微分方程数值解课程设计教学文稿

微分方程数值解课程设计教学文稿
微分方程数值解课程设计教学文稿

微分方程数值解课程

设计

课程设计说明书

题目:常微分方程数值解法课程设计

学院(系):理学院

年级专业:计算科学11-1

学生姓名:

指导教师:

教师职称:教授

燕山大学课程设计(论文)任务书

院(系):理学院教学单位:仅供学习与交流,如有侵权请联系网站删除谢谢3

仅供学习与交流,如有侵权请联系网站删除谢谢4

年月日

燕山大学课程设计评审意见表

仅供学习与交流,如有侵权请联系网站删除谢谢5

仅供学习与交流,如有侵权请联系网站删除谢谢6

摘要

本文对常微分方程初值问题现有的数值解法进行了综述研究。主要讨论了几种常用的数值解法:即欧拉法,改进欧拉法,龙格库塔方法,阿达姆斯PECE,PMECME格式等。文章最后结合常见数值解法,对较为典型的微分方程模型进行数值求解,探讨了上述数值算法在实际建模问题中的应用。

论文阐述的是常微分方程数值解法的几个问题,通过对以下问题的求解

一.比较Adams四阶PECE模式和PMECME模式。

二.求解贝塞尔方程并与精确解比较。

三.小型火箭初始重量为1400kg,其中包括1080kg 燃料。火箭竖直向上发射时燃料燃烧率为18kg/s,由此产生32000N 的推力,火箭引擎在燃料用尽时关闭。设火箭上升时空气阻力正比于速度的平方,比例系数为0.4kg/m,求引擎关闭瞬间火箭的高度、速度、加速度,及火箭到达最高点时的高度和加速度,并画出高度、速度、加速度随时间变化的图形。

来加强对用数值解法解常微分方程实际问题的能力。

关键词:常微分方程数值解 MATLAB

仅供学习与交流,如有侵权请联系网站删除谢谢i

目录

摘要 (i)

绪论 (1)

问题解答 (2)

总结 (18)

参考文献资料 (19)

仅供学习与交流,如有侵权请联系网站删除谢谢i

绪论

很多科学技术和工程问题常用微分方程的形式建立数学模型,因此微分方程的求解是很有意义的。建立微分方程只是解决问题的第一步,通常需要求出方程的解来说明实际现象,并加以检验。如果能得到解析形式的解固然是便于分析和应用的,但是我们知道,虽然求解常微分方程有各种各样的解析方法,但解析方法只能用来求解一些典型的方程,而对于绝大多数的微分方程问题,很难或者根本不可能得到它的解析解,实际问题终归结出来的微分方程主要靠数值解法。因此,研究微分方程求解的数值方法是非常有意义的。

仅供学习与交流,如有侵权请联系网站删除谢谢1

仅供学习与交流,如有侵权请联系网站删除 谢谢2

问题解答

问题一:比较Adams 四阶PECE 模式和PMECME 模式。

问题引出:将阿达姆斯方法显式与隐式方法作一对比,以说明预测——

把阿达姆斯外插公式与内插公式结合起来使用,先由前者提供初值,再由后者进行修正,所以Adams 预测-校正格式既利用了隐式方法较好的稳定性及精确性,有利用了显式方法的简易性,正是把两者结合起来,做到取长补短。 Adams 四阶预估-校正(PECE)公式:

(0)(1)(1)(1)(1)(1)

43321(0)(0)

444()(1)()(1)(1)(1)

43()()444[5559379(,u )C /24[195E (,u )

n n n n n n n n n n n n n n n n n n P u f f f f E f f t u h f f f f f f t ++++++++++++++++=+-+-??=??=++-+?

?=?10432+111uh/24] u9] 而PMECME 模式公式为

(0)(1)(1)(1)(1)(1)

43321(0)(0)(1)(0)

4433(0)(0)

444()(1)()(1)(1)43'[55'59'37'9''[u ]'(,u')'/24['19'5'n n n n n n n n n n n n n n n n n n u f f f f M u u E f f t C u h f f f M E +++++++++++++++++=+-+-??=+-?

?=?=++-+?

???10432P uh/24]u251/270 u9(1)(1)(1)(1)(0)4444()()444''[u ]'(,u')

n n n n n n n n f u u f f t +++++++=--=+111]u19/270 对于初值问题u ’=u-2t/u,u(0)=1,在单区间【0,1】上,用Adams 四阶预估-校正算法的PECE 模式及PMECME 模式求其数值解,取步长h=0.1利用计算结果估计数值解的局部误差主项。(真解u (t )=sqrt(1+2t))

编写matlab 程序:

function [ Un,e ] = pece()

%[ Un,e ] = pece()

f0=u-2*t/u;

v=[t,u];

U=zeros(1,11);

T=0:0.1:1;

f=zeros(1,11);

h=0.1;

