概率论与数理统计0-随机变量的数学期望

合集下载

概率论与数理统计超全公式总结

概率论与数理统计超全公式总结

Cov(aX , bY ) = abCo若v(UX~,Yχ)2(n1),
F 分布 正态总体条件下 样本均值的分布:
V ~ χ 2 (n2 ),
则 U / n1 V / n2
~
F (n1, n2 )
σ2 X ~ N(µ, )
n
X − µ ~ N (0,1) σ/ n
样本方差的分布:
(n −1)S 2 σ2
k =1
第二章
二项分布(Bernoulli 分布)——X~B(n,p)
F (x, y) = P{X ≤ x,Y ≤ y} 联合密度与边缘密度
+∞
∫ fX (x) = −∞ f (x, y)dy
+∞
∫ fY (y) = −∞ f (x, y)dx
P(X =k)=Cnkpk(1−p)n−k,(k=0,1,...n, )
泊松分布——X~P(λ)
P( X = k) = λk e−λ, (k = 0,1,...) k!
概率密度函数
+∞
∫ f (x)dx = 1 −∞
怎样计算概率 P(a ≤ X ≤ b)
b
P(a ≤ X ≤ b) = ∫a f (x)dx
均匀分布 X~U(a,b)
1
f (x) =
(a ≤ x ≤ b)
b−a
n — 样本容量(大样本要求n > 50) zα /2 — 正态分布的分位点
⎜⎛ x ± zα / 2 ⎝
σ ⎟⎞ n⎠
(3) H0 : µ ≤ µ0 H1 : µ > µ0 右边检验
单正态总体均值的 Z 检验
小样本、正态总体、标 准差σ已知
(大样本情形σ未知时用SZ代=替X)− µ 0 σ/ n

概率论与数理统计总复习参考

概率论与数理统计总复习参考
运算的优先次序: 逆,积,和,差
定义7 (概率的统计定义) 定义8 (概率的公理化定义) 设试验E的样本
空间为Ω,对任意事件A,赋予一实数 P(A),若
它满足
非负性公理:0≤P(A) ≤1;
规范性公理:P(Ω)=1;
可列可加性公理:若A1, A2, …两两互斥, 则
P ( Ai ) P ( Ai ).
二、随机事件的关系与运算
1. 事件的关系
(1) 包含关系 若事件A发生必然导致事件B发生,则称事件A包含于B,
记为 A B.
(2) 互斥(互不相容): 若两个事件A、B不可能同时发生,则称事件A与B互斥 (互不相容). 必然事件与不可能事件互斥; 基本事件之间是互斥的.
2. 事件的运算
(1) 事件的并(和) 若C表示“事件A与事件B至少有一个发生”这一事件,
fY
(
y)
f
X
[h(
y)] | 0,
h(
y)
|,
y ,
其他.
第三章 二维随机变量及其分布
1. 二维随机变量
(X, Y ):X, Y 是定义在同一样本空间 上的两个随机变量.
2. 联合分布函数、性质 F(x, y) =P{X x, Y y}, (任意实数x, y).
3. 边缘分布函数 FX (x) = F(x, +), FY (y) = F(+, y).
P p1
p2 … pn …
注 :如果 g( xk ) 中有些项相同,则需将它们 作适当并项.
(2) 连续型随机变量函数的分布 (i) 定义法
FY ( y) P{Y y} P{g( X ) y}
{ x|g( x) y} f X ( x)dx.

