整式的加减巩固提高练习题

合集下载

整式的加减课件PPT

整式的加减课件PPT

3.若单项式am-1b2与a2bn的和仍是单项式,则nm的值是( C )
A.3
B.6
C.8
D.9
课堂检测
3.4 整式的加减
基础巩固题
4.合并同类项:
(1)2解a2:b-原3式a2=b(+2-12 3a+2b;12)a2b
=−
1 2
a2b
(2)3x2y-4xy2-3+5x2y+2xy2+5;
解:原式=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2.
-4a 不是同类项不可以合并 不是同类项不可以合并
(6)81m-11m=70 × 字母及字母的次数该写下来
探究新知
3.4 整式的加减
素 养 考 点 合并同类项 例 合并同类项:
(1)3a+2b-5a-b
(2) 4ab 1 b2 9ab 1 b2
3
2
解:(1) 3a + 2b – 5a - b
1.准确理解并掌握同类项的概念与特点.
探究新知
知识点 1 同类项
3.4 整式的加减
观察下列单项式,并对它们进行归类?是怎样归类呢?
(1) - 2 x, (2) 0, (3) -5x, (4) x, (5) 3b2a, (6) ab2 ,
9
(7) 1 , (8)π,
3
(9) 8ab2,
探究新知
探究新知
3.4 整式的加减
所含字母相同,且相同字母的指数也相同叫做同类项.
说明: (1)三个“相同”; (2)与系数无关; (3)与字母的顺序无关; (4)几个常数项也是同类项.
思考 所有的有理数是不是都是同类项? 是
探究新知

七年级上册数学《整式的加减》教案优秀

七年级上册数学《整式的加减》教案优秀

七年级上册数学《整式的加减》教案优秀整式的加减篇一整式的加减篇二教学目的:1.经历及字母表示数量关系的过程,发展符号感;2.会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。

教学重点:会进行整式加减的运算,并能说明其中的算理。

教学难点:正确地去括号、合并同类项,及符号的正确处理。

教学过程:一、课前练习: 1.填空:整式包括_____________和_______________2.单项式的系数是___________、次数是__________3.多项式3m3-2m-5+m2是_____次______项式,其中二次项系数是______,一次项是__________,常数项是____________.4.下列各式,是同类项的一组是()(a)22x2y 与 yx2(b)2m2n与2mn2(c) ab与abc5.去括号后合并同类项:(3a-b)+(5a+2b)-(7a+4b).二、探索练习:1.如果用a、b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为_____________交换这个两位数的十位数字和个位数字后得到的两位数为__________________,这两个两位数的和为_________________________________.2.如果用a、b、c分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数可以表示为___________,交换这个三位数的百位数字和个位数字后得到的三位数为______________,这两个三位数的差为___________________________.●议一议:在上面的两个问题中,分别涉及到了整式的什么运算?说说你是如何运算的?▲整式的加减运算实质就是____________________________,运算的结果是一个多项式或单项式。

三、巩固练习:1.填空:(1)2a-b与a-b的差是__________________________;(2)单项式、、、的和为___________;(3)如图所示,下面为由棋子所组成的三角形,一个三角形需六个棋子,三个三角形需_______个棋子,n个三角形需__________个棋子。

第二章整式的加减2.1.2单项式与多项式

第二章整式的加减2.1.2单项式与多项式

1 (8) + y + 2 ; x
3 x yz (9)2
5
3
2
找一找

多项式-2x2+2x-1各由哪些项组成? 第一项的系数是什么? 第三项的次数分别是多少?
找一找
下列多项式各由哪些项组成? 是几次几项多项式? x² -3x+4
拓展迁延
例4. 已知:多项式 1 5
x y
2
m +1
+ xy
2
- 3x2 - 6
是n+1。 ( )
n
2. 多项式 6x3-4x2y+3xy2-y3 的项是
6x3,4x2y,3xy2,y3。 3. m2n 没有系数。 ( ( ) )
4. -13是一次一项式。
(
)
多项式的排列
由于多项式是几个单项式的和,所
以可以用加法的运算定律,来交换各项
的位置,而保持原多项式的值不变。
为了便于多项式的计算,通常总是把
的次数.
注意:单项式是按次数分类,
多项式是几次几项式.
试一试:填 表
3 5
-1 3
5
4 3
2 2
请分别写出下列多项式的项、
项数、常数项、多项式是几次几项式。
3x5 - 4 ;
项:3x5、-4; 项数: 2 ; 常数项 :-4 ; 多项式是三次二项式;