U(1)=1;

f(1)=1;

for k=1:3

K1=subs(f0,v,[(k-1)*h,U(k)]);

K2=subs(f0,v,[(k-1)*h+1/2*h,U(k)+1/2*h*K1]);

K3=subs(f0,v,[(k-1)*h+1/2*h,U(k)+1/2*h*K2]);

K4=subs(f0,v,[(k-1)*h+h,U(k)+h*K3]);

U(k+1)=U(k)+1/6*h*(K1+2*K2+2*K3+K4);

f(k+1)=U(k+1)-2*T(k+1)/U(k+1);

end

for k=5:11

U(k)=U(k-1)+h/24*(55*f(k-1)-59*f(k-2)+37*f(k-3)-9*f(k-4)); f(k)=U(k)-2*T(k)/U(k);

U(k)=U(k-1)+h/24*(9*f(k)+19*f(k-1)-5*f(k-2)+f(k-3));

f(k)=U(k)-2*T(k)/U(k);

end

Un=U;

for k=1:11

zz(k)=sqrt(1+2*T(k));

end

e=U-zz;

end

function [ Un,e ] = pmecme()

%[ Un,e ] = pmecme()

syms t u

f0=u-2*t/u;

v=[t,u];

U=zeros(1,11);

T=0:0.1:1;

f=zeros(1,11);

h=0.1;

U(1)=1;

仅供学习与交流,如有侵权请联系网站删除谢谢3

f(1)=1;

for k=1:3

K1=subs(f0,v,[(k-1)*h,U(k)]);

K2=subs(f0,v,[(k-1)*h+1/2*h,U(k)+1/2*h*K1]);

K3=subs(f0,v,[(k-1)*h+1/2*h,U(k)+1/2*h*K2]);

K4=subs(f0,v,[(k-1)*h+h,U(k)+h*K3]);

U(k+1)=U(k)+1/6*h*(K1+2*K2+2*K3+K4);

f(k+1)=U(k+1)-2*T(k+1)/U(k+1);

end

for k=5:11

U(k)=U(k-1)+h/24*(55*f(k-1)-59*f(k-2)+37*f(k-3)-9*f(k-4)); U(k)=U(k)+251/270*(U(k)-U(k-1));

f(k)=U(k)-2*T(k)/U(k);

U(k)=U(k-1)+h/24*(9*f(k)+19*f(k-1)-5*f(k-2)+f(k-3));

U(k)=U(k)-19/270*(U(k)-U(k-1));

f(k)=U(k)-2*T(k)/U(k);

end

Un=U;

for k=1:11

zz(k)=sqrt(1+2*T(k));

end

e=U-zz;

end

运行结果及图形显示:

运行得:

>> [Un,e]=pece()

Un =

Columns 1 through 8

1.0000 1.0954 1.1832 1.2649 1.3416 1.4142 1.4832 1.5492

Columns 9 through 11

1.6125 1.6733 1.7321

e =

1.0e-05 *

Columns 1 through 8

0 0.0417 0.0789 0.1164 0.0571 0.0271 0.0127 0.0042

仅供学习与交流,如有侵权请联系网站删除谢谢4

Columns 9 through 11

-0.0013 -0.0054 -0.0088

pmecme

ans =

Columns 1 through 8

1.0000 1.0954 1.1832 1.2649 1.3398 1.4104 1.4773 1.5409

Columns 9 through 11

1.6016 1.6595 1.7147

编写a.m用于画图显示计算结果,

t0=0:0.001:1;

t1=0:0.1:1;

U0=sqrt(1+2*t0);

U2=pece();

U1=pmecme();

hold on

plot(t0,U0,'k')

plot(t1,U1,'--r','Marker','x')

plot(t1,U2,'--g','Marker','x')

legend('U=sqrt(1+2*t)','U1',’U2’'Location','NorthWest')

grid on

xlable('t')

ylable('Un')

hold off

运行结果如下:

仅供学习与交流,如有侵权请联系网站删除谢谢5

仅供学习与交流,如有侵权请联系网站删除

谢谢6

放大如下图

可知PMECME 模式比PECE 模式更为精确

问题二:求解贝塞尔方程并与精确解比较。

求解 x 2y ’’+xy ’+(x 2-n 2)y=0

偏微分方程数值解期末试题及标准答案

偏微分方程数值解试题(06B ) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1)(n R x x b x Ax x J ∈-=,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2),()()()(2 000x Ax x b Ax x J x x J λλλλ?+-+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若n R x ∈0满足b Ax =0,则对于任意的x ,)(),(2 1)0()1()(00x J x Ax x x J >+==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:?????==∈=+-=0 )(,0)(),()('b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。 解: 设}0)(),,(|{11=∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