概率论与数理统计复习4-5章

概率论与数理统计复习4-5章
+∞
∑ g ( x ) p 绝对收敛,则Y的期望为 ∞
k =1 k k
∑ g(x
k =1
k
) pk
(2) 设X是连续型随机变量,概率密度为 f ( x) , 如果积分 ∫−∞ g ( x) f ( x)dx 绝对收敛,则Y的期望为
E (Y ) = E[ g ( X )] = ∫ g ( x ) f ( x )dx
例 设X的概率分布律为
X −1
0 12
1
2
p 1 3 1 6 1 6 1 12 1 4
试求Y=-X+1及 Z = X 2 的期望和方差。 X -1 0 1/2 解 由于 P 1/3 1/6 1/6 Y =-X+1 2 1 1/2 Z = X2 1 0 1/4
1 1 1 1 1 1 2 E (Y ) = ( −1) ⋅ + 0 ⋅ + ⋅ + 1⋅ + 2 ⋅ = 4 12 2 6 6 3 3
2 2
D( Z ) = E ( Z 2 ) + [ E ( Z )]2 = 2.23264
1 + x − 1 < x < 0 例 设随机变量X的概率密度为 f ( x ) = 1 − x 0 ≤ x < 1 1)求D(X), 2)求 D ( X 2 )
解 (1) E ( X ) = ∫ x(1 + x)dx + ∫ x(1 − x)dx
第四章 随机变量的数字特征
离散型随机变量的数学期望 连续型随机变量的数学期望 数学期望的性质及随机变量函数的期望 方差及其性质
4.1数学期望 数学期望
数学期望——描述随机变量取值的平均特征 数学期望——描述随机变量取值的平均特征 一、离散型随机变量的数学期望 定义 设离散型随机变量X的概率分布为

随机变量的基本概念

随机变量的基本概念

随机变量的基本概念随机变量是概率论与数理统计中的重要概念,它是对随机试验结果的数值化描述。

在实际问题中,我们常常需要研究某个随机试验的结果与某个数值之间的关系,这时就需要引入随机变量来描述试验结果的数值特征。

一、随机变量的定义随机变量是定义在样本空间上的实值函数,它的取值是由随机试验的结果决定的。

随机变量可以是离散的,也可以是连续的。

离散随机变量:如果随机变量的取值是有限个或可列无限个,那么它就是离散随机变量。

例如,掷一枚骰子,随机变量X表示出现的点数,X的取值为1、2、3、4、5、6。

连续随机变量:如果随机变量的取值是一个区间上的任意实数,那么它就是连续随机变量。

例如,某地一天的降雨量,随机变量X表示降雨量的大小,X的取值范围是[0, +∞)。

二、随机变量的分布函数随机变量的分布函数是描述随机变量取值概率的函数。

对于离散随机变量,分布函数可以用概率质量函数来表示;对于连续随机变量,分布函数可以用概率密度函数来表示。

离散随机变量的分布函数:设X是一个离散随机变量,其取值为x1、x2、x3、...,对应的概率为p1、p2、p3、...,则X的分布函数F(x)定义为F(x)=P(X≤x)=p1+p2+...+pk,其中k为使得xk≤x的最大整数。

连续随机变量的分布函数:设X是一个连续随机变量,其概率密度函数为f(x),则X的分布函数F(x)定义为F(x)=∫f(t)dt,其中积分区间为(-∞, x)。

三、随机变量的概率密度函数和概率质量函数概率密度函数和概率质量函数是描述随机变量取值概率的函数。

离散随机变量的概率质量函数:设X是一个离散随机变量,其取值为x1、x2、x3、...,对应的概率为p1、p2、p3、...,则X的概率质量函数p(x)定义为p(x)=P(X=x),其中x为X的取值。

连续随机变量的概率密度函数:设X是一个连续随机变量,其概率密度函数为f(x),则X的概率密度函数f(x)满足以下两个条件:1. f(x)≥0,对于任意的x∈(-∞, +∞);2. ∫f(x)dx=1,其中积分区间为(-∞, +∞)。

《概率论与数理统计)考试重点

《概率论与数理统计)考试重点

《概率论与数理统计》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。

第一章 随机事件与概率1.随机事件的关系与计算 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念2.古典概型中概率的计算 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式3. 利用概率的性质计算概率 (一级重点)选择、填空)()()()(AB P B P A P B A P -+=⋃,)()()(AB P B P A B P -=-(考得多)等,要能灵活运用。

4. 条件概率的定义 (一级重点)选择、填空 记住条件概率的定义和公式:)()(B P AB P = 5. 全概率公式与贝叶斯公式 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。

一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。

6. 事件的独立性(概念与性质) (一级重点)选择、填空定义:若)()()(B P A P AB P =,则称A 与B 相互独立。

结论:若A 与B 相互独立,则A 与B ,A 与B ,A 与B 都相互独立。

7. n 重贝努利试验中事件A 恰好发生k 次的概率公式 (一级重点)选择、填空在n 重贝努利试验中,设每次试验中事件A 的概率为p (10 p ),则事件A 恰好发生k 次的概率n k p p C k P k n k k n n ,,2,1,0,)1()( =-=-。

