人教版数学九年级下册:(反比例函数)实际问题与反比例函数(教案)
人教版九年级数学下册 (实际问题与反比例函数)反比例函数教学课件

探究
问题一 力学问题
1 有关杠杆的问题
【例1】某人要用一根撬棒撬动一块大石头,已知阻力臂和阻力不 变,分别为 0.5m和1000N,当动力臂l为2m时,撬动这块大石头 需用的动力F为______。
分析:根据物理学知识 动力×动力臂=阻力×阻力臂,我们可以得
出
F 500 L
FL=0.5×1000 即FL=500,那么动力F是动力臂 L的反
探究
问题一 力学问题
2 有关密度、质量与体积的问题
【例2】一定质量的干松木,当它的体积 v=2m3时,它的密度
ρ=0.5×103 kg/m3,则 ρ与v 的函数关系式是( )
A. ρ=1000v B. ρ=v+1000 Cm . ρ= 500
D. ρ= 1000
v
v
ρ= m v
探究
问题一 力学问题
第二十六章 反比例函数 实际问题与反比例函数
导入
反比例函数
一般地,如果两个变量x、y之间的关系可以表
示成
yk x
(k为常数,k≠0)的形式,那么称y是x
的反比例函数。
y kx1
y m k 1
v
x
xy k
m
v
I U
R
P UI
导入
在物理学中,有很多量之间的变化是反比例 函数的关系,因此,我们可以借助于反比例函数的 图象和性质解决一些物理学中的问题,这也称 为跨学科应用。
3 有关压强、压力与面积的问题
【自我评价】
一块长方体大理石板的 A,B,C 三个面的边长如 图 所示,如果把大理石板的 A 面向下放在地上时,地 面所受的压强为m帕,那么把大理石板 B 面、C面向下 放在地上时,地面所受的压强分别是_______帕、 _______帕.
2024九年级数学下册第26章反比例函数26.2实际问题与反比例函数说课稿(新版)新人教版

三、实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与反比例函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示反比例函数的基本原理。
二、新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y=k/x的函数,其中k是常数,x不等于0。它是一种常见的数学模型,用于描述许多实际问题中的关系,如速度与时间、面积与半径等。
2.案例分析:接下来,我们来看一个具体的案例。假设一辆汽车以60公里/小时的速度行驶,它与路边的距离是多少?我们可以通过反比例函数来解决这个问题。
3.学生可能遇到的困难和挑战:在理解反比例函数在实际问题中的应用时,学生可能对如何将理论知识和实际问题有效结合存在困惑。此外,在进行代数运算和解决问题时,部分学生可能对运算规则和技巧掌握得不够熟练,导致解题速度和正确性受到影响。此外,学生可能对如何将反比例函数应用于解决复杂实际问题感到挑战。
教学方法与手段
5.反馈交流:教师可以定期与学生进行作业反馈交流,了解学生对于作业的看法和建议,以进一步提高作业的质量。
课后拓展
1.拓展内容:
(1)阅读材料:《数学建模与反比例函数的实际应用》等相关的数学建模案例,帮助学生更深入地了解反比例函数在实际问题中的应用。
(2)视频资源:《反比例函数的奥秘》等教学视频,帮助学生更深入地理解反比例函数的概念和性质。
1.教学方法:
(1)讲授法:在课堂上,教师可以通过讲解反比例函数的基本概念、性质及其图象和性质,使学生掌握反比例函数的基本知识。
人教版九年级下册数学26.2实际问题与反比例函数教案设计

实际问题与反比例函数一、目标与策略号飞⑥明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:经历分析实际问题中变量之间的关系,建立反比例函数模型,进而理解解决问题的过程.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.重点难点:重点:掌握从实际问题中建构反比例函数模型.难点:从实际问题中寻找变量之间的关系.学习策略:利用反比例函数的知识,分析、解决实际问题。
渗透数形结合思想,进一步提高用函数观点解决问题的能力,体会和深刻认识反比例函数这一数学模型。
二、学习与应用“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
知识回顾一一复习学习新知识之前,看看你的知识贮备过关了吗?(一)反比例函数的概念一般地,形如_ (k为常数,k不等于零)的函数称为反比例函数,其中x是自变量,y是函数或叫因变量,y也可