偏微分方程数值解法试题与答案

一.填空(1553=?分) 1.若步长趋于零时,差分方程的截断误差0→lm R ,则差分方程的解lm U 趋近于微分方 程的解lm u . 此结论_______(错或对); 2.一阶Sobolev 空间{} )(,,),()(21 Ω∈''=ΩL f f f y x f H y x 关于内积=1),( g f _____________________是Hilbert 空间; 3.对非线性(变系数)差分格式,常用 _______系数法讨论差分格式的_______稳定性; 4.写出3 x y =在区间]2,1[上的两个一阶广义导数:_________________________________, ________________________________________; 5.隐式差分格式关于初值是无条件稳定的. 此结论_______(错或对)。 二.(13分)设有椭圆型方程边值问题 用1.0=h 作正方形网格剖分 。 (1)用五点菱形差分格式将微分方程在内点离散化; (2)用截断误差为)(2 h O 的差分法将第三边界条件离散化; (3)整理后的差分方程组为 三.(12)给定初值问题 x u t u ??=?? , ()10,+=x x u 取时间步长1.0=τ,空间步长2.0=h 。试合理选用一阶偏心差分格式(最简显格式), 并以此格式求出解函数),(t x u 在2.0,2.0=-=t x 处的近似值。 1.所选用的差分格式是: 2.计算所求近似值: 四.(12分)试讨论差分方程 ()h a h a r u u r u u k l k l k l k l ττ + - = -+=++++11,111 1 逼近微分方程 0=??+??x u a t u 的截断误差阶R 。 思路一:将r 带入到原式,展开后可得格式是在点(l+1/2,k+1/2)展开的。 思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格 式。

常微分方程边值问题的数值解法

第8章 常微分方程边值问题的数值解法 引 言 第7章介绍了求解常微分方程初值问题的常用的数值方法;本章将介绍常微分方程的边值问题的数值方法。 只含边界条件(boundary-value condition)作为定解条件的常微分方程求解问题称为常微分方程的边值问题(boundary-value problem). 为简明起见,我们以二阶边值问题为 则边值问题(8.1.1)有唯一解。 推论 若线性边值问题 ()()()()()(),, (),()y x p x y x q x y x f x a x b y a y b αβ'''=++≤≤?? ==? (8.1.2) 满足 (1) (),()p x q x 和()f x 在[,]a b 上连续; (2) 在[,]a b 上, ()0q x >, 则边值问题(8.1.1)有唯一解。 求边值问题的近似解,有三类基本方法: (1) 差分法(difference method),也就是用差商代替微分方程及边界条件中的导数,最终化为代数方程求解; (2) 有限元法(finite element method);

(3) 把边值问题转化为初值问题,然后用求初值问题的方法求解。 差分法 8.2.1 一类特殊类型二阶线性常微分方程的边值问题的差分法 设二阶线性常微分方程的边值问题为 (8.2.1)(8.2.2) ()()()(),,(),(), y x q x y x f x a x b y a y b αβ''-=<

微分方程数值解法

《微分方程数值解法》 【摘要】自然界与工程技术中的很多现象,可以归结为微分方程定解问题。其中,常微分方程求解是微分方程的重要基础内容。但是,对于许多的微分方程,往往很难得到甚至不存在精确的解析表达式,这时候,数值解提供了一个很好的解决思路。,针对于此,本文对常微分方程数值解法进行了简单研究,主要讨论了一些常用的数值解法,如欧拉法、改进的欧拉法、Runge —Kutta 方法、Adams 预估校正法以及勒让德谱方法等,通过具体的算例,结合MA TLAB 求解画图,初步给出了一般常微分方程数值解法的求解过程。同时,通过对各种方法的误差分析,让大家对各种方法的特点和适用范围有一个直观的感受。 【关键词】 常微分方程 数值解法 MA TLAB 误差分析 引言 在我国高校,《微分方程数值解法》作为对数学基础知识要求较高且应用非常广泛的一门课程,不仅 在数学专业,其他的理工科专业的本科及研究生教育中开设这门课程.近四十年来,《微分方程数值解法》不论在理论上还是在方法上都获得了很大的发展.同时,由于微分方程是描述物理、化学和生物现象的数学模型基础,且它的一些最新应用已经扩展到经济、金融预测、图像处理及其他领域 在实际应用中,通过相应的微分方程模型解决具体问题,采用数值方法求得方程的近似解,使具体问题迎刃而解。 2 欧拉法和改进的欧拉法 2.1 欧拉法 2.1.1 欧拉法介绍 首先,我们考虑如下的一阶常微分方程初值问题 ???==0 0)() ,('y x y y x f y (2--1) 事实上,对于更复杂的常微分方程组或者高阶常微分方程,只需要将x 看做向量,(2--1)就成了一个一阶常微分方程组,而高阶常微分方程也可以通过降阶化成一个一阶常微分方程组。 欧拉方法是解常微分方程初值问题最简单最古老的一种数值方法,其基本思路就是把(2--1)中的导数项'y 用差商逼近,从而将一个微分方程转化为一个代数方程,以便求解。 设在[]b a ,中取等距节点h ,因为在节点n x 点上,由(2--1)可得:

