§3.2-多元线性回归模型的参数估计

合集下载

第三章-多元线性回归模型(计量经济学-浙江大学-韩菁)PPT课件

第三章-多元线性回归模型(计量经济学-浙江大学-韩菁)PPT课件
二、多元回归模型的基本假定
6、各解释变量之间互不相关, 即不存在线性关系
1 X11 X 21 X k1
X 1
X12
X 22
X
k
2
在此条件下,解释变量观测值 矩阵X满秩,Rank(X)=k+1,
1
X1n
X2n
X
kn
方阵X’X也满秩,Rank(X’X)=k+1,
行列式|X’X|≠0,方阵X’X可逆,
Xji在重复抽样(观测) 中固定取值,是确定性
变量,该假定自动满足。
(结合假定1、2)
随机误差项i正态分布的假定 对模型的统计检验是很重要的。
第三章 多元线性回归模型
Y i 0 1 X 1 i 2 X 2 i k X k i i i 1 , 2 , , n §3-1 多元线性回归模型及其基本假定
二、多元回归模型的基本假定
1、随机误差 项具有零均值
E(i)=0
表明:平均地看,随机误 差项有互相抵消的趋势。
2、随机误差 项具有同方差
Var(i)=2
表明:对每个Xi,随机误差项 i的方差等于一个常数2。即
V ( i ) a E ir E ( i ) 2 E ( i 2 ) 2 解对释各变自量均取值不(同零值均时值,)的分i相散
C(o i,v j)E[iE(i)][jE(j)] 值之间也互不相关。
E(ij)0
C ( Y i , Y o j ) E [ Y v i E ( Y i )Y j ] E ( [ Y j ) E ] ( i j ) 0
第三章 多元线性回归模型
Y i 0 1 X 1 i 2 X 2 i k 多元线性回归模型及其基本假定
二、多元回归模型的基本假定

第3章 多元线性回归模型 《计量经济学》PPT课件

第3章 多元线性回归模型  《计量经济学》PPT课件

于是:
βˆ
ˆ1 ˆ 2
0.7226 0.0003
0.0003 1.35E 07
15674 39648400
01.0737.71072
⃟ 正规方程组 的另一种写法
对于正规方程组 XY XXβˆ
XXβˆ Xe XXβˆ
于是 Xe 0 (*)

ei 0
(**)
X jiei 0
i
(*) 或( ** )是多元线性回归模型正规方程 组的另一种写法。
第三章 经典单方程计量经济学模型: 多元线性回归模型
• 多元线性回归模型 • 多元线性回归模型的参数估计 • 多元线性回归模型的统计检验 • 多元线性回归模型的预测 • 回归模型的其他形式
§ 3. 1 多元线性回归模型
一、多元线性回归模型 二、多元线性回归模型的基本假定
一、多元线性回归模型
多元线性回归模型 : 表现在线性回归模型 中的解释变量有多个。
的秩 =k+1 ,即 X 满秩。
假设 2. 随机误差项零均值,同方差。
0
0
0
E

μ
)
E
1
n
1
n
E
12
n 1
1 n
2 n
var(1 ) cov(1, n ) 2 0
2I
cov(
n
,
1
)
var(n )
0
2
i E(i )
βˆ (xx)1 xY
ˆ0 Y ˆ1 X 1 ˆk X k
⃟ 随机误差项的方差的无偏估计
可以证明,随机误差项的方差的无偏 估计量为:
ˆ 2
ei2 n k 1
ee n k 1

3 多元线性回归模型(经典模型,举一反三)

3 多元线性回归模型(经典模型,举一反三)

样本回归函数的矩阵表达:
ˆ ˆ Y Xβ

e1 e e 2 e n
ˆ Y Xβ e
其中:
ˆ 0 ˆ ˆ 1 β ˆ k

二、多元线性回归模型的基本假定
假设1,解释变量是非随机的或固定的,且各 X之间互不相关(无多重共线性)。
表示:各变量X值固定时Y的平均响应。
j也被称为偏回归系数,表示在其他解释变
量保持不变的情况下,X j每变化1个单位时,Y的 均值E(Y)的变化; 或者说j给出了X j的单位变化对Y均值的 “直接”或“净”(不含其他变量)影响。
其中
Y Xβ μ
总体回归模型n个随机方程的矩阵表达式为:
1 1 X 1
五、样本容量问题
⒈ 最小样本容量 所谓“最小样本容量”,即从最小二乘原理 和最大或然原理出发,欲得到参数估计量,不管 其质量如何,所要求的样本容量的下限。 样本最小容量必须不少于模型中解释变量 的数目(包括常数项),即 n ≥ k+1
因为,无多重共线性要求:秩(X)=k+1