第二章 随机变量的分布及其数字特征8.离散型随机变量的分布律及相关的概率计算 (一级重点)选择、填空、计算、综合。

概率论与数理统计知识点总结(超详细版)

概率论与数理统计知识点总结(超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)())(()( C A B A C B A ⋂⋂=⋃⋂徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk knk kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P (v ))(1)(A P A P -=(逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

概率论与数理统计第4章 随机变量的数字特征与极限定理

4.2.1 随机变量方差的概念 数学期望是随机变量重要的数字特征.但是,在 刻画随机变量的性质时,仅有数学期望是不够的.例如, 有两批钢筋,每批各10根,它们的抗拉强度指数如下:
25
定义4.3 设X是随机变量,若E[X-E(X)]2存 在,则称它为X的方差,记为D(X),即
由定义4.2,随机变量X的方差反映了X的可能取值 与其数学期望的平均偏离程度.若D(X)较小,则X的 取值比较集中,否则,X的取值比较分散.因此,方差 D(X)是刻画X取值离散程度的一个量.
3
定义4.1 设离散型随机变量X的分布律为
4
5
6
7
8
9
4.1.2 几个常用分布的数学期望 1.0—1分布 设随机变量X服从以p为参数的(0—1)分布,则X 的数学期望为
2.二项分布 设随机变量X~B(n,p),则X的数学期望为
10
3.泊松分布 设随机变量X~P(λ)分布,则X的数学期望为
41
Hale Waihona Puke 424.3 协方差、相关系数及矩
4.3.1 协方差 对于二维随机变量(X,Y),除了分量X,Y的数 字特征外,还需要找出能体现各分量之间的联系的数字 特征.
43
44
4.3.2 相关系数 定义4.5 设(X,Y)为二维随机变量,cov (X,Y),D(X),D(X)均存在,且D(X)>0,D(X) >0,称
15
16
17
定理4.2 设(X,Y)是二维随机变量,z=g(x,y) 是一个连续函数. (1)如果(X,Y)为离散型随机变量,其联合分布 律为
18
19
20
4.1.4 数学期望的性质 数学期望有如下常用性质(以下的讨论中,假设所 遇到的数学期望均存在):

概率论与数理统计4.2连续型随机变量的数学期望


例11 设(X,Y )服从以点 (0, 0), (0, 2), (1, 0)为顶点的三角形区域 A上
的均匀分布,试求函数 Z XY的数学期望.
解 三角形区域 A 如图3-1, 易知 A 的面积为1,故
1 (x, y) D f (x, y) 0 其它
y 2
A O
x y 1 2
1 x
河北农业大学理学院
EX=
xf X (x)dx

同理
河北农业大学理学院
二维连续型随机变量数学期望的例题分析
例 1 已知 X,Y的联合密度函数
求,EX,EY 解:
同理
y
y=x
0
1
x
河北农业大学理学院
概率论与数理统计
连续型随机变量函数的数学期望
二维连续型随机变量函数的数学期望
E(g(X )) g(x) f (x)dx
b
a
x [a,b]
0
其它
所以
EX=
xf (x)dx
b a
x
b
1abd1xa21
a
x
2bb 2a
河北农业大学理学院
一维连续型随机变量数学期望的例题分析
例1 设随机变量X服从参数为λ的指数分布,求EX.

X的概率密度函数为
ex
f (x)
0
x0 x0
所以,
EX=
xf (x)dx
xexdx xd (ex )
连续型随机变量函数的数学期望例题分析
于是
E(Z) E(XY )
xy f (x, y)dxdy
y 21Biblioteka 2 (1 x )xydxdy 0 dx 0 xydy A