偏微分方程数值解试题06B答案

专业班级 姓名 学号 开课系室数学与计算科学学院 考试日期

偏微分方程数值解试卷 一(15分)、(1)简述用差分方法求解抛物型方程初边值问题的数值解的一般步骤.(2)写出近似一阶偏导数 n m x u |??的三种有限差分逼近及其误差阶,写出近似 n m x u |22 ??的差分逼近及其误差阶. 评分标准: (1) 7分,三个离散4分,其他步骤3分 (2) 8分,每个格式及误差2分。 二(15分)、(1)以抛物型方程的差分格式为例,解释差分格式的相容性,稳定性和收敛性概念,分析相容性,稳定性和收敛性与误差的关系,简述 Lax 等价性定理。(2) 简述差分格式稳定性分析的Fourier 级数法(或称为Neumann Von 方法,分离变量法)的一般步骤。 (1)8分,解释概念6分,等价关系2分 (2)7分,典型波2分,放大因子与条件3分,其他2分 三(20分)、对于边值问题 ?? ???=?=∈=??+???0 |) 1,0()1,0(),(,92 222G u G y x y u x u (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截 断误差的阶。 (2)取3/1=h ,求边值问题的数值解(写出对应的方程组的矩阵形式并求解) (3)就取5/1=h 的情况写出对应方程组的系数矩阵(用分块矩阵表示)。 解:(1)7分,离过程与格式

第二页(共五页) 四(20分)、对于初边值问题??? ????≤≤==<<=≤<<

偏微分方程数值解期末试题及答案(内容参考)

偏微分方程数值解试题(06B) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1 )(n R x x b x Ax x J ∈-= ,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2 ),()()()(2 000x Ax x b Ax x J x x J λλλλ?+ -+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有 0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若 n R x ∈0满足 b Ax =0,则对于任意的 x ,)(),(2 1 )0()1()(00x J x Ax x x J >+ ==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:????? ==∈=+-=0 )(,0)() ,()(' b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ] ,[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和 Galerkin 形式的变分方程。 解: 设}0)(),,(|{11 =∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1 b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

微分方程数值解试卷

中国矿业大学2008~2009学年第 1 学期 《微分方程数值解法》试卷(B )卷 考试时间:100 分钟 考试方式:半开卷 学院 班级 姓名 序号 1、下面关于Euler 公式的结论哪些是正确的(打√)?哪些是错误的(打×)? (1)二阶方法;(2)一阶方法;(3)显式公式;(4)隐式公式;(5)是数值稳定的。 2、如果微分方程为,(0)1u tu u '==,则用Taylor 级数法求()u h 时,它的前两项为: 。 3、二阶差商 11 2 2i i i u u u h +--+近似二阶导数()i u x ''局部截断误差为 。 4、算术平均11 2 i i u u +-+近似函数值()i u x 的局部截断误差为 。 5、在课本P98差分方程(3.10)中,第二个方程的局部误差是什么? 。 6、函数空间0()C I ∞ 中函数满足什么性质? 。 二、(10分)求解常系数齐次差分方程21120,1,2, 1,1 i i i u u u i u u ++-+==?? =-=?的解。 三、(25分)已知数值解公式21132(2)m m m m m u u u h f f +++-+=- (1)写出与它们对应的特征多项式。 (2)这个多步法相容吗? (3)利用课本P47公式(2.66)求公式的局部截断误差的主项。 (4)讨论这个算法的零稳定性。 (5)求这个算法的绝对稳定区间。 四、(10分)试利用初值问题的数值解公式 11 11(,) (,)n n n n n n n n u u hf x u u u hf x u ++++=+?? =+? (1)构造一个PECE 预测校正系统;

偏微分方程数值解法

一、 问题 用有限元方法求下面方程的数值解 2 u u u f t ?-?+=? in (]0,T Ω? 0u = on []0,T ?Ω? ()00,u x u = in Ω 二、 问题分析 第一步 利用Green 公式,求出方程的变分形式 变分形式为:求()()21 00,;u L T H ∈Ω,使得 ()())(2 ,,,,u v u v u v f v t ???+??+= ???? ()10v H ?∈Ω (*) 以及 ()00,u x u =. 第二步 对空间进行离散,得出半离散格式 对区域Ω进行剖分,构造节点基函数,得出有限元子空间:()12,,,h NG V span ???=???,则(*)的Galerkin 逼近为: []0,t T ?∈,求()()1 0,h h u t x V H ∈?Ω,使得 ()()()()() () )(2 ,,,,h h h h h h h d u t v u t v u t v f v dt +??+= h h v V ?∈ (**) 以及()0,0h h u u =,0,h u 为初始条件0u 在h V 中的逼近,设0,h u 为0u 在h V 中的插值. 则0t ?≥,有()()1 N G h i i i u t t ξ? == ∑,0,h u =01 N G i i i ξ?=∑,代人(**)即可得到一常微分方程组. 第三步 进一步对时间进行离散,得到全离散的逼近格式 对 du dt 用差分格式.为此把[]0,T 等分为n 个小区间[]1,i i t t -,其长度1i i T t t t n -?=-= ,n t T =. 这样把求i t 时刻的近似记为i h u ,0 h u 是0u 的近似.这里对(**)采用向后的欧拉格式,即 ()()() () )(2 11 11 1 ,,,,i i i i h h h h h h h i h u u v u v u v f v t ++++-+??+ = ? h h v V ?∈ (***) i=0,1,2…,n-1. 0 h u =0,h u 由于向后欧拉格式为隐式格式且含有非线性项,故相邻两时间步之间采用牛顿迭代,即:

