相似三角形教案

合集下载

(完整版)相似三角形专题复习教案

(完整版)相似三角形专题复习教案

龙文教育学科老师个性化教案教师学生姓名梁瀚文上课日期学科数学年级九年级教材版本类型知识讲解□:考题讲解□:本人课时统计第()课时共()课时学案主题相似三角形课时数量(全程或具体时间)第()课时授课时段教学目标教学内容相似三角形专题复习个性化学习问题解决查漏补缺,巩固提升教学重点、难点用相似三角形的判定与性质解决简单的几何问题和实际问题。

考点分析理解相似三角形的概念,总结相似三角形的对应角相等、对应边成比例等性质,掌握它们的基本运用。

教学过程学生活动教师活动知识要点1.相似三角形的定义:对应角相等,对应边的比相等的两个三角形。

对应边的比叫做相似比。

三条平行线截两条直线所得的对应线段的比相等。

2.相似三角形的判定:①平行法②三组对应边的比相等(类似于三角形全等判定“SSS”)③两组对应边的比相等,且夹角相等(类似于三角形全等判定“SAS”)④两角对应相等(AA)直角三角形中斜边、直角边对应比相等(类似于直角三角形全等判定“HL”)。

相似三角形的基本图形:判断三角形相似,若已知一角对应相等,可先考虑另一角对应相等,注意公共角或对顶角或同角(等角)的余角(或补角)相等,若找不到第二对角相等,就考虑夹这个角的两对应边的比相等;若无法得到角相等,就考虑三组对应边的比相等。

3.相似三角形的性质:①对应角相等②对应边的比相等③对应的高、中线、角平分线、周长之比等于相似比④对应的面积之比等于相似比的平方。

4.相似三角形的应用:求物体的长或宽或高;求有关面积等。

(三)考点精讲 考点一:平行线分线段成比例 例1、(2011广东肇庆)如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC = 4,CE = 6,BD = 3,则BF =( )A . 7B . 7.5C . 8D . 8.5例2(2012•福州) 如图,已知△ABC ,AB=AC=1,∠A=36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是 ,cosA 的值是 .(结果保留根号)练习:1.(2011湖南怀化,6,3)如图所示:△ABC 中,DE ∥BC ,AD =5,BD =10,AE =3,则CE 的值为( ) A .9 B .6 C .3 D .4ECDB A2.(2011山东泰安,15 ,3分)如图,点F 是□ABCD 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误..的是( ) A .ED DF EA AB = B . DE EF BC FB = C .BC BF DE BE = D . BF BCBE AE=a b c A B C D EF m n3.(2012•孝感)如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D ,若AC=2,则AD 的长是( ) A .512- B .512+ C .51- D .51+考点二:相似三角形的判定 例3、(2011湖北荆州)如图,P 为线段AB 上一点,AD 与BC 交于E ,∠CPD =∠A =∠B ,BC 交PD 于F ,AD 交PC 于G ,则图中相似三角形有( )A .1对B .2对C .3对D .4对 例4、(2010江苏泰州)一个铝质三角形框架三条边长分别为24cm 、30cm 、36cm ,要做一个与它相似的铝质三角形框架,现有长为27cm 、45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( ) A.0种 B. 1种 C. 2种 D. 3种例5(2012•徐州)如图,在正方形ABCD 中,E 是CD 的中点,点F 在BC 上,且FC= 14BC .图中相似三角形共有( ) A .1对 B .2对C .3对D .4对例6(2012•资阳)(1)如图(1),正方形AEGH 的顶点E 、H 在正方形ABCD 的边上,直接写出HD :GC :EB 的结果(不必写计算过程);(2)将图(1)中的正方形AEGH 绕点A 旋转一定角度,如图(2),求HD :GC :EB ; (3)把图(2)中的正方形都换成矩形,如图(3),且已知DA :AB=HA :AE=m :n ,此时HD :GC :EB 的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).练习: 1.(2011江苏无锡,7,3分)如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①、②、③、④四个三角形.若OA ∶OC = OB ∶OD ,则下列结论中一定正确的是 ( ) A .①和②相似 B .①和③相似GEADB CP FC .①和④相似D .②和④相似2.(2011新疆乌鲁木齐,10,4分)如图,等边三角形ABC 的边长为3,点P 为BC 边上一点,且1BP =,点D 为AC 边上一点若60APD ∠=︒,则CD 的长为 A .12B .23C .34D .13. (2012•攀枝花)如图,△ABC ≌△ADE 且∠ABC=∠ADE ,∠ACB=∠AED ,BC 、DE 交于点O .则下列四个结论中,①∠1=∠2;②BC=DE ;③△ABD ∽△ACE ;④A 、O 、C 、E 四点在同一个圆上,一定成立的有( ) A .1个 B .2个 C .3个 D .4个4. (2012•义乌市)在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数;(2)如图2,连接AA 1,CC 1.若△ABA 1的面积为4,求△CBC 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.A B CDO① ②③④(第7题)考点三:相似三角形的性质 例7、(2010山东烟台)如图,△ABC 中,点D 在线段BC 上,且△ABC ∽△DBA ,则下列结论一定正确的是( ) A .AB 2=BC ·BD B .AB 2=AC ·BD C .AB ·AD =BD ·BC D .AB ·AD =AD ·CD 例8、(2011浙江嘉兴)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32 (B )33(C )34(D )36例9(2012•重庆)已知△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,则ABC 与△DEF 的面积之比为 .练习1.(2011青海西宁,10,3分)如图6,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADB +∠EDC =120°,BD =3,CE =2,则△ABC 的边长为 A .9 B .12 C .16 D .182.(2011四川雅安,9,3分)如图,D 、E 、F 分别为△ABC 三边的中点,则下列说法中不正确的为( )A .△ADE ∽△ABCB .AFC ABF S S △△= C .ABC ADE S S △△41=D .DF=EF ABCDE G FOABDC(例5) A B C DE3.(2011四川内江,加试2,6分)如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DF 过EC 的中点G 并与BC 的延长线交于点F ,BE 与DF 交于点O .若△ADE 的面积为S ,则四边形BOGC 的面积= . 4.(2011辽宁丹东,16,3分)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,那么:DPQ ABC S S ∆∆=______________.Q PECDBA考点四 位似例10(2012•玉林)如图,正方形ABCD 的两边BC ,AB 分别在平面直角坐标系的x 轴、y 轴的正半轴上,正方形A′B′C′D′与正方形ABCD 是以AC 的中点O′为中心的位似图形,已知AC=32,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD 的相似比是( ) A .16 B .13 C .12 D . 23考点四:相似三角形的应用 例6、(2010安徽芜湖)如图,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD,AB ∥CD,AB=2m,CD=6m,点P 到CD 的距离是2.7m,则_______m .例7、(2011青海)如图,△ABC 是一块锐角三角形的材料,边BC=120mm ,高AD=80mm ,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是 mm .练习:1.(2011湖北黄石,13,3分)有甲乙两张纸条,甲纸条的宽是乙纸条宽的2倍,如图(4).将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD,则AB与BC的数量关系为。