可求得: ( X X) 于是:
1
0.0003 0.7226 0.0003 1.35 E 07
103 .172 0.7770
ˆ 1 0.7226 0.0003 15674 ˆ β ˆ 2 0.0003 1.35 E 07 39648400
Yi 0 1 X 1i 2 X 2 i k X ki i
也被称为总体回归函数的随机表达形式。它 的 非随机表达式为:

计量经济学-3章:多元线性回归模型PPT课件

计量经济学-3章:多元线性回归模型PPT课件

YXβ ˆe
Y ˆ Xβ ˆ
4/5/2021
.
17
2 模型的假定
(1) 零均值假设。随机误差项的条件期望为零,即 E(ui)=0 ( i=1,2,…,n)
其矩阵表达形式为:E(U)=0 (2)同方差假设。随机误差项有相同的方差,即
Var(ui)E(ui2) 2 (i=1,2,…,n)
(3)无自相关假设。随机误差项彼此之间不相关,即
(i=1,2,…,n)
上式为多元样本线性回归函数(方程),简称样本回归函 数(方程)(SRF, Sample Regression Function).
ˆ j (j=0,1,…,k)为根据样本数据所估计得到的参数估计量。
4/5/2021
.
13
(4)多元样本线性回归模型
对应于其样本回归函数(方程)的样本回归模型:
4/5/2021
.
3
教学内容
一、模型的建立及其假定条件 二、多元线性回归模型的参数估计:OLS 三、最小二乘估计量的统计性质 四、拟合优度检验 五、显著性检验与置信区间 六、预测 七、案例分析
4/5/2021
.
4
回顾: 一元线性回归模型
总体回归函数 E (Y i|X i)01X i
总体回归模型 Y i 01Xiui
0 0
2 0 0 2
0
0
0 0 0 2
2I n
4/5/2021
.
u1un
u2un
un2
20
(4)解释变量X1,X2,…,Xk是确定性变量,不是随机 变量,与随机误差项彼此之间不相关,即
Cov(Xji,ui)0 j=1,2…k , i=1,2,….,n

3 多元线性回归模型

3 多元线性回归模型
数的普通最小二乘估计仍具有:
线性性、无偏性、有效性。
同时,随着样本容量增加,参数估计量具有: 渐近无偏性、渐近有效性、一致性。
2019/6/18
17
三、样本容量问题
⒈ 最小样本容量 所谓“最小样本容量”,即从最小二乘原理 出发,欲得到参数估计量,不管其质量如何,所 要求的样本容量的下限。
样本最小容量必须不少于模型中解释变量 的数目(包括常数项),即
第三章 经典单方程计量经济学模型: 多元线性回归模型
• 多元线性回归模型 • 多元线性回归模型的参数估计 • 多元线性回归模型的统计检验 • 多元线性回归模型的预测 • 可化为线性的多元非线性回归模型 • 受约束回归
2019/6/18
1
§3.1 多元线性回归模型
一、多元线性回归模型 二、多元线性回归模型的基本假定
Cov(i , j ) E(i j ) 0
2019/6/18
8
假设5:解释变量与随机项不相关
Cov( X ji , i ) 0
j 1,2, k
假设6:随机项满足正态分布
i ~ N (0, 2 )
2019/6/18
9
§3.2 多元线性回归模型的估计
一、普通最小二乘估计 二、参数估计量的性质 三、样本容量问题 四、估计实例
12
正规方程组的矩阵形式
n
X1i