偏微分方程数值解法答案

1. 课本2p 有证明 2. 课本812,p p 有说明 3. 课本1520,p p 有说明 4. Rit2法,设n u 是u 的n 维子空间,12,...n ???是n u 的一组基底,n u 中的任一元素n u 可 表为1n n i i i u c ?==∑ ,则,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???=== -=-∑∑是12,...n c c c 的二次函数,(,)(,)i j j i a a ????=,令 () 0n j J u c ?=?,从而得到12,...n c c c 满足1 (,)(,),1,2...n i j i j i a c f j n ???===∑,通过解线性方程组,求的i c ,代入1 n n i i i u c ?==∑, 从而得到近似解n u 的过程称为Rit2法 简而言之,Rit2法:为得到偏微分方程的有穷维解,构造了一个近似解,1 n n i i i u c ?== ∑, 利用,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???===-=-∑∑确定i c ,求得近似解n u 的过程 Galerkin 法:为求得1 n n i i i u c ? == ∑形式的近似解,在系数i c 使n u 关于n V u ∈,满足(,)(,) n a u V f V =,对任 意 n V u ∈或(取 ,1j V j n ?=≤≤) 1 (,)(,),1,2...n i j i j i a c f j n ???===∑的情况下确定i c ,从而得到近似解1 n n i i i u c ?==∑的过程称 Galerkin 法为 Rit2-Galerkin 法方程: 1 (,)(,)n i j i j i a c f ???==∑ 5. 有限元法:将偏微分方程转化为变分形式,选定单元的形状,对求解域作剖分,进而构 造基函数或单元形状函数,形成有限元空间,将偏微分方程转化成了有限元方程,利用 有效的有限元方程的解法,给出偏微分方程近似解的过程称为有限元法。 6. 解:对求解区间进行网格剖分,节点01......i n a x x x x b =<<<<=得到相邻节点1,i i x x -

偏微分方程数值解复习题(2011硕士)

偏微分方程数值解期末复习(2011硕士) 一、考题类型 本次试卷共六道题目,题型及其所占比例分别为: 填空题20%;计算题80% 二、按章节复习内容 第一章 知识点:Euler法、向前差商、向后差商、中心差商、局部截断误差、整体截断误差、相容性、收敛性、阶、稳定性、显格式、隐格式、线性多步法、第一特征多项式、第二特征多项式、稳定多项式、绝对稳定等; 要求: 会辨认差分格式, 判断线性多步法的误差和阶; 第二章 知识点:矩形网格、(正则,非正则)内点、边界点、偏向前(向后,中心)差商、五点差分格式、增设虚点法、积分插值法、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和、稳定性等; 要求: 建立椭圆型方程边值问题的差分格式, 极值原理; 第四章 知识点:最简显格式、最简隐格式、CN格式、双层加权格式、Richardson 格式、网格比、传播因子法(分离变量法) 、传播因子、传播矩阵、谱半径、von Neumann条件、跳点格式、ADI格式、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和稳定性等; 要求: 建立抛物型方程边值问题的差分格式, 计算局部截断误差; 第五章 知识点:左偏心格式、右偏心格式、中心格式、LF格式、LW格式、Wendroff 格式、跳蛙格式、特征线、CFL条件等; 要求: 建立双曲型方程边值问题的差分格式, 计算局部截断误差; 第七章 要求: 会用线性元(线性基)建立常微分方程边值问题的有限元格式