练习:

下列多项式各由哪些项组成?
讨论·发现
-3x + 4 a + 3a - 2 a - b + 3
2
2
2
这些代数式是怎样组成的?和单项式
-3x 2a ab
2

北师大数学七年级第三章整式的加减(二)—去括号与添括号(基础)

北师大数学七年级第三章整式的加减(二)—去括号与添括号(基础)

整式的加减(二)—去括号与添括号(基础) 【学习目标】1.掌握去括号与添括号法则,充分注意变号法则的应用;2. 会用整式的加减运算法则,熟练进行整式的化简及求值.【要点梳理】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b c a b c +-+-添括号去括号, ()a b c a b c -+--添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.去括号:(1)d-2(3a-2b+3c);(2)-(-xy-1)+(-x+y).【答案与解析】(1)d-2(3a-2b+3c)=d-(6a-4b+6c)=d-6a+4b-6c ;(2)-(-xy-1)+(-x+y)=xy+1-x+y .【总结升华】去括号时.若括号前有数字因数,应先把它与括号内各项相乘,再去括号. 举一反三【变式1】去掉下列各式中的括号:(1). 8m-(3n+5); (2). n-4(3-2m);(3). 2(a-2b)-3(2m-n).【答案】(1). 8m-(3n+5)=8m-3n-5.(2). n-4(3-2m)=n-(12-8m)=n-12+8m.(3). 2(a-2b)-3(2m-n)=2a-4b-(6m-3n)=2a-4b-6m+3n.【变式2】(2015•济宁)化简﹣16(x ﹣0.5)的结果是( )A . ﹣16x ﹣0.5B . ﹣16x+0.5C . 16x ﹣8D . ﹣16x+8【答案】D类型二、添括号2.在各式的括号中填上适当的项,使等式成立.(1). 2345()()x y z t +-+=-=+2()x =-23()x y =+-; (2). 23452()2()x y z t x x -+-=+=-23()45()x y z t =--=--.【答案】(1)2345x y z t --+-,2345x y z t +-+,345y z t -+-,45z t -.(2)345y z t -+-,345y z t -+,45z t -+,23x y -+.【解析】(1)2345x y z t +-+ (2345)x y z t =---+-(2345)x y z t =++-+2(345)x y z t =--+-23(45)x y z t =+--;(2)2345x y z t -+-2(345)x y z t =+-+-2(345)x y z t =--+23(45)x y z t =---+45(23)z t x y =---+.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.举一反三【变式】()()1 a b c d a -+-=-;()()22 ;x y z +-=-()()()()()22222223 ;4 a b a b a b a b a b a a -+-=-+---=--.【答案】b c d -+;2x y z --+;a b -;2b b +. 类型三、整式的加减3.(2016•邢台二模)设A ,B ,C 均为多项式,小方同学在计算“A﹣B”时,误将符号抄错而计算成了“A +B”,得到结果是C ,其中A=x 2+x ﹣1,C=x 2+2x ,那么A ﹣B=( )A .x 2﹣2xB .x 2+2xC .﹣2D .﹣2x【思路点拨】根据题意得到B=C ﹣A ,代入A ﹣B 中,去括号合并即可得到结果.【答案】C .【解析】解:根据题意得:A ﹣B=A ﹣(C ﹣A )=A ﹣C+A=2A ﹣C=2(x 2+x ﹣1)﹣(x 2+2x )=x 2+2x ﹣2﹣x 2﹣2x=﹣2, 故选C.【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.类型四、化简求值4. 先化简,再求各式的值:22131222,2,;22333x x y x y x y ⎛⎫⎛⎫+-+--=-= ⎪ ⎪⎝⎭⎝⎭其中 【答案与解析】原式=2221312232233x x y x y x y -+-+=-+, 当22,3x y =-=时,原式=22443(2)()66399-⨯-+=+=. 【总结升华】化简求值题一般采用“一化二代三计算”,此类题的书写格式一般为:当……时,原式=? 举一反三【变式1】先化简再求值:(-x 2+5x+4)+(5x-4+2x 2),其中x =-2.【答案】 (-x 2+5x+4)+(5x-4+2x 2)=-x 2+5x+4+5x-4+2x 2=x 2+10x.当x =-2,原式=(-2)2+10×(-2)=-16.【变式2】先化简,再求值:3(2)[3()]2y x x x y x +----,其中,x y 化为相反数.