X ki
X 1i
X
2 1i

X ki X 1i

X ki X1i X

X
2 ki
ki

ˆ0 ˆ1 ˆ k



1 X 11 X k1

32多元线性回归模型的参数估

32多元线性回归模型的参数估

βˆ== 2
2、随机干扰项μ的方差的普通最小二乘估计
对于多元回归模型 Y =X + 由于被解释变量的
估计值与观测值之间的残差:
e =Y X
=X + X ( XX ) 1 X ( X + )
= X ( X X ) 1 X =[ I X ( X X ) 1 X ]
=M
残差的平方和为: e e = MM
=E[( )( ) ]
1
=(X X ) 1 X E ( ) X ( X X ) 1
=( X X ) 1 X 2 IX ( X X ) 1
=2 ( X X ) 1
这里利用了
(3.2.17)
= ( XX)1XY=(XX)1X(X+)=+( X X ) 1 X

E ( ) =2 I I为单位矩阵
32多元线性回归模型的参数估
将上述过程用矩阵表示如下:
即求解方程组:
(Y
βˆ

)(Y
Xβ )=ˆ0
ˆ
ˆ βˆ
ˆˆ ˆ
βˆ (YY 2YXˆ β+ˆβXXβˆ )=0 XY +XXˆ β=0
得到
XY =XXˆ β
于是
ˆβ=(X X) 1 X Y
对于(*)式,注意到
Yi (0 +1 X1i + +k X ki ) =ei
Yi =0 +1 X1i +2 X2i +ui (i =1,2, , n) 其参数的最小二乘估计量如下:
ˆ1 =
x1 y x12
x2 x22
x2 y
( x1 x2
x1x2
)2

多元线性回归


ˆ0 ei ˆ1 ei X1i ˆk ei X ki Y ei
=0
所以有:
TSS (Yi Yˆi )2
(Yˆi
2
Y)
RSS
ESS
注意:一个有趣的现象
Yi Y Yi Yˆi Yˆi Y
Yi
Y
2
Yi Yˆi
2
Yˆi
Y
2
Yi Y 2
Yˆi ˆ0 ˆ1 X1i ˆ2 X 2i ˆki X Ki i=1,2…n
• 根据最 小二乘原 理,参数 估计值应
该是右列
方程组的 解
ˆ
0
Q
0
ˆ1
Q
0
ˆ
2
Q
0
ˆ k
Q
0
n
n
其 Q ei2 (Yi Yˆi )2

i 1
n
i 1
2
(Yi (ˆ0 ˆ1 X1i ˆ2 X 2i ˆk X ki ))
1 X 12 Xk2
1 Y1
X 1n Y2
X kn
Yn

(XX)βˆ XY
由于X’X满秩,故有 βˆ (XX)1 XY
17
用含两个解释变量的矩阵形式来表示X’X:
1 1
X X
11
X X 21
12
22
1
XX XX 1
1
X 13
X X X 23
1
11 12
1n
21
20
XY
1 X1
1 X2
Y1
1 X n
Y2 Yn
Yi X iYi
3914506608877424091000
可求得:

3.2 双变量线性回归模型的参数估计



i
i
i
ˆ
X Y X
2 i
i i
样本回归线的性质
通过Y和X的样本均值点 估计的Yi的均值等于实际观测的Yi的 均值 残差的均值为0 残差与解释变量Xi不相关 残差与估计的Yi值不相关
高斯定理
结论:在古典假定条件下 ,OLS 估计式是最佳线 性无偏估计式(BLUE)
三、最大似然估计法(ML)
2
评价要素(高斯定理前奏)
1.无偏性,方法、样本一定,抽样不同 2.最小方差性,样本一定,方法不同 3.渐进性,大样本时,具有最小渐近方差 (渐近有效)

二、参数的普通最小二乘估计(OLS)
给定一组样本观测值(Xi, Yi)(i=1,2,…n)要 求样本回归函数尽可能好地拟合这组值。
普通最小二乘法(Ordinary least squares, OLS)给出的判断标准是:残差的平方和最小。
基本原理: 对于最大似然法,当从模型总体随机抽 取n组样本观测值后,最合理的参数估计量 应该使得从总体中抽取该n组样本观测值的 概率最大。
双变量线性回归模型: Yi 1 2 X i ui
在满足11条基本假定的条件下
Yi ~ i.i.n.(1 2 X i , )
2
Yi的概率密度函数为 (i=1,2,…n)
将该似然函数极大化,即可求得到模型参 数的最大似然估计量。
对lnLF求极大值:
解得模型的参数估计量为:
2
~ ( X X )(Y Y ) x y x (X X )
i i i 2 i 2 i i
1 Y 2 X
~
~
2 ~2 u ˆ i n
可见,在满足一系列基本假设的情况下, 模型结构参数的最大似然估计量与普通最小 二乘估计量是相同的。