九年级数学下册《相似三角形的性质》教案、教学设计

九年级数学下册《相似三角形的性质》教案、教学设计
-提问:“全等三角形有哪些性质?它们在几何证明中有什么作用?”
-学生回顾全等三角形的性质,为新课的学习打下基础。
(二)讲授新知
1.教师引导学生从相似三角形的定义入手,探讨相似三角形的性质。
-解释相似三角形的定义,强调比例关系。
-引导学生观察相似三角形的边长和角度,发现性质。
2.教师运用几何画板动态展示相似三角形的性质,帮助学生形象理解。
-学生能够运用相似三角形的性质,进行严密的几何证明,掌握证明过程中的逻辑关系。
-学生能够灵活运用相似三角形的性质,解决复合几何问题,提高解题技巧。
3.学会运用相似三角形的性质解决实际问题,增强数学应用能力。
-学生能够运用相似三角形的性质,解决生活中的实际问题,如测量高度、距离等。
-学生能够将相似三角形的性质与其他数学知识相结合,解决综合性的数学问题。
3.培养学生的创新精神和实践能力,激发学生探索未知世界的热情。
-教师鼓励学生提出问题、解决问题,培养学生的创新思维。
-学生通过解决实际问题,感受数学与现实生活的联系,激发探索未知世界的热情。
4.培养学生的严谨学生严谨对待数学问题,养成良好的学习习惯。
(二)教学难点
1.相似三角形性质的推理和证明过程。
2.学生在解决实际问题中,对相似三角形性质的应用。
3.帮助学生建立几何直观,理解相似三角形的空间变化。
教学设想:
1.采用情境导入法,引发学生兴趣
-通过展示生活中与相似三角形相关的实例,如建筑物的立面设计、摄影中的构图等,激发学生的学习兴趣,引导学生认识到相似三角形在实际中的应用。
九年级数学下册《相似三角形的性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解相似三角形的定义及其判定条件,掌握相似三角形的性质和比例关系。