【答案】3(2)[3()]236322()y x x x y x y x x x y x x y +----=+-+--=+因为,x y 互为相反数,所以0x y +=所以3(2)[3()]22()200y x x x y x x y +----=+=⨯=5. 已知2xy =-,3x y +=,求整式(310)[5(223)]xy y x xy y x ++-+-的值.【答案与解析】由2xy =-,3x y +=很难求出x ,y 的值,可以先把整式化简,然后把xy ,x y +分别作为一个整体代入求出整式的值.原式310(5223)xy y x xy y x =++--+3105223xy y x xy y x =++--+5310232x x y y xy xy =++-+-88x y xy =++8()x y xy =++.把2xy =-,3x y +=代入得,原式83(2)24222=⨯+-=-=.【总结升华】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便. 举一反三【变式】已知代数式2326y y -+的值为8,求2312y y -+的值.【答案】∵ 23268y y -+=,∴ 2322y y -=.当2322y y -=时,原式=211(32)121222y y -+=⨯+=.6. 如果关于x 的多项式22(8614)(865)x ax x x ++-++的值与x 无关.你知道a 应该取什么值吗?试试看.【答案与解析】所谓多项式的值与字母x 无关,就是合并同类项,结果不含有“x ”的项,所以合并同类项后,让含x 的项的系数为0即可.注意这里的a 是一个确定的数.(8x 2+6ax+14)-(8x 2+6x+5)=8x 2+6ax+14-8x 2-6x-5=6ax-6x+9=(6a-6)x+9由于多项式(8x 2+6ax+14)-(8x 2+6x+5)的值与x 无关,可知x 的系数6a-6=0.解得a =1.【总结升华】本例解题的题眼是多项式的值与字母x 无关.“无关”意味着合并同类项后,其结果不含“x ”的项.【巩固练习】一、选择题1.(2015•江西模拟)计算:a ﹣2(1﹣3a )的结果为( )A.7a ﹣2B.﹣2﹣5aC.4a ﹣2D.2a ﹣22.(2016•黄陂区模拟)下列式子正确的是( )A .x ﹣(y ﹣z )=x ﹣y ﹣zB .﹣(x ﹣y+z )=﹣x ﹣y ﹣zC .x+2y ﹣2z=x ﹣2(z+y )D .﹣a+c+d+b=﹣(a ﹣b )﹣(﹣c ﹣d )3.计算-(a-b)+(2a+b)的最后结果为( ).A .aB .a+bC .a+2bD .以上都不对4. (2010·山西)已知一个多项式与3x 2+9x 的和等于3x 2+4x-1,则这个多项式是( )A .-5x-1B .5x+1C .-13x-1D .13x+15.代数式2332333103(2)(672)x y x x y x y x y x --++--+的值( ).A .与x ,y 都无关B .只与x 有关C .只与y 有关D .与x 、y 都有关6.如图所示,阴影部分的面积是( ).A .112xy B .132xy C .6xy D .3xy 二、填空题7.添括号:(1).331(___________)3(_______)p q q -+-=+=-.(2).()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.8.(2015•镇江一模)化简:5(x ﹣2y )﹣4(x ﹣2y )=________.9.若221m m -=则2242008m m -+的值是________.10.(2016•河北)若mn=m+3,则2mn+3m ﹣5mn+10= .11.已知a =-(-2)2,b =-(-3)3,c =-(-42),则-[a-(b-c)]的值是________.12.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n 是正整数)个图案中由________个基础图形组成.三、解答题13. 化简 (1).(2015•宝应县校级模拟)2(3x 2﹣2xy )﹣4(2x 2﹣xy ﹣1) (2). 22222323xy xy y x y x -++- (3). m n mn m n mn mn n m 222238.0563--+--(4). )45(2)2(32222ab b a ab b a ---(5).(6).14.化简求值: (1). 已知:2010=a ,求)443()842()33(232332-+++-++-+--a a a a a a a a a 的值.(2). 2222131343223a b a b abc a c a c abc ⎡⎤⎛⎫------ ⎪⎢⎥⎝⎭⎣⎦,其中a = -1, b = -3, c = 1. (3). 已知3532++y x 的值是6,求代数式 71494322-++--y x y x 的值.15. 有一道题目:当a=2,b=-2时,求多项式:3a 3b 3-2a 2b+b-(4a 3b 3-a 2b-b 2)+(a 3b 3+a 2b)-2b 2+3的值.甲同学做题时把a=2错抄成a=-2,乙同学没抄错题,但他们做出的结果恰好一样。