概率论与数理统计 第4章 随机变量的数字特征


解:
1 (5 0.5x)( 3 x2 x)dx
0
2
4.65(元)
2021/7/22
21
4.1.2 随机变量函数的数学期望
将定理4.1推广到二维随机变量的情形.
定理4.2 设Z是随机变量X,Y的函数Z = g(X,Y), g是连续函数.
(1) 若(X,Y)是二维离散型随机变量,其分布律
为P{X xi ,Y yj } pij, i, j 1,2,, 则有
解:由于 P{ X k} k e ,k = 0,1,2,…,
k!
因而
E( X ) kP{ X k} k k e
k0
k0 k!
k e
k1 (k 1)!
e
k 1
k1 (k 1)!
e k ee k0 k!
2021/7/22
12
4.1.1 数学期望的概念
2. 连续型随机变量的数学期望
2021/7/22
18
4.1.2 随机变量函数的数学期望
定理4.1 设Y为随机变量X的函数:Y = g(X) (g是连续
函数).
(1) 设X是离散型随机变量,其分布律为
P{X xk } pk , k 1,2,
若级数 g( xk ) pk绝对收敛,则 E(Y ) E[g( X )] g( xk ) pk
f ( x) 25( x 4.2), 4 x 4.2,
0,
其 它.
求pH值X的数学期望E(X).
解:
E( X ) xf ( x)dx
4
4.2
x 25( x 3.8)dx x (25)(x 4.2)dx
3.8
4
4
2021/7/22
15

概率论与数理统计期末复习重要知识点及公式整理

概率论与数理统计期末复习重要知识点及公式整理2010-2011学年第一学期期末复习资料概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X为一个离散随机变量。

2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量XP{X x1}p,P{X x2}1p只有两个可能取值,且其分布为(0p1),则称X服从x1,x2处参数为p的两点分布。

两点分布的概率分布:两点分布的期望:(2)二项分布:P{X x1}p,P{X x2}1p(0p1) E(X)p;两点分布的方差:D(X)p(1p)若一个随机变量X的概率分布由式给出,则称X服从参数为n,p的二项分布。

记为X~b(n,p)(或B(n,p)).两点分布的概率分布:二项分布的期望:(3)泊松分布:P{x k}Cnp(1p)kkn kkkn k,k0,1,...,n. P{x k}Cnp(1p),k0,1,...,n. E(X)np;二项分布的方差:D(X)np(1p)kP{X k} e若一个随机变量X的概率分布为数为的泊松分布,记为X~P () k!,0,k0,1,2,...,则称X服从参P{X k} e泊松分布的概率分布:泊松分布的期望:4.连续型随机变量:kk!,0,k0,1,2,... E(X);泊松分布的方差:D(X)如果对随机变量X的分布函数F(x),存在非负可积函数F(x)P{X x}f(x),使得对于任意实数x,有xf(t)dt,则称X为连续型随机变量,称f(x)为X的概率密度函数,简称为概率密度函数。