相似三角形的教案

相似三角形的教案

相似三角形的教案一、教学目标1、知识与技能目标理解相似三角形的概念,掌握相似三角形的性质。

能够运用相似三角形的性质解决实际问题。

2、过程与方法目标通过观察、比较、操作等活动,培养学生的观察能力、动手操作能力和逻辑思维能力。

经历相似三角形性质的探究过程,体会从特殊到一般、类比等数学思想方法。

3、情感态度与价值观目标让学生在探索相似三角形的过程中,体验成功的喜悦,增强学习数学的自信心。

通过实际问题的解决,培养学生的应用意识和创新精神。

二、教学重难点1、教学重点相似三角形的概念和性质。

2、教学难点相似三角形性质的证明。

灵活运用相似三角形的性质解决实际问题。

三、教学方法讲授法、讨论法、探究法、练习法四、教学过程1、导入新课通过展示生活中常见的相似三角形的例子,如金字塔、埃菲尔铁塔等,引导学生观察并思考这些图形的特点,引出相似三角形的概念。

2、讲授新课(1)相似三角形的概念如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形。

强调相似三角形的表示方法,如△ABC∽△A'B'C',其中对应顶点要写在对应的位置上。

(2)相似三角形的性质相似三角形对应角相等。

相似三角形的周长比等于相似比。

相似三角形的面积比等于相似比的平方。

通过举例和画图,让学生直观地理解这些性质。

(3)相似三角形性质的证明以相似三角形对应边成比例为例,引导学生通过构建平行线,利用平行线分线段成比例定理进行证明。

3、课堂练习安排一些基础的练习题,让学生巩固相似三角形的概念和性质。

例如,给出两个相似三角形的对应边长度,求相似比;或者给出相似比和一个三角形的周长,求另一个三角形的周长等。

4、小组讨论给出一个实际问题,如测量金字塔的高度,让学生分组讨论如何利用相似三角形的知识来解决。

然后每个小组派代表汇报讨论结果。

5、课堂总结回顾相似三角形的概念、性质和应用,强调重点和难点,让学生对本节课的知识有一个系统的认识。

三角形相似的判定教案范文

三角形相似的判定教案范文

三角形相似的判定教案范文一、教学目标:1. 让学生理解三角形相似的概念,掌握三角形相似的判定方法。

2. 培养学生运用几何知识解决实际问题的能力。

3. 提高学生的逻辑思维能力和团队合作能力。

二、教学内容:1. 三角形相似的定义2. 三角形相似的判定方法3. 三角形相似性质的应用三、教学重点与难点:1. 教学重点:三角形相似的概念,三角形相似的判定方法。

2. 教学难点:三角形相似性质的应用。

四、教学方法:1. 采用问题驱动法,引导学生探究三角形相似的判定方法。

2. 利用多媒体辅助教学,直观展示三角形相似的判定过程。

3. 开展小组讨论,培养学生的团队合作能力。

五、教学过程:1. 导入新课:通过展示一些形状相似的三角形,引导学生思考:如何判断两个三角形是否相似?2. 讲解三角形相似的定义:解释相似三角形的概念,让学生理解相似三角形的特征。

3. 讲解三角形相似的判定方法:a. SSS判定法:三组对应边成比例。

b. SAS判定法:两边及夹角法。

c. AA判定法:两角及夹边法。

4. 练习巩固:布置一些判断三角形相似的练习题,让学生独立完成,检验掌握情况。

5. 拓展与应用:引导学生运用三角形相似的性质解决实际问题,如计算三角形的面积、判定图形变换等。

6. 课堂小结:对本节课的内容进行总结,强调三角形相似的判定方法和性质。

7. 布置作业:设计一些有关三角形相似的练习题,让学生课后巩固。

六、教学评价:1. 采用课堂问答、练习题和小组讨论等方式,评价学生对三角形相似概念和判定方法的掌握程度。

2. 关注学生在解决问题时的思维过程,评价其逻辑思维能力和创新能力。

3. 通过课后作业和课堂表现,评价学生对三角形相似性质的应用能力。

七、教学反思:1. 在教学过程中,关注学生的学习反馈,根据实际情况调整教学节奏和难度。

2. 针对学生的薄弱环节,加强针对性训练,提高学生的三角形相似知识水平。

3. 鼓励学生积极参与课堂讨论,提高课堂氛围,促进学生的互动交流。

相似三角形教案完美版

相似三角形教案完美版

面积比与边长比关系
1 2
面积比性质
相似三角形的面积比等于对应边长的平方比,即 如果AB/A'B' = k,则S△ABC/S△A'B'C' = k^2。
面积比推论
如果两个三角形的面积比已知,可以通过求边长 比来进一步确定这两个三角形的相似关系。
3
应用
在解决与相似三角形有关的问题时,可以通过面 积比和边长比的关系来建立方程或不等式,从而 找到问题的解决方案。
三角形的边、角、顶点、高、中线、 角平分线等。
三角形全等条件
全等三角形的定义
能够完全重合的两个三角形。
全等三角形的性质
全等三角形的对应边相等,对应角相等。
全等三角形的判定条件
SSS(三边全等)、SAS(两边和夹角全等)、ASA(两角和夹边全等)、AAS(两角和 一非夹边全等)和HL(直角边斜边定理)。
推论
如果两个三角形有两个对 应的角分别相等,则这两 个三角形相似。
对应边成比例性质
定义
当两个三角形的对应边成比例时,这两个三角形 相似。
性质
相似三角形的对应边成比例,即如果AB/A'B' = BC/B'C' = CA/C'A',则△ABC ∽ △A'B'C'。
推论
如果两个三角形有两边对应成比例,且夹角相等 ,则这两个三角形相似。
相似多边形概念
01
02
03
相似多边形的定义
两个多边形的对应角相等 ,对应边成比例,则这两比值 。
相似多边形的性质
相似多边形的对应角相等 ,对应边成比例,面积比 等于相似比的平方。
03