2_1_3多项式及整式的加减(1)

2_1_3多项式及整式的加减(1)

2.1.3多项式一、预习案:1、多项式:几个单项式的叫做多项式,在多项式中,每个单项式叫做多项式的。

其中,不含的项叫常数项。

一个多项式含有几项,就叫几项式。

2、多项式的次数:多项式里,次数的项的次数,就是这个多项式的次数。

3、整式:与统称为整式。

课堂导学案一.学习目标:1.掌握多项式、多项式的项及其次数,常数项的概念。

2.确定一个多项式的项、项数和次数。

3.由单项式与多项式归纳出整式概念。

4. 在自主探索的学习过程中,引导学生观察、归纳、理解多项式,并与单项式实行比较,使用化归思想,让学到的知识系统化。

学习重点:掌握整式及多项式的相关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。

学习难点:多项式的次数。

二、课堂学习:(一)预习检查(随机抽取2~3组作汇报或提出困惑)(二)自主学习课本P57-58页并完成以下各题1.指出以下多项式的项和次数:(1)3x -1+3x 2; (2)4x 3+2x -2y 2。

2.把多项式a 3-b 3-3a 2b +3a b 2重新排列。

(1)按a 升幂排列; (2)按a 降幂排列。

(三)小组合作学,共同解决疑惑的问题 1、将多项式23465x x x --+升幂排列与降幂排列。

2、多项式a 3-3ab 2+3a 2b-b 3是 次 项式,它的各项的次数都是 ,按字母b 降幂排列得 .3、把多项式-5x 2-6x 4+2x-31x 3+5按字母x 的升幂排列为: . 4、 把多项式4x 3y 2-xy 3-2x 2y 4+3x 4-5按x 的降幂排列,再按y 的升幂排列. 5、 把多项式5x 3y-y 4-3xy 3+2x 2y 2-7.按y 的升幂排列:(四)巩固练习(先独做后交流,共同解决): 1.判断题(对的画“√”,错的画“×”)1、(1)263m-是整式;( ) (2)单项式6ab 3的系数是6,次数是4;( ) (3)acb 23-是多项式;( ) 2、将以下多项式中的(1),(2)按字母x 的降幂排列,(3),(4)按字母y 的升幂排列:()2221x y xy ++= ;()33222532x y xy y x -+-= ;()7233322-+-y x y x xy= ;()4342233454y y x x y x xy --+-= 。

人教版七年级数学上册第二章2.2.3整式的加减

人教版七年级数学上册第二章2.2.3整式的加减
合并同 类项 去括号
( 3a2 4a2 ) ( ab 6ab) ( 7 7) 7a2 7ab
合并同 类项 去括号
去括号,合并同类项
(1)整式的加减实际上就是合并同类项;
(2)一般步骤是先去括号,再合并同类项: (3)整式加减的结果还是整式。
注意:几个整式相加减,通常先用括号把 每一个整式括起来,再用加减号连接;然 后去括号,合并同类项。
a b = 当a=-2,b=-3时,
原式= =
3 2a b2 7 5a b 2 解:=
2
2a b 2
2 32 2 2 3 2 52 2 2 3 2
2
则去掉括号后原括 号内每项都要变号
1 3 1 4 4 2
例2:计算:
(2) 7(p3+p2-p-1)-2(p3+p)
解: 7(p3+p2-p-1)-2(p3+p)
= 7p3+7p2-7p-7 -2p3 -2p = 5p3 +7p2 -9p -7 去括号要注意: 如果括号前有非±1 的数字因数, 则去掉括号后这个数字因数要乘遍 括号内的每一项。
(3)已知:
(x 2)2 y 1 0, 5xy 2 3x 2 y 3x 2 y xy 2 的 。 求 值



解:=6x+3+6-2x
=4x+9 当x=-1时,
(1)3(2x+1)+2(3-x)
原式=4×(-1)+9 =-4+9 (2) 3(a b) 2 -7(a-b) - =5 +5(a-b)+2 2(a b) 2
- x4+x2-5x+2