2010-2011学年第一学期期末复习资料5.常用的连续型分布:(1)均匀分布:1,若连续型随机变量X的概率密度为f(x)b a 0,a x b其它,则称X在区间(a,b)上服从均匀分布,记为X~U(a,b)1,均匀分布的概率密度:f(x)b a0,a b2a xb 其它均匀分布的期望:(2)指数分布:E(X);均匀分布的方差:D(X)(b a)122e xf(x)0若连续型随机变量X的概率密度为x00,则称X服从参数为的指数分布,记为X~e ()x0e xf(x)0指数分布的概率密度:指数分布的期望:(3)正态分布:E(X)1;指数分布的方差:D(X)2f(x)(x)222x若连续型随机变量X的概率密度为则称X服从参数为和22的正态分布,记为X~N(,)(x)222f(x)正态分布的概率密度:正态分布的期望:E(X)xD(X)x22;正态分布的方差:(4)标准正态分布:0,21(x),2(x)xet22标准正态分布表的使用:(1)x0(x)1(x)2010-2011学年第一学期期末复习资料X~N(0,1)P{a x b}P{a x b}P{a x b}P{a x b}(b)(a)X~N(,),Y2(2)X(3)P{a X b}P{a~N(0,1),F(x)P{X x}P{X故b}(b)(a)x(x) Y2Y定理1:设X~N(,),则X~N(0,1)6.随机变量的分布函数:设X是一个随机变量,称分布函数的重要性质:0F(x) 1P{x1X x2}P{X x2}P{X x1}F(x2)F(x1)x1x2F(x1)F(x2)F()1,F()0F(x)P{X x}为X的分布函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章随机变量的数字特征前面讨论了随机变量的分布函数, 从中知道随机变量的分布函数能完整地描述随机变量的统计规律性.但在许多实际问题中, 人们并不需要去全面考察随机变量的变化情况, 而只要知道它的某些数字特征即可.例如, 在评价某地区粮食产量的水平时, 通常只要知道该地区粮食的平均产量;又如, 在评价一批棉花的质量时, 既要注意纤维的平均长度, 又要注意纤维长度与平均长度之间的偏离程度, 平均长度较大, 偏离程度小, 则质量就较好. 等等实际上, 描述随机变量的平均值和偏离程度的某些数字特征在理论和实践上都具有重要的意义, 它们能更直接、更简洁更清晰和更实用地反映出随机变量的本质.本章将要讨论的随机变量的常用数字特征包括: 数学期望、方差、相关系数、矩.第一节随机变量的数学期望内容要点:一、离散型随机变量的数学期望平均值是日常生活中最常用的一个数字特征, 它对评判事物、作出决策等具有重要作用.定义设是离散型随机变量的概率分布为X 2,?1,?x}?p,i{PX ii????.xpE(X)?如果为绝对收敛, 则定义的数学期望(又称均值) pxX iiiii?11i?二、连续型随机变量的数学期望定义设是连续型随机变量, 其密度函数为,如果)xf(X??xf(x)dx ????xf(x)dx.(EX)?数学期望为, 绝对收敛定义的X??三、随机变量函数的数学期望设是一随机变量, 为一实函数,则也是一随机变量, 理论上, 虽然可通)Y?g(X)xg(X过的分布求出的分布, 再按定义求出的数学期望. 但这种求法一般)](XE[g)gXg(X)(X比较复杂. 下面不加证明地引入有关计算随机变量函数的数学期望的定理.定理1设是一个随机变量, ,且存在, 则)(XY?g)E(YX(1)若为离散型随机变量, 其概率分布为X 2,,?,p}xXP{??i1ii则的数学期望为Y.?? .g(x))?E[g(X)]?pE(Y ii1?i则的数学期望为若为连续型随机变量, 其概率密度为,(2))f(xYX?? .(x))](X?dxg(x)fE(Y)?E[g??. 只需知道的分布即可, 不必知道的分布, 注: (i)定理的重要性在于:求时)](XE[g)Xg(X;这给求随机变量函数的数学期望带来很大方便, 即有(ii) 上述定理可推广到二维以上的情形则,, 且存在, 定理2设是二维随机向量)Z?gYX,()ZE,Y)((X 其概率分布为1)若为离散型随机向量, ()Y(X, ),2, p(i,j?1,P{X?xY?y}?ijij的数学期望为则Z???? ,pg(x,y)[E(Z)?Eg(X,Y)]?ijji1i?j?1的数学期望为, 其概率密度为则(2)若为连续型随机向量Z)f(x(X,Y),y???? .)dx)f)],Y?(x,yg(x,yE(Z)?E[g(X????四、数学期望的性质是常数, 则1. 设C;?CE(C) .若是常数,则 2 );X?(kX)kE(Ek 3. );XX)?E(E(X?X)?E(2121; , 则4. 设独立YX,)YX)E(E(XY)?E( 中,已计算得不一定能推出: (i) 由独立,例如,在例10注Y,X)YE(X)(E(XY)?E9 ,?)E(X)E(YE(XY)?413 ,显然但?