九年级数学上册《相似三角形的性质》教案、教学设计

九年级数学上册《相似三角形的性质》教案、教学设计
(三)学生小组讨论,500字
在学生小组讨论环节,我会将学生分成若干小组,每组4-6人。给出以下讨论题目:
1.请列举出相似三角形的性质,并尝试用简洁的语言解释每个性质。
2.请举例说明相似三角形在实际问题中的应用。
3.你认为相似三角形的性质与全等三角形的性质有哪些联系和区别?
要求学生在小组内进行充分讨论,分享各自的观点和想法。在此过程中,我会巡回指导,关注学生的讨论进度,适时给予提示和引导。
2.培养学生运用几何图形描述和分析问题的能力,提高他们的逻辑思维和推理能力。
3.引导学生将相似三角形的性质应用于实际生活,培养他们的应用意识和创新能力。
(二)教学难点
1.相似三角形性质的推导和证明,尤其是其中的比例关系和角度关系。
2.学生在解决实际问题时,如何将相似三角形的性质灵活运用。
3.培养学生合作交流能力,提高他们在团队中的参与度和贡献度。
2.相似三角形的性质:详细讲解相似三角形的性质,如对应角相等、对应边成比例等,并结合实际例子进行解释。
3.相似三角形的判定方法:介绍判定相似三角形的方法,如AA、SSS、SAS等,并通过典型例题进行讲解。
4.相似三角形的应用:展示相似三角形在实际问题中的应用,如测量、设计等,让学生体会几何知识在实际生活中的价值。
(五)总结归纳,500字
在总结归纳环节,我会从以下几个方面进行:
1.知识点回顾:引导学生回顾本节课所学的相似三角形的定义、性质、判定方法及应用。
2.学习方法总结:让学生总结自己在学习相似三角形过程中的心得体会,分享有效的学习方法。
3.情感态度与价值观:强调几何知识在实际生活中的重要性,激发学生学习几何的兴趣和热情。
1.学生对相似三角形定义的理解程度,以及对相似性质的认识和运用能力。

相似三角形的性质教案

相似三角形的性质教案一、教学目标:1.知识目标:了解相似三角形的概念和相似三角形的性质。

2.能力目标:能够判断给定的两个三角形是否相似,并应用相似三角形的性质解决实际问题。

3.情感目标:培养学生的逻辑思维能力和解决问题的能力,并培养学生对数学知识的兴趣。

二、教学重难点:1.教学重点:相似三角形的性质。

2.教学难点:判断相似三角形和应用相似三角形的性质解决问题。

三、教学过程:1.激发兴趣:通过一个关于相似三角形的有趣例题,引导学生思考分析相似三角形的性质。

例题:如图,已知ΔABC ∼ΔDEF,且 AB = 3cm,BC = 4cm,AC = 5cm,DE = 6cm,寻找 x,使得 DF = x cm,EF = 8cm。