初中七年级数学必刷题

初中七年级数学必刷题
对于初中七年级的学生来说,以下是一些建议的数学必刷题,可以帮助他们巩固基础知识,提高解题能力:
1. 代数部分:
合并同类项与化简求值
整式的加减法
整式的乘除法
幂的运算
乘法公式和因式分解
2. 几何部分:
相交线与平行线
三角形的基础知识(例如:边、角、特殊三角形等)
四边形和多边形的性质与判定
圆的基础知识(例如:圆心角、弧、弦等)
3. 函数部分:
一次函数的图象与性质
反比例函数的图象与性质
直角坐标系与坐标变换
4. 综合部分:
数学思想方法(例如:数形结合、分类讨论等)
数学探究与证明
5. 经典题型与常考题型:
可以参考历年中考真题、模拟试题或知名数学教辅书中的题目,进行有针对性的练习。

请注意,这些题目只是建议的一部分,并不代表全部必刷题。

学生可以根据自己的学习情况,选择适合自己的题目进行练习。

另外,做题的同时也要注重理解和总结,不要盲目追求数量。

如果有疑问或需要更详细的指导,可以请教老师或数学成绩优异的学生。

初一数学必刷题

初一数学必刷题?答:初一数学必刷题会根据不同地区、不同版本的教材内容有所差异。

但总体来说,以下是一些建议的初一数学必刷题类型,这些题目可以帮助学生巩固基础知识和提高解题能力:基础题1.有理数的运算:包括正负数、分数、小数的加减乘除混合运算。