三 练习题 1、 已知显格式21131()22 n n n n u u h f f +++-=-,试证明格式是相容的,并求它的阶。 P39+P41 2、用Taylor 展开原理构造一元函数一阶导数和二阶导数的数值微分公式。 提示:向前、向后和中心差商与一阶导数间关系,二阶中心差商与二阶导数 之间的关系 课件 3、用数值微分方法或数值积分方法建立椭圆型方程 2222(,),(,),u u f x y x y x y ??--=?∈Ω?? :01,01x y Ω≤≤≤≤ 内点差分格式。 P75+课件 4、构造椭圆型方程边值问题的差分格式. P101 (4)题 5、构建一维热传导方程220,(0)u u Lu a a t x ??=-=>??的数值差分格式(显隐格式等)。 参考P132-135相关知识点 6、设有逼近热传导方程22(0)u u Lu a f a const t x ??≡-==>??的带权双层格式 ()()1111111122(1)2k k j j k k k k k k j j j j j j u u a u u u u u u h θθτ++++-+-+-??=-++--+?? 其中[0,1]θ∈,试求其截断误差。并证明当2 1212h a θτ=-时,截断误差的阶最 高阶为24()O h τ+。 P135+P165+课件 7、传播因子法证明抛物型方程22(0)u u Lu a f a const t x ??≡-==>??的最简显隐和六点CN 格式稳定性。 P156+课件 8、对一阶常系数双曲型方程的初边值问题 0,0,0,0,(,0)(),0,(0,)(),0, u u a t T x a t x u x x x u t t t T φψ???+=<≤<<∞>?????=≤<∞??=≤≤?

微分方程的分类及其数值解法

微分方程的分类及其数值解法 微分方程的分类: 含有未知函数的导数,如dy/dx=2x 、ds/dt=0.4都是微分方程。 一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。微分方程有时也简称方程。 一、常微分方程的数值解法: 1、Euler 法: 00d (,), (1.1)d (), (1.2) y f x y x y x y ?=???=? 001 (),(,),0,1,,1n n n n y y x y y hf x y n N +=??=+=-? (1.4) 其中0,n b a x x nh h N -=+=. 用(1.4)求解(1.1)的方法称为Euler 方法。 后退Euler 公式???+==+++),,(),(111 00n n n n y x hf y y x y y 梯形方法公式 )].,(),([2 111+++++=n n n n n n y x f y x f h y y 改进的Euler 方法11(,),(,),1().2p n n n c n n p n p c y y hf x y y y hf x y y y y ++?=+??=+???=+??? 2、Runge-Kutta 方法: p 阶方法 : 1()O h -=?总体截断误差局部截断误差 二阶Runge-Kutta 方法 ??? ????++==++=+),,(),,(,2212 1211hk y h x f k y x f k k h k h y y n n n n n n

数值分析试题及答案.

一、单项选择题(每小题3分,共15分) 1. 和分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110 l x = B . () 00l x =0, ()111 l x = C . () 00l x =1, ()111 l x = D . () 00l x =1, ()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组12312312 20223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A .232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案

二、填空题(每小题3分,共15分) 1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数 ()()() 33301213,88C C C === ,那么() 3 3C = 4. 因为方程 ()420 x f x x =-+=在区间 []1,2上满 足 ,所以 ()0 f x =在区间内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公 式 . 填空题答案

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

偏微分方程数值解法

“十二五”国家重点图书出版规划项目 信息与计算科学丛书 67 偏微分方程数值解法 陈艳萍鲁祖亮刘利斌编著

内 容 简 介 本书试图用较少的篇幅描述偏微分方程的几种数值方法. 主要内容包括:Sobolev空间初步, 椭圆边值问题的变分问题, 椭圆问题的有限差分方法, 抛物型方程的有限差分方法, 双曲型方程的有限差分方法, 椭圆型方程的有限元方法, 抛物及双曲方程的有限元方法, 椭圆型方程的混合有限元方法, 谱方法等. 本书内容丰富, 深入浅出, 尽可能地用简单的方法来描述一些理论结果, 并根据作者对有限差分、有限元、混合有限元、谱方法的理解和研究生教学要求, 全面、客观地评价各种数值计算方法,并列举一些数值计算的例子, 阐述许多新的学术观点. 本书可作为高等学校数学系高年级本科生和研究生的教材或参考书, 也可作为计算数学工作者和从事科学与工程计算的科研人员的参考书. 图书在版编目(CIP)数据 偏微分方程数值解法/陈艳萍, 鲁祖亮, 刘利斌编著. —北京:科学出版社, 2015.1 (信息与计算科学丛书67) ISBN 978-7-03-000000-0 Ⅰ. ①偏… Ⅱ. ①陈… ②鲁… ③刘… Ⅲ. ① Ⅳ.① 中国版本图书馆CIP数据核字(2014) 第000000号 责任编辑: 王丽平/责任校对: 彭涛 责任印制: 肖钦/封面设计: 陈敬 出版 北京东黄城根北街16号 邮政编码: 100717 https://www.360docs.net/doc/c6121826.html, 印刷 科学出版社发行 各地新华书店经销 * 2015年1月第一版开本: 720×1000 1/16 2015年1月第一次印刷印张: 14 字数: 280 000 定价: 88.00元 (如有印装质量问题, 我社负责调换)