(图略)让学生思考一下,如何求得x的值?2.呈现知识:引入相似三角形的概念和性质。

(1)引入相似三角形的概念:如果两个三角形的对应角相等,那么这两个三角形是相似的。

记作ΔABC∼ΔDEF。

(2)相似三角形的性质:相似三角形的对应边成比例。

即有如下比例关系:AB/DE=BC/EF=AC/DF。

3.教学拓展:通过几个例题,帮助学生理解和应用相似三角形的性质。

例题1:如图,已知ΔABC ∼ ΔDEF,且 AB = 6cm,BC = 8cm,AC= 10cm,DE = 9cm,求 DF。

(图略)解:根据相似三角形的性质,可得AB/DE=BC/EF=AC/DF。

代入已知条件,得6/9=8/EF=10/DF。

由此可得EF = (9×8)/6 = 12cm,DF = (10×9)/6 = 15cm。

例题2:如图,已知ΔABC ∼ ΔDEF,且 AB = 4cm,AC = 8cm,DE= 10cm,以 DF 为底边,求ΔDFG 的高 GH。

(图略)解:根据相似三角形的性质,可得AB/DE=AC/DF。

代入已知条件,得 4/10 = 8/DF,解得 DF = 20/4 = 5cm。

三角形相似的判定教案范文

三角形相似的判定教案课时安排:1课时教学目标:1. 理解三角形相似的概念。

2. 掌握三角形相似的判定方法。

3. 能够运用三角形相似的性质解决实际问题。

教学内容:一、导入(5分钟)1. 引入三角形相似的概念,让学生回顾已学的相似图形的知识。

2. 通过展示一些实例,让学生观察并判断哪些三角形是相似的。

二、三角形相似的判定方法(10分钟)1. 介绍AA相似定理:如果两个三角形的两个角分别相等,则这两个三角形相似。

2. 介绍SAS相似定理:如果两个三角形的两个角分别相等,并且它们的夹角对应边成比例,则这两个三角形相似。

3. 介绍SSS相似定理:如果两个三角形的三边分别成比例,则这两个三角形相似。

三、相似三角形的性质(10分钟)1. 相似三角形的对应角相等。

2. 相似三角形的对应边成比例。

3. 相似三角形的面积比等于对应边长比的平方。

四、应用实例(10分钟)1. 通过实际问题,让学生运用三角形相似的性质解决问题。

2. 提供一些练习题,让学生独立解决。

五、总结与反思(5分钟)1. 让学生总结本节课所学的三角形相似的判定方法和性质。

2. 鼓励学生提出问题,解答学生的疑惑。

教学资源:1. 教学PPT或黑板。

2. 实例图示。

3. 练习题。

教学评估:1. 在课堂上观察学生的参与程度和理解程度。

2. 对练习题的完成情况进行评估。

本教案仅供参考,具体教学过程可根据实际情况进行调整。

三角形相似的判定教案课时安排:1课时教学目标:1. 理解三角形相似的概念。

2. 掌握三角形相似的判定方法。

3. 能够运用三角形相似的性质解决实际问题。

教学内容:六、导入(5分钟)1. 引入三角形相似的概念,让学生回顾已学的相似图形的知识。

2. 通过展示一些实例,让学生观察并判断哪些三角形是相似的。

七、三角形相似的判定方法(10分钟)1. 介绍AA相似定理:如果两个三角形的两个角分别相等,则这两个三角形相似。

2. 介绍SAS相似定理:如果两个三角形的两个角分别相等,并且它们的夹角对应边成比例,则这两个三角形相似。

相似三角形的教案

相似三角形的教案一、教学目标1、知识与技能目标理解相似三角形的定义和性质。

能够识别相似三角形,并掌握相似三角形的判定方法。

会运用相似三角形的性质和判定解决实际问题。

2、过程与方法目标通过观察、比较、操作等活动,培养学生的观察能力、动手能力和逻辑思维能力。

经历相似三角形的探索过程,让学生体会从特殊到一般、从具体到抽象的数学思维方法。

3、情感态度与价值观目标激发学生学习数学的兴趣,培养学生积极探索、勇于创新的精神。

让学生在解决问题的过程中,体验成功的喜悦,增强学习数学的自信心。

二、教学重难点1、教学重点相似三角形的定义、性质和判定方法。

运用相似三角形的性质和判定解决实际问题。

2、教学难点相似三角形判定方法的推导和应用。

灵活运用相似三角形的性质和判定解决复杂的实际问题。

三、教学方法讲授法、讨论法、探究法、练习法相结合四、教学过程1、导入新课展示生活中常见的相似三角形的图片,如金字塔、埃菲尔铁塔等,引导学生观察并思考这些图形的特点。

提问:这些图形有什么共同的特征?如何判断两个三角形是否相似?2、讲授新课相似三角形的定义:如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形。