- 例如:计算(-3) + 5 ×2 - 1.5 ÷0.52.整式的加减:涉及代数式、同类项合并等。

- 例如:化简(3x^2 - 2x + 1) - (x^2 - 5x - 3)3.一元一次方程:解一元一次方程,包括移项、合并同类项等步骤。

- 例如:解方程2x - 3 = 54.图形的基础性质:如线段、角、三角形的基础性质及应用。

- 例如:已知∠AOB = 90°,∠BOC = 30°,求∠AOC 的度数。

5.数据的收集与整理:包括统计图表的绘制、数据的描述性分析等。

- 例如:根据给出的频数分布表绘制条形图或扇形图。

应用题1.行程问题:涉及速度、时间和距离的关系。

- 例如:甲、乙两地相距100km,某人骑车从甲地到乙地,前半程速度为20km/h,后半程速度为30km/h,求平均速度。

2.工程问题:关于工作效率、工作时间和工作量的计算。

- 例如:一项工程,甲单独做需要10天完成,乙单独做需要15天完成,如果两人合作,需要多少天完成?3.利润与折扣问题:涉及原价、折扣、利润和售价的计算。

- 例如:某商品进价为100元,标价为150元,现打8折销售,求商品的利润。

4.溶液浓度问题:关于溶质、溶剂和溶液浓度的计算。

- 例如:将50g盐溶解在200g水中,求所得溶液的浓度。

5.年龄问题:根据给出的条件计算相关人物的年龄。

- 例如:今年父亲的年龄是儿子的3倍,5年前父亲的年龄是儿子的4倍,求现在父子两人的年龄。

拓展提高题1.探索规律题:通过观察、归纳、猜想等方法探索数列、图形等中的规律。

- 例如:观察下列数列:1, 3, 6, 10, 15, ...,求第n项的值。

《第2章 整式的加减》学习指导

《第2章 整式加减》一、用字母表示数1.字母与字母相乘时“×”省略;数字与字母相乘时省略“×”,但数字要写在字母的前面,若数字是带分数要化成假分数。

如n ⨯4写成n 4,211a 要写成a 23;注意:π是数字,不是字母。

2.除号不用,改用分数线。

3.若结果是和、差的形式,带单位时要加括号。

如t ℃升高2℃后是)2(+t ℃。

例 一商品价格为a ,第一次提价%10,售价为多少?第二次又提价%10,售价为多少? 解:第一次售价为:a %)101(-,第二次售价为:a 2%)101(-。

二、 代数式1.代数式的判定方法不含等号,也不含不等号的式子就是代数式。

含等号或含不等号的式子就不是代数式。

如a 5-,y x 73-都是代数式;a >2,43=-x 都不是代数式。

2.整式的判定方法分母不是字母的代数式就是整式。

分母是字母的代数式就不是整式。

如b a -,y 8,2x,π2都是整式,a 2,yx x +3都不是整式。

3.单项式和多项式的判定方法不含加号或减号的整式就是单项式,含加号或减号的整式就是多项式。

4.单项式是由数字因数和字母因式两部分组成。

数字因数就是单项式的系数。

单项式的系数应包括前面的符号,比如单项式的系数是“3-”而不是“3”。

单项式的系数是“1”或“1-”时,“1”通常省略不写,“1-”中的“1”也通常省略不写,但“-”号不能省略。

因此只含有字母因式的单项式不能认为它们没有系数,它们的系数是“1”或“1-”。

5.单项式次数仅与单项式中所有字母的指数有关,而与系数无关。

单项式中单独出现的字母,其指数“1”通常略去不写,但计算次数时不可丢失。

如 z xy 23的次数是4121=++次,而不是2020=++次。

6.多项式的项及项的系数应包括它前面的符号,比如,多项式52162--x x 的第二项是 x 21-,而不是x 21,第 二项的系数是 21-,而不是 21。

最新版七年级数学上册课件:3.4 整式的加减(第2课时)


探究新知
3.4 整式的加减/
观察比较两式等号两边画横线的变化情况. (1)4+ 3(x-1) =4+ 3x-3 =3x+1; (2)4x -(x-1) =4x -x+1 =3x+1.
思考 去括号前后,括号里各项的符号有什么变化?
探究新知
去括号法则
3.4 整式的加减/
(1)括号前是 “+” 号,把括号和它前面的
巩固练习
3.4 整式的加减/
变式训练
去括号: (1) a+(-b+c)=_________a_-__b_+__c__________; (2) 3a-2(b+2c)=______3_a_-__2_b__-__4_c_________; (3) 2(x-3)-5(y-3z)=_____2_x_-__6_-__5_y_+__1_5_z_______;
基础巩固题
1.下列各式化简正确的是( C ) A.-(2a-b+c)=-2a-b- c B.-(2a-b+c)=2a-b-c C.-(2a-b+c)=-2a+b- c D.-(2a-b+c)=2a+b-c
课堂检测
3.4 整式的加减/
基础巩固题
2.下列各式,与a-b-c的值不相等的是( B )
A.a-(b+c)
解:不一定成立.点拨
(1)去括号时,不仅要去掉括号,还要连同括号前面的符号一起去掉. (2)去括号时,首先要弄清括号前是“+”号还是“-”号. (3)注意法则中的“都”字,变号时,各项都变号;不变号时,各项都
不变号. (4)当括号前有数字因数时,应运用乘法分配律运算,切勿漏乘. (5)出现多层括号时,一般是由里向外逐层去括号.
B.a-(b-c)
C.(a-b)+(-c)
D.(-c)-(b-
a)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
第二讲:整式的加减巩固提高题
一、填空题

1、-bca2的相反数是 , 3= ,最大的负整数是 。

2、 若多项式7322xx的值为10,则多项式7962xx的值为
3、张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以
每份0.2元的价格退回报社,则张大伯卖报收入 元。
4. 有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲1件、乙2件、丙3件
共需285元钱,那么购甲、乙、丙三种商品各一件共需 元钱.
5.n为整数,不能被3整除的数表示为 .
6.一个三位数,十位数字为x,个位数字比十位数字少3,百位数字是个位数字的3倍,则这个三位数
克表示为 .

7、已知单项式32bam与-3214nba的和是单项式,那么m= ,n= .

7. 若12351kyx与8337yx是同类项,则k= .
9、观察下列算式:
12-02=1+0=1;22-12=2+1=3;32-22=3+2=5;42-32=4+3=7;52-42=5+4=9;
62-52=6+5=11;72-62=7+6=13,82-72=8+7=15;··········
若字母n表示自然数,请你把观察到的规律用含n的式子表示出来:
________________________________________________________
10、规定一种新运算:1bababa,如1434343,请比较大小:34 43(填
“>”、“=”或“>”).
11、某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;如果超过
60立方米,超过部分每立方米按1.2元收费.已知某户用煤气x立方米(x>60),则该户应交煤气费
元.
12、 观察下列单项式:0,3x2,8x3,15x4,24x5,……,按此规律写出第13个单项式是______。
13. 已知a是一个两位数,b是一个一位数(b≠0),如果把b放置于a的左边组成一个三位数,则这
个三位数是_________.
14. 如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更
小的正三角形,„„如此继续下去,结果如下表:
所剪次数 1 2 3 4 „
n
正三角形个数 4 7 10 13 „
an
则an=________________(用含n的代数式表示).
15. 若代数式2x2+3y+7的值为8,那么代数式6x2+9y+8的值为_____.
16. 已知a是一个两位数,b是一个一位数(b≠0),如果把b放置于a的左边组成一个三位数,则这
个三位数是_________.
二、选择题 (B)

1. 在代数式222515,1,32,,,1xxxxxx中,整式有( )

A.3个 B.4个 C.5个 D.6个c
1、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.