数值分析试题及答案

数值分析试题及答案 一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为的近似数具有()和()位有效数字. A.4和3 B.3和2 C.3和4 D.4和4 2. 已知求积公式,则=() A. B.C.D. 3. 通过点的拉格朗日插值基函数满足() A.=0,B.=0, C.=1,D.=1, 4. 设求方程的根的牛顿法收敛,则它具有()敛速。 A.超线性B.平方C.线性D.三次 5. 用列主元消元法解线性方程组作第一次消元后得到的第3个方程(). A.B. C.D. 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得分评卷 人 二、填空题(每小题3分,共15分) 1. 设, 则, . 2. 一阶均差 3. 已知时,科茨系数,那么 4. 因为方程在区间上满足,所以在区间内有根。 5. 取步长,用欧拉法解初值问题的计算公式.填空题答案

1. 9和 2. 3. 4. 5. 得分评卷 人 三、计算题(每题15分,共60分) 1. 已知函数的一组数据:求分段线性插值函数,并计算的近似值. 计算题1.答案 1. 解, , 所以分段线性插值函数为 2. 已知线性方程组 (1)写出雅可比迭代公式、高斯-塞德尔迭代公式; (2)对于初始值,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算(保留小数点后五位数字). 计算题2.答案 1.解原方程组同解变形为 雅可比迭代公式为 高斯-塞德尔迭代法公式 用雅可比迭代公式得 用高斯-塞德尔迭代公式得 3. 用牛顿法求方程在之间的近似根 (1)请指出为什么初值应取2? (2)请用牛顿法求出近似根,精确到0.0001. 计算题3.答案

偏微分方程数值解(试题)

1 / 7 偏微分方程数值解试题 1、考虑一维的抛物型方程: 2200, [0, ], 0t T (,), (,)(,0)() x x u u x t x u x t u u x t u u x x ππνπ?==??=∈≤≤??=== (1)导出时间离散是一阶向前Euler 格式,空间离散是二阶精度的差分格式; (2)讨论(1)中导出的格式的稳定性; (3)若时间离散为二阶精度的蛙跳格式, 11 2n n n t t u u u t t +-=?-=?? 空间离散是二阶精度的中心差分,问所导出的格式稳定吗?为什么? 2、考虑Poission 方程 2(,)1, (,)0, in AB and AD (,)0, in BC and CD u x y x y u n u x y -?=∈Ω ?=?= 其中Ω是图1中的梯形。 使用差分方法来离散该方程。由于梯形的对称性,可以考虑梯形的一半,如图2, 图2 从物理空间到计算区域的几何变换 图1 梯形

2 / 7 为了求解本问题,采用如下方法:将Ω的一半投影到正方形区域?Ω ,然后在?Ω上使用差分方法来离散该方程。在计算区域?Ω 上用N N ?个网格点,空间步长为1/(1)N ξη?=?=-。 (1)引入一个映射T 将原区域Ω(带有坐标,x y )变换到单位正方形?Ω(带有坐标,ξη)。 同时导出在新区域上的方程和边界条件。 (2)在变换区域,使用泰勒展开导出各导数项在区域内部和边界点上的差分格式。 3、对线性对流方程 0 constant >0u u a a t x ??+=??,其一阶迎风有限体积法离散格式为 1?n j u +=?n j u a t x ?-?(?n j u 1?n j u --) (1)写出0a <时的一阶迎风有限体积法的离散格式; (2)写出a 为任意符号的常数的一阶迎风有限体积法的守恒形式。 (3)使用0 u u u t x ??+=??说明一阶迎风有限体积法不是熵保持的格式。 4、对一维Poission 方程 , (0,1)(0)(1)0 x xx u xe x u u ?-=∈?==? 将[]01,分成(1)n +等分,写出用中心差分离散上述方程的差分格式,并问: (1)该差分格式与原微分方程相容吗?为什么? (2)该差分格式稳定吗?为什么? (3)该差分格式是否收敛到原微分方程的解?为什么? (4)取(1)6n +=,写出该差分格式的矩阵表示。 5、叙述二重网格方法的执行过程,并对一维常微分方程边值问题 225, (0,1)(0)(1)0 xx u x x x u u πππ?-=∈?==?(sin(5)+9sin(15)) 给出限制算子和延拓算子矩阵(以细网格h :7n =,粗网格2h :3n =为例)。 6、对一阶波动方程 1(,0)sin(), (0,1)2(0,)(1,)u u t x u x x x u t u t π???+=?????=∈??=??? (1)写出用中心差分进行空间离散,用一阶向后Euler 进行时间离散的差分格式;