}P{Y?0},?0}?0,P{X?1??P{X1,Y84 }{Y?0??P{X1}?PYP{X?1,?0} 不独立故与YX. 这个性质可推广到有限个随机变量之和的情形(ii)例题选讲:离散型随机变量的数学期望XX, , 乙两人进行打靶, 所得分数分别记为, 它们的分布律分别为讲义例例1 (1) 甲21012XX01221, 1.00p.308p.0020..6ii试评定他们的成绩的好坏.我们来计算的数学期望, 得(分解).88.?1.0220100)XXE(????.??11而乙所得1.8, 所得分数的算术平均就接近, 那么, 如果甲进行很多次的射击, 这意味着.分数的数学期望为)..5(分?2?0.1?0E(X)?0?0.6?1?0.32. 乙的成绩远不如甲的成绩很明显,?若规定2) 某种产品的每件表面上的疵点数服从参数, 的泊松分布例2 (讲义例80.?疵; 价值8元个不多于元; 疵点数大于14个为二等品, 疵点数不超过1个为一等品, 价值10:求4个为废品. 点数超过; 产品的废品率(1).产品价值的平均值(2)?代表每件产品上的疵点数, 由题意知解设.0.8?X4k80.?80.?,001411?0.因为?1{X?4}?1P{X?e4}??P)(1!k0?k..0014110所以产品的废品率为:, 那么的概率分布为设代表产品的价值)(2YY08Y10 }4{X?X?4}PPP{X?1}P{1?所以产品价值的平均值为}?4P{1?X?P{X?1}?8?E(Y)?10}?40?P{X?14kk8.8.00??8?0.8?0. 0??e?10?e?8).(元?9.61 !kk!2?0kk?但到站的之间都恰有一辆客车到站, 某车站每天8:00~9:00和9:00~10:00例3 按规定,. 其规律为时刻是随机的, 且两者到站的时间相互独立8:00~9:00到站时间8:508:10 8:309:10 9:30 9:50 9:00~10:00到站时间1/63/62/6概率一旅客8:20到车站, 求他候车时间的数学期望.解设旅客的候车时间为(以分计). 的分布律为135791 ???p i6666666613 其中为事件“第一班车在在上表中, 例如AP{X?70}?P(?,AB)?P(A)P(B)?66 为候车时间的数学期望为到站“第二班车在”., 到站”309:810:B32132 ).分.22(?27E(X)?10??30??50??70??90?66363636连续型随机变量的数学期望0,x?0??F(x)?x/4,0?x?4, 的分布函数已知随机变量3)(4例讲义例X 求).XE(??1,x?4?4x?4,0?1/??的分布密度为随机变量解?x?,F)(xf()X?其它0,?42x14????故.dx?2?E(X)??x?xf(x)dx 840??0记使用寿命为某商店对某种家用电器的销售采用先使用后付款的方式. 例5 (讲义例4)X:), 规定(以年计;1500元1,一台付款?X,?2;1X一台付款2000元;2500元3,一台付款2?X?,?3X一台付款3000元.X , 设寿命概率密度为服从指数分布1?10x/??0x?e,???fx?10?,0?0.x?Y.试求该商店一台电器收费的数学期望即有先求出寿命落在各个时间区间的概率, 解X11?1?0.?x/10 ,.0952?edx?1?P{X?1}?e010012?2.?0?0.1?x/10 ,.0861?0ee??edx?XP{1??2} 10113?30.0.2?/?x10? ,0779?0.eedx?e}?P{2X?3??1021??310?0.?x/ ,?XP{?3}.e7408?0?edx103则的分布律为Y30002500Y15002000 740807790.0861.09520.0.p0k.即平均一台收费元得,.15)?2732E(Y15.27327 且例6 设随机变量X~f(,x),E(X)?120?x?ax?b,1??)f(x?其它,0?.并求分布函数与ab的值, 求)xF( 由题意知解a1???? ,??1?b)dx?ax(?b)dx(fx20??ab7??1??x(ax?dx(x)?b)dxxf)?XE( ??,?12320??解方程组得,1a?.2/1?b??当时, 有,??)f(F(x)?tdt?t?dt1?x?0??222??0??0x?0,??12所2xx1??xx以.10?x)?(x??x),(Fx?2?1x?1,?)2k?1,X(其,, 它们的寿命服从统一指数分布7 例有2个相互独立工作的电子装置k概率密度为1??/?x?0?e,x?.0??)f(x , ???,0x?0?N.以小时计)的数学期望若将这2个电子装置串联联接组成整机, 求整机寿命(?/?x?01?e?,x?)F(x,的分布函数为解)2?1,X(k?k,0x?0??/?2x?0,x?e?12?(x)]1?[1?F,F(x)?的分布函数为},X?min{XN?min210,x?0?2??/2x??ex?0,?F)??f,(x(x)的概率密度为因而N??minmin?,00x??22x???????