22213yxyx
2222
2123421yxyxyx
,阴影部分即为被墨迹弄污的部分.那

么被墨汁遮住的一项应是 ( )
2

A. xy7 B. xy7 C. xy D. xy
2、 下列各组代数式中互为相反数的有 ( )
(1)a-b与-a-b;(2)a+b与-a-b;(3)a+1与1-a;(4)-a+b与a-b.
A.(1)(2)(4) B.(2)与(4) C.(1)(3)(4) D.(3)与(4)
1. 把(x-3)2-2(x-3)-5(x-3)2+(x-3)中的(x-3)看成一个因式合并同类项,结果应是
( )
A. -4(x-3)2+(x-3) B. 4(x-3)2-x (x-3)
C. 4(x-3)2-(x-3) D. -4(x-3)2-(x-3)
4.两个四次多项式的和的次数是( )
A.八次 B.四次 C.不低于四次 D.不高于四次

5.如果a-b=12,那么-3(b-a)的值时( )

A.-35 B.23 C.32 D.16
6.如果51nm,那么-2mn的值是 ( )
A.52 B.25 C.52 D.101
7. 已知,2,3dcba则)()(dacb的值是( )
A:1 B:1 C:-5 D:15

8. 若多项式32281xxx与多项式323253xmxx的和不含二次项,则m等于( )
A:2 B:-2 C:4 D:-4
9、若B是一个四次多项式,C是一个二次多项式,则“B-C” ( )
A、可能是七次多项式 B、一定是大于七项的多项式
C、可能是二次多项式 D、一定是四次多项式
三、解答题

1、22(2)xy-4(2)xy+2(2)xy-3(2)xy,其中x=-1,y=12.
2、我国进口关税近年来有两次大幅度下调,第一次降低了40%,第二次又在第一次的基础上降低了30%.
(1)若未降税前某种商品的税款为a万元,用整式表示现在的实际税款.
(2)若600a万元,试求现在的实际税款.
3、某农户2000年承包荒山若干亩,投资7800•元改造后,种果树2000棵.今年水果总产量为18000千
克,此水果在市场上每千克售a元,在果园每千克售b元(b<a).该农户将水果拉到市场出售平均每天
出售1000千克,需8•人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.
(1)分别用a,b表示两种方式出售水果的收入?
(2)若a=1.3元,b=1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计
算说明选择哪种出售方式较好.
(3)该农户加强果园管理,力争到明年纯收入达到15000元,那么纯收入增长率是多少(纯收入
=总收入-总支出),该农户采用了(2)中较好的出售方式出售)?
3

整式的加减作业
A
1.填空:
(1)3x与-5x的和是 ,3x与-5x的差是 ;
(2)a-b,b-c,c-a三个多项式的和是 。

2.若两个单项式的和是:2x2+xy+3y2,一个加式是x2-xy,求另一个加式.

3. 先化简,再求值:5(3a2b-ab2)—(ab2+3a2b)其中a=12 ,b= -1

B
1. 若是P关于x的三次三项式,Q是关于x 的五次三项式,则P+Q是关于x的——次多项式,P-Q是

关于x的———次多项式。2.已知某多项式与3x2+6x+5的差是4x2+7x-6,求此多项式.

3.已知:A=3xm+ym,B=2ym -xm,C=5xm -7ym. 求:
1)A -B -C 2)2A -3C

4. 先化简,再求值:3x2-[x2-2(3x-x2)]其中x= -7。
C
1. 已知xy=-2,x+y=3求代数式(3xy+10y)+[5x-(2xy+2y-3x)]的值

2. 有两个多项式:A=2a2-4a+1,B=(2a2-2a)+3,当a取任意有理数时,能比较A与B的大小吗?

3. 已知A=a2+b2-c2,B=-4a2+2b2+3c2,且A+B+C=0,求C。

相关文档
最新文档