偏微分方程数值解试题参考答案

偏微分方程数值解 一(10分)、设矩阵A 对称正定,定义)(),(),(2 1 )(n R x x b x Ax x J ∈-= ,证明下列两个问题等价:(1)求n R x ∈0使)(min )(0x J x J n R x ∈=;(2)求下列方程组的解:b Ax = 解: 设n R x ∈0是)(x J 的最小值点,对于任意的n R x ∈,令 ),(2 ),()()()(2 000x Ax x b Ax x J x x J λλλλ?+ -+=+=, (3分) 因此0=λ是)(λ?的极小值点,0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若 n R x ∈0满足 b Ax =0,则对于任意的x , )(),(2 1 )0()1()(00x J x Ax x x J >+ ==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的表示式3分, 每问3分,推理逻辑性1分 二(10分)、对于两点边值问题:????? ==∈=+-=0 )(,0)() ,()(b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ] ,[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和 Galerkin 形式的变分方程。 解: 设}0)()(),,(|{11 0==∈=b u a u b a H u u H 为求解函数空间,检验函数空间.取),(10b a H v ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(10 b a H v ∈? 即变分问题的Galerkin 形式. (3分)

常微分方程初值问题数值解法

常微分方程初值问题数值解法 朱欲辉 (浙江海洋学院数理信息学院, 浙江舟山316004) [摘要]:在常微分方程的课程中讨论的都是对一些典型方程求解析解的方法.然而在生产实 际和科学研究中所遇到的问题往往很复杂, 在很多情况下都不可能给出解的解析表达式. 本篇文章详细介绍了常微分方程初值问题的一些数值方法, 导出了若干种数值方法, 如Euler法、改进的Euler法、Runge-Kutta法以及线性多步法中的Adams显隐式公式和预测校正 公式, 并且对其稳定性及收敛性作了理论分析. 最后给出了数值例子, 分别用不同的方法计算出近似解, 从得出的结果对比各种方法的优缺点. [关键词]:常微分方程;初值问题; 数值方法; 收敛性; 稳定性; 误差估计 Numerical Method for Initial-Value Problems Zhu Yuhui (School of Mathematics, Physics, and Information Science, Zhejiang Ocean University, Zhoushan, Zhejiang 316004) [Abstract]:In the course about ordinary differential equations, the methods for analytic solutions of some typical equations are often discussed. However, in scientific research, the problems are very complex and the analytic solutions about these problems can’t be e xpressed explicitly. In this paper, some numerical methods for the initial-value problems are introduced. these methods include Euler method, improved Euler method, Runge-Kutta method and some linear multistep method (e.g. Adams formula and predicted-corrected formula). The stability and convergence about the methods are presented. Some numerical examples are give to demonstrate the effectiveness and accuracy of theoretical analysis. [Keywords]:Ordinary differential equation; Initial-value problem; Numerical method; Convergence; Stability;Error estimate

偏微分方程数值解试题参考答案

x ∈R n 2 ( Ax, x) , J ( x + x) = ? (1) = ? (0) + ( Ax, x) > J ( x ) ,因此 x 是 J ( x ) 的最小值点. (4 分) 2 二(10 分)、对于两点边值问题: ? dx dx a(u , v) = ?b ( p . + q u v)dx = ?b fvdx = f (v) , ? v ∈ H 1 (a , b ) dx dx a a 偏微分方程数值解 一(10 分)、设矩阵 A 对称正定,定义 J ( x ) = 1 ( Ax , x ) - (b , x ) ( x ∈ R n ) ,证明下 2 列两个问题等价:(1)求 x ∈ R n 使 J ( x ) = min J ( x ) ;(2)求下列方程组的解:Ax = b 解: 设 x ∈ R n 是 J ( x ) 的最小值点,对于任意的 x ∈ R n ,令 ?(λ) = J ( x + λx) = J ( x ) + λ( Ax - b , x) + λ2 (3 分) 因此 λ = 0 是 ?(λ) 的极小值点 , ? ' (0) = 0 ,即对于任意的 x ∈ R n , ( Ax - b , x) = 0 ,特 0 别取 x = Ax - b ,则有 ( Ax - b , Ax - b ) =|| Ax - b || 2 = 0 ,得到 Ax = b . (3 分) 0 0 反 之 , 若 x ∈ R n 满 足 Ax = b , 则 对 于 任 意 的 x , 1 0 0 0 评分标准: ?(λ) 的表示式 3 分, 每问 3 分,推理逻辑性 1 分 ? d du ?Lu = - ( p ) + qu = f x ∈ (a, b ) ?? u (a) = 0, u (b ) = 0 其中 p ∈ C 1 ([a , b ]), p ( x ) ≥ min p ( x ) = p x ∈[a,b ] min > 0, q ∈ C ([a , b ]), q ≥ 0, f ∈ H 0 ([a , b ]) 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的 Ritz 形式和 Galerkin 形式的变分方程。 解 : 设 H 1 = {u | u ∈ H 1 (a , b ), u (a ) = u (b ) = 0} 为求解函数空间 , 检验函数空间 . 取 v ∈ H 1 (a, b ) ,乘方程两端,积分应用分部积分得到 (3 分) du dv 即变分问题的 Galerkin 形式. (3 分)

相关文档
最新文档