相似三角形的表示方法:用“∽”表示,如△ABC∽△A'B'C'。

相似比:相似三角形对应边的比叫做相似比。

相似三角形的性质:相似三角形的对应角相等。

相似三角形的对应边成比例。

相似三角形的对应高的比、对应中线的比、对应角平分线的比都等于相似比。

相似三角形的周长比等于相似比,面积比等于相似比的平方。

相似三角形的判定方法:两角对应相等的两个三角形相似。

两边对应成比例且夹角相等的两个三角形相似。

三边对应成比例的两个三角形相似。

以具体的例子来讲解相似三角形的定义、性质和判定方法,让学生更好地理解和掌握。

3、课堂练习安排一些基础的练习题,让学生判断两个三角形是否相似,并说明理由。

给出一些运用相似三角形性质和判定解决问题的题目,让学生在练习中巩固所学知识。

《相似三角形的判定(第1课时)》教案 人教数学九年级下册

27.2 相似三角形27.2.1相似三角形的判定(第1课时)一、教学目标【知识与技能】1.理解相似三角形的概念,并会用以证明和计算;2.体会用相似符号“∽”表示的相似三角形之间的边,角对应关系;3.掌握平行线分线段成比例的基本事实及其推论的应用,会用平行线判定两个三角形相似并进行证明和计算.【过程与方法】经历平行线分线段成比例的基本事实及其推论的发现过程,增强学生发现问题,解决问题的能力.【情感态度与价值观】学生在充分经历自学、探究、交流、当堂练习等活动中,获得成功的体验,调动主动学习的积极性,感受数学学习的乐趣.二、课型新授课三、课时第1课时共4课时四、教学重难点【教学重点】平行线分线段成比例基本事实及判定两个三角形相似的定理.【教学难点】判定三角形相似的定理的证明.五、课前准备教师:课件、刻度尺、三角板.学生:刻度尺、三角板.六、教学过程(一)导入新课(出示课件2)教师问:1.相似多边形的特征是什么?2.怎样判定两个多边形相似?3.什么叫相似比?4.相似多边形中,最简单的就是相似三角形.如果∠A =∠A 1,∠B =∠B 1,∠C =∠C 1,,那么△ABC 与△A 1B 1C 1相似吗?我们还有其他方法判定两个三角形相似吗?学生集体口答,教师订正.(二)探索新知知识点1 平行线分线段成比例定理请分别度量l 3,l 4,l 5.在l 1上截得的两条线段AB,BC 和在l 2上截得的两条线段DE,EF 的长度,AB :BC 与DE :EF 相等吗?任意平移l 5,再量度AB,BC,DE,EF 的长度,它们的比值还相等吗?除此之外,还有其他对应线段成比例吗?(出示课件4、5)111111C B BC C A AC B A AB ==学生动手操作后可发现:DFEF AC BC DF DE AC AB DE EF AB BC EF DE BC AB l l l 543====,,,时,∥∥当 教师归纳:(出示课件6)一般地,我们有平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.符号语言:若a ∥b ∥c ,则12122323A A B B A A B B =,23231212A AB B A A B B =, 12121313A A B B A A B B =,23231313A A B B A A B B =…教师问:1.如何理解“对应线段”?2.“对应线段”成比例都有哪些表达形式?(出示课件7) 小组合作交流,再进行全班性的问答.出示课件8,学生独立思考后口答,教师订正.知识点2 平行线分线段成比例定理的推论出示课件9~11:如图,直线l3∥l4∥l5,由平行线分线段成比例的基本事实,我们可以得出图中对应成比例的线段,把直线l1向左或向右任意平移,这些线段依然成比例.如果把图1中l1,l2两条直线相交,交点A刚好落到l3上,如图2(1),所得的对应线段的比会相等吗?依据是什么?如果把图1中l1,l2两条直线相交,交点A刚好落到l4上,如图2(2)所得的对应线段的比会相等吗?依据是什么?学生分组讨论后,选代表口答,教师加以订正后归纳.(出示课件12)平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.出示课件13,学生独立解答,一生板演,教师订正.考点 利用平行线分线段成比例定理及推论求线段长度出示课件14,例 如图,在△ABC 中,DE ∥BC ,AC=4,AB=3,EC=1.求AD 和BD.学生思考后,师生共同解答如下:解:∵AC=4,EC=1,∴AE=3.∵ DE ∥BC , ∴. AD AE AB AC∴AD=2.25,∴BD=0.75.出示课件15,学生独立解答,教师订正.知识点3 相似三角形的判定定理如图,在△ABC中,D为AB上任意一点,过点D作BC的平行线DE,交AC于点E.(出示课件16~17)教师问:1.△ADE与△ABC的三个角分别相等吗?2.分别度量△ADE与△ABC的边长,它们的边长是否对应成比例?3.你认为△ADE与△ABC之间有什么关系?平行移动DE的位置,你的结论还成立吗?学生分组讨论,动手操作后达成共识:通过度量,我们发现△ADE ∽△ABC,且只要DE∥BC,这个结论恒成立.教师问:1.我们通过度量三角形的边长,知道△ADE∽△ABC,但要用相似的定义去证明它,我们需要证明什么?(出示课件18)2.由前面的结论,我们可以得到什么?还需证明什么?学生讨论后,带着疑问解决证明△ADE∽△ABC问题.(出示课件19)已知:如图,在△ABC中,DE//BC,且DE分别交AB,AC于点D、E.求证:△ADE∽△ABC.师生共同分析:直观告诉我们:△ADE ∽△ABC ,根据三角形相似的概念,要想证明两个三角形相似,必须证明三个角对应相等,三条边对应边对应成比例.由平行线分线段成比例定理,可知:AC AE AB AD =,还需证明ABAD AC AE BC DE ==BC DE 或所以要将DE 平移到BC 上,使得BF=DE(如图),再证明:ACAE BC DE =即可. 证明:在△ADE 与△ABC 中,∠A=∠A.∵DE//BC,∴∠ADE=∠B,∠AED=∠C ,过E 作EF//AB 交BC 于F,则,∵四边形DBFE 是平行四边形,∴DE=BF ,∴,∴, ∴△ADE ∽△ABC.归纳:定理:平行于三角形一边的直线和其他两边相交,所构成 的三角形与原三角形相似.(出示课件20)符号语言:∵DE//BC,∴△ADE ∽△ABC .,AC AE AB AD =BC BF AC AE =BC DE AC AE =BC DE AC AE AB AD ==教师问:过点D作与AC平行的直线与BC相交,可否证明△ADE ∽△ABC?如果在三角形中出现一边的平行线,那么你应该联想到什么?(出示课件21)学生分组讨论后,教师归纳:过点D作与AC平行的直线与BC相交,仍可证明△ADE∽△ABC,这与教材第31页证法雷同.题目中有平行线,可得相似三角形,然后利用相似三角形的性质,可列出比例式.出示课件22,学生独立思考后口答,教师订正.(三)课堂练习(出示课件23-29)引导学生练习课件23-29题目,巩固本课知识点,约用时20分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 第四章 相似图形 5.相似三角形

