
思
教
学
目
标
知识与技能:
1、了解因式分解法的概念,会用因式分解法解某些简单的数字系数的一元二次方程;
2、能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性。
过程与方法:
1、通过新方法的学习,培养学生分析问题、解决问题的能力。
2、通过因式分解法的学习使学生树立转化的思想。
情感与态度:
1.已知x2+3xy-4y2=0(y≠0),试求 的值.
2.已知(x2+y2)(x2-1+y2)-12=0.求x2+y2的值.
3.请你用三种方法解方程:x(x+12)=864.
4.已知x2+3x+5的值为9,试求3x2+9x-2的值.
学生独立完成
提高学生的运算能力,进一步加深对配方法的理解
总结反思提高认识
教学过程
教学环节
教师活动
学生活动
教学意图ቤተ መጻሕፍቲ ባይዱ
知识回顾
(一)温故而知新
1、我们已经学过了几种解一元二次方程的方法?
2、什么叫分解因式?
学生完成检测
结合检测题回答
巩固上节所学知识并为学习新课作铺垫复习并引出新课
探究
新知
一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?
2.3二次函数与一元二次方程、不等式 2.3.1二次函数与一元二次方程、不等式 教案

2.3二次函数与一元二次方程、不等式【素养目标】1.理解一元二次方程与二次函数的关系.(数学抽象)2.掌握图象法解一元二次不等式.(直观想象)3.会从实际情境中抽象出一元二次不等式模型.(数学抽象)4.会解可化为一元二次不等式(组)的简单分式不等式.(数学运算)5.会用分类讨论思想解含参数的一元二次不等式.(逻辑推理)6.会解一元二次不等式中的恒成立问题.(数学运算)【学法解读】在从函数观点看一元二次方程和一元二次不等式的学习中,可以先以讨论具体的一元二次函数变化情况为情境,使学生发现一元二次函数与一元二次方程的关系,引出一元二次不等式的概念;然后进一步探索一般的一元二次函数与一元二次方程、一元二次不等式的关系,归纳总结出用一元二次函数解一元二次不等式的程序.2.3.1 二次函数与一元二次方程、不等式一、必备知识·探新知基础知识知识点1:一元二次不等式的概念只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________________.一元二次不等式的一般形式是:_________________________或_________________________.知识点2:二次函数与一元二次方程、不等式的解的对应关系思考2:如何用图解法解一元二次不等式?提示:图解法解一元二次不等式的一般步骤:(1)将原不等式化为标准形式ax2+bx+c>0或ax2+bx+c<0(a>0);(2)求Δ=b2-4ac;(3)若Δ<0,根据二次函数的图象直接写出解集;(4)若Δ≥0,求出对应方程的根,画出对应二次函数的图象,写出解集.基础自测1.判断正误(对的打“√”,错的打“×”)(1)mx2-5x<0是一元二次不等式.()(2)若方程ax2+bx+c=0(a<0)没有实数根,则不等式ax2+bx+c>0的解集为R.()(3)设二次方程f(x)=0的两解为x1,x2,且x1<x2,则一元二次不等式f(x)>0的解集不可能为{x|x1<x<x2}.()(4)不等式ax2+bx+c≤0(a≠0)或ax2+bx+c≥0(a≠0)的解集为空集,则方程ax2+bx+c=0无实根.()[解析](1)当m=0时,是一元一次不等式;当m≠0时,它是一元二次不等式.(2)若方程ax2+bx+c=0(a<0)没有实根.则不等式ax2+bx+c>0的解集为∅.(3)当二次项系数小于0时,不等式f(x)>0的解集为{x|x1<x<x2}.(4)当Δ<0时,一元二次不等式的解集为空集,此时方程无实根.2.不等式2x≤x2+1的解集为()A.∅B.RC.{x|x≠1} D.{x|x>1或x<-1}[解析]将不等式2x≤x2+1化为x2-2x+1≥0,∴(x-1)2≥0,∴解集为R,故选B.3.不等式(2x-5)(x+3)<0的解集为_____________________.二、关键能力·攻重难题型探究题型一解一元二次不等式例题1:解下列不等式.(1)2x2-3x-2>0;(2)x2-4x+4>0;(3)-x2+2x-3<0;(4)-3x2+5x-2>0.[分析]根据三个二次之间的关系求解即可.[归纳提升]解一元二次不等式的步骤(1)对不等式变形,使不等号一端二次项系数大于0,另一端为0,即化为ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0)的形式.(2)计算相应的判别式.(3)当Δ≥0时,求出相应的一元二次方程的根.(4)根据对应的二次函数的图象,写出不等式的解集.【对点练习】❶不等式6x2+x-2≤0的解集为______________________.题型二三个“二次”的关系例题2:已知不等式ax2-bx+2<0的解集为{x|1<x<2},求a,b的值.[分析]给出了一元二次不等式的解集,则可知a的符号和方程ax2-bx+2=0的两根,由根与系数的关系可求a,b的值.【对点练习】❷若不等式ax2+bx+c≤0的解集为{x|x≤-3或x≥4},求不等式bx2+2ax-c-3b≥0的解集.题型三解含有参数的一元二次不等式例题3:解关于x的不等式2x2+ax+2>0.[分析]二次项系数为2,Δ=a2-16不是一个完全平方式,故不能确定根的个数,因此需对判别式Δ的符号进行讨论,确定根的个数.②当a=4时,Δ=0,方程有两个相等实根,x1=x2=-1,∴原不等式的解集为{x|x≠-1}.③当a=-4时,Δ=0,方程有两个相等实根,x1=x2=1,∴原不等式的解集为{x|x≠1}.④当-4<a<4时,Δ<0,方程无实根,故原不等式的解集为R.[归纳提升]在解答含有参数的一元二次不等式时,往往要对参数进行分类讨论,为了做到“不重不漏”,一般从如下三个方面进行考虑:(1)关于不等式类型的讨论:二次项的系数a>0,a=0,a<0;(2)关于不等式对应方程的根的讨论:两根(Δ>0),一根(Δ=0),无根(Δ<0);(3)关于不等式对应方程的根的大小的讨论:x1>x2,x1=x2,x1<x2.【对点练习】❸解关于x的不等式ax2-x>0.。