第三章多元线性回归模型的参数估计

第三章多元线性回归模型的参数估计多元线性回归模型的参数估计是指通过给定的数据样本,使用其中一种方法来计算出回归模型的参数值。

在多元线性回归模型中,我们有多个自变量与一个因变量之间的关系,因此需要估计出每个自变量的系数。

参数估计是回归模型的核心内容之一,它能够通过对样本数据的分析和处理,得到模型中的参数值,从而建立起模型与实际数据之间的映射关系。

常用的多元线性回归模型的参数估计方法有最小二乘法和最大似然估计法。

最小二乘法是一种最常用的参数估计方法。

它的基本思想是通过最小化因变量的观测值与模型预测值之间的平方误差,来确定模型参数的最佳估计值。

最小二乘法的优点是数学上简单且易于计算,但对于异常值的敏感性较强。

最大似然估计法是另一种常用的参数估计方法。

它的基本思想是找到最能使观测数据发生的概率最大的模型参数,从而得到最优的参数估计值。

最大似然估计法具有较好的统计性质,但它的计算复杂度较高,需要对似然函数进行极大化求解。

在实际应用中,我们需要根据实际情况选择合适的参数估计方法。

通常情况下,最小二乘法是首选的方法,因为它具有简单和直观的优点,适用于大多数情况。

但当样本数据存在异常值或者数据分布不符合正态分布假设时,最大似然估计法可能是更好的选择。

无论是最小二乘法还是最大似然估计法,其核心问题都是通过最优化方法找到使得模型和观测数据之间的误差最小的参数值。

这一过程需要使用数学工具和计算方法进行求解,可以使用迭代算法,如牛顿法或梯度下降法,来逐步逼近最优解。

参数估计的结果可以告诉我们每个自变量对因变量的贡献程度。

因此,一个良好的参数估计能够帮助我们更好地理解数据,预测因变量,以及识别自变量之间是否存在相互影响。

总而言之,多元线性回归模型的参数估计是通过最小化模型与观测数据之间的误差,找到最佳的模型参数值的过程。

合理选择参数估计方法,并进行有效的数学计算,能够为我们提供有关数据和模型之间的重要信息,并为进一步的分析和应用提供基础。

计量经济学-多元线性回归模型


e e ˆ n k 1 n k 12e i2 3-21
*二、最大或然估计
对于多元线性回归模型
Yi 0 1 X 1i 2 X 2 i k X ki i
易知
Yi ~ N ( X i β , 2 )
Y的随机抽取的n组样本观测值的联合概率 ˆ, L (β 2 ) P (Y1 , Y2 , , Yn )
解该(k+1) 个方程组成的线性代数方程组,即
$ ,, 可得到(k+1) 个待估参数的估计值 j , j 012,, k 。
3-14
正规方程组的矩阵形式
n X 1i X ki
X X

1i 2 1i

X X X
ki
X
ki
X 1i
ˆ 0 1 1 ˆ X 11 X 12 1i ki 1 2 ˆ X ki k X k1 X k 2
ˆ 1 ˆ ˆ 2 β ˆ k
在离差形式下,参数的最小二乘估计结果为
ˆ β ( x x) 1 x Y
ˆ ˆ ˆ 0 Y 1 X 1 k X k
3-20
随机误差项的方差2的无偏估计
可以证明:随机误差项 的方差的无偏估计量为:
第三章

多元线性回归模型
多元线性回归模型 多元线性回归模型的参数估计 多元线性回归模型的统计检验 多元线性回归模型的预测 回归模型的其他形式 回归模型的参数约束
3-1
§3.1 多元线性回归模型
一、多元线性回归模型 二、多元线性回归模型的基本假定
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档