一、学生知识状况分析 学生的知识技能基础: 在七年级的学习中,学生通过观察、测量、画图、拼摆 等数学活动, 体会了全等三角形中“对应关系”的重要作用。上一节课“相似多边形”的学习,使学生在探索相似形本质特征的过程中,发展了有条理地思考与表达,归纳,反思,交流等能力。 学生活动经验基础: 上述学习经历为学生继续探究“相似三角形”积累了丰富的活动经验和知识基础。

二、教学任务分析 (一)教材的地位和作用分析: .《相似三角形》在本章中承上启下, . 体现了从一般到特殊的数学思想; . 是学生今后学习的基础; . 是解决生活中许多实际问题的常用数学模型. 即相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习探索三角形相似的条件、三角函数及与此有关的比例线段等知识打下良好的基础。 (二)教学重点: 相似三角形定义的理解和认识。 (三)教学难点: 1..相似三角形的定义所揭示的本质属性的理解和应用; 2..例2后想一想中“渗透三角形相似与平行的内在联系”是本节课的第二个难点。 (四)教法与学法分析: 本节课将借助生活实际和图形变换创设宽松的学习环境; 并利用多媒体手段辅助 2

教学,直观、形象,体现数学的趣味性。 学生则通过观察类比、动手实践、自主探索、合作交流的学习方式完成本节课的学习。

(五)教法建议 1.从知识的逻辑体系出发,在知识的引入时可考虑先复习相似形的概念,在探索归纳给出相似三角形的概念

2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念

3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识

4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解

5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解

6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握

(六)教学目标分析: 通过一些具体问题的情境设置、观察类比、动手操作;让学生积极思考、充分参与、合作探究;深化对相似三角形定义的理解和认识.发展学生的想象能力,应用能力,建模意识,空间观念等,培养学生积极的情感和态度。 教学目标: 1知识与技能 (1). 掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似。 (2). 能根据相似比进行计算,训练学生判断能力及对数学定义的运用能力。 2 过程与方法 (1). 领会教学活动中的类比思想,提高学生学习数学的积极性。 3

(2). 经过本节的学习,培养学生通过类比得到新知识的能力,掌握相似三角形 的定义及表示法,会运用相似比解决相似三角形的边长问题。 3 情感态度与价值观 (1). 经历相似多边形有关概念的类比,渗透类比的数学思想,并领会特殊与 一般的关系。 (2). 深化对相似三角形定义的理解和认识.发展学生的想象能力,应用能力,建模意识,空间观念等,培养学生积极的情感和态度。

三、教学过程分析 本节课共设计了五个环节: 1情景引入 归纳定义 2 运用定义 解决问题 3 加深理解 探索规律 4 回顾反思 课堂小结 5.布置作业

第一环节 情景引入 归纳定义 活动内容:回顾与思考(教师展示课件并设问,学生观察类比、自主探索归纳相似三角形的定义) 1.上节课我们学习了相似多边形的定义及记法, 请同学们观察下列图形,并指出哪些图形相似?相似图形的对应边、对应角有什么关系? 2.请问相似三角形是相似多边形吗?请同学们回忆一下什么叫相似多边形? 3.那么由“相似多边形的定义”你能得出“相似三角形的定义”吗? 4.相似三角形的定义:三角对应相等、三边对应成比例的两个三角形叫做相似三角形(similar trangles) . 如△ABC与△DEF相似,记作△ABC∽△DEF 注意:表示两个三角形相似时,要向表示全等 三角形那样把对应顶点写在对应的位置上。 活动目的:通过对旧知识的回顾、经历与相似多边形有关概念的类比,培养学生通过