/?2x的数学期望为于是N.dx?eE(N)??xf(x)dx min??0??随机变量函数的数学期望:的联合概率分布为8 (讲义例5) 设例)YX,(3 2 Y 0 1X0 3/8 1 0 3/80 0 1/83 1/8求).(XYY),EE(X),E(解要求和需先求出和的边缘分布. 关于和的边缘分布为),E((EX)YYXXYX13Y0123 P3/41/4P1/83/83/81/8313 则有?3??E(X)?1?44213313 ????310????2(EY)?88882331E(X?Y)?(1?0)?0?(1?1)??(1?2)??(1?3)?0?(3?0)??(3?1)?08881?)??(330)?(?32? ./?9482?及求上服从均匀分布设随机变量X在, 例9 (讲义例6))(X(sinX),EE],[02 .X)]X?E(E[解根据随机变量函数数学期望的计算公式, 有?1????? ,dxx?xf(x)dx?(EX)???20??112?????? sin??(x)E(sinX)?dx?(?cosx)|dx?sin,xf0 ???0??2?1?????222?x(E(X)?x),dx??dxxf?30??222???1??????2x????dxE[X?E(X)]?EX ?.?????2212????0例10 设随机变量的概率密度)X,Y(31??y?x,,x?1,?23x?,xy)f( y2x??其它.0,?1??求数学期望.E(Y),E??XY???? dydx?3y2x x/1113xln????x???dyy][lndx?3 ??????dydx),yyfE(Y)?(x 解????3x??? dx???.???32224xx??111133??????x??????33x/12xx11??1x33ln3????dydxE?)x,yf(.dy?dx???34xyXY5y2x??????x11/:单位设国际市场上对我国某种出口商品的每年需求量是随机变量(11 (讲义例7) 例X; 万元可为国家赚取外汇3它服从区间上的均匀分布, 每销售出一吨商品, 吨), ][40002000,?, 才能使国家收益最大万元则每吨商品需贮存费1, 问应组织多少货源若销售不出,的函数)是单位:万元解设组织货源吨, 显然应要求国家收益(t,?t4000?2000XYt?t3,X?.?g(X) 表达式为),g?(XY?t,?X4X?t?4000x?2000,2000?/1??)(,xf则于是的期望为设的概率密度函数为),f(xXY?其他,0?14000???? dxxdxxfxg)E(Y?()()?g()20002000??11t4000????62tdx?dx?3(4x?t)).10?8?(?2t??14000t??20002000??t2000??3500t, 因此组织3500吨商品为好达到最大考虑的取值使, 易得. t)E(Y2222. 例12 设均存在,证明)](X)?X)][?E(XE(E[X?E)E(X),E(X222因为证,)]E(X?E(X)E[X?(X)]??X[?2X 于是222 }??2X?E(XX)?[E(XE[X?E(X)])]E{2222.E(XX?E()])?E)2E(X?E(X)?[(X)]X?E([)?例13 (二项分布的数学期望)若求),n,pX~b().(XE解因则表示重伯努利试验中的“成功”次数. ),pX~b(n,nX1,如第i次试验成功?, 则若设X?,2,,n)(i1,XX?X? ?X? ??in120,如第i次试验失败?因为,p)??(1?pE(X)?1?p?P{X?1}?p,?P{X0}?1?p,0iiin?所以.?npE(X(EX)?)i1?i pnp.的二项分布的随机变量, 服从参数为和的数学期望是可见nX数学期望的性质例14 (讲义例8)一民航送各车载有20位旅客自机场开出, 旅客有10个车站可以下车.如到达一个车站没有旅客下车就不停车. 以X表示停车的次数, 求E(X) (设每位旅客在各个车站下车是等可能的, 并设各旅客是否下车相互独立).0,在第i站没有人下车?解引入随机变量X?,10.,i1,2, ??i1,在第i站没有人下车?易知.X? ?X?X?X1012现在来求按题意, 任一旅客不在第站下车的概率为因此20位旅客都不,109/i).XE(2020,)/101?(9,)/10(9 即站有人下车的概率为在第站下车的概率为在第ii2020,10)(9/X{?1}?19{PX?0}?(/10)?,P.10, ,?i1,2ii20,)/10?)1?(9E(X进而由此.10 ,2,,i?1i )X? ?XX()?E(X?E102120]?8.)/(110?[?910784)次())X(E)?XE?(E ??(X1021.注: 本题是将分解成数个随机变量之和, 然后利用随机变量和的数学期望等于随机变X量数学期望之和来求数学期望的, 这种处理方法具有一定的普遍意义.。

相关文档
最新文档