A B C

D E F 4

类比探索得到新知识的能力,进而掌握相似三角形的定义及表示法。 活动实际效果:学生的学习热情非常高,轻而易举就归纳出相似三角形的定义,且较好地掌握了相似三角形的表示法。

第二环节:运用定义 解决问题 活动内容:想一想 议一议 例1 例2 1.想一想(展示课件,教师引导、学生自主探索并归纳出相似三角形的性质) 如果△ABC∽△DEF,那么哪些角是对应角?哪些边是对应边?对应角有什么关系? 对应边呢? 相似三角形性质:相似三角形的对应角相等,对应边成比例。 2.议一议(展示课件,让学生动手画一画、量一量、算一算,并小组讨论,选代表说明理由) (1)两个全等三角形一定相似吗?为什么? (2)两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么? (3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么? 解:(1)两个全等三角形一定相似. 因为两个全等三角形的对应边相等,对应角相等,由对应边相等可知对应边一定成比例,且相似比为1,因此满足相似三角形的两个条件,所以两个全等三角形一定相似. (2)两个直角三角形不一定相似. 如图,虽然都是直角三角形, 但也只能确定有一对角即直角相等, 其他的两对角可能相等,也可能不相等, 对应边也不一定成比例,所以它们不一定相似. 两个等腰直角三角形一定相 (3)如图,两个等腰三角形不一定相似. 如图:因为等腰只能说明一个三角形中有两边相等, 但另一边不固定,因此这两个等腰三角形中有两边对应成比例,两底边的比不一定等于对应腰的比,因此不用再去讨论对应角满足什么条件,就可以确定这两个等腰三角 5

形不一定相似 如图:两个等边三角形一定相似. 因为等边三角形的各边都相等,各角都等于60度, 因此这两个等边三角形一定有对应角相等、 对应边成比例,所以它们一定相似 . 例1 例2(展示课件,教师引导分析、学生自主探索,培养学生应用知识解决问题的能力) 3.如图,有一块呈三角形形状的草坪,其中一边的长是20 m,在这个草坪的图纸上,这条边长5 cm,其他两边的长都是3.5 cm,求该草坪其他两边的实际长度. 4.如图,已知△ABC∽△ADE, AE=50 cm, EC=30 cm, BC=70 cm, ∠BAC=45°, ∠ACB=400,求 (1)∠AED和∠ADE的度数。 (2)DE的 活动目的:让学生动手画一画、量一量、算一算得出两个三角形之间的是否相似?有什么关系?进而考察学生的自主学习情况(包括独立思考能力)和小组间的互助情况。 活动实际效果:学生普遍对教材的内容能够较好地掌握,但对知识的延伸和拓展,由于教材缺乏相关内容,学生的思维无法独立产生飞跃,所以需要教师备课时先做好延伸的准备,即备好相关的内容。这样,教学时学生就犹如享受知识的大餐,使之心理上产生愉悦,进而较好地掌握知识。

第三环节 加深理解 探索规律 活动内容:想一想 合作探究 巩固练习 (展示课件,教师引导、学生合作探究,寻找解决问题的规律) 1.想一想 在例2的条件下,图4-16中有哪些线段成比例? 解:成比例线段有AEEC=ADDB  △ABC∽△ADE

AEAC=ADAB=DEBC AEAC=AD

AB 6

AEAEAC=ADADAB

即AEEC=ADDB

图中有互相平行的线段,即DE∥BC.因为△ABC∽△ADE,所以∠ADE=∠B.由平行线的判定方法知DE∥BC. 2.合作探究 1. 在下面的两组图形中,各有两个相似三角形,试确定x,y,m,n的值. (第1题) 解:在(1)中  ABO∽CDO

48x

=33

22

 x=32

在(2)中,由两三角形相似可知:对应角相等,对应边成比例.所以, n=55,m=80, y=320 2.等腰直角三角形ABC与等腰直角三角形A′B′C′相似,相似比为3∶1,已知斜边AB=5 cm,(1) 求 △A′B′C′斜边A′B′的长, (2) 求△A′B′C′斜边A′B′上的高。 3.巩固练习: 略 活动目的:加深对相似三角形概念和性质的理解,发展学生的应用能力,建模意识,空间观念等,培养学生积极的情感和态度。 活动实际效果:大部分学生普遍掌握较好,只是个别学生思维能力和计算能力较慢,没有时间等待他们探索出给论,这样他们对这节课所学的内容理解不透彻,应用新知解决问题能力也较差,今后要注意给每一个学生留有足够的时间和空间,使不同的学生有不同的发展。

第四环节 回顾反思 课堂小结 活动内容:1.这一节课你学到了什么?有什么收获? 3.相似三角形的判定方法——定义法

对应边成比例 对应角相等 相似比(对应边的比) 表示法——“ ∽ ” 定义 

相似三角形

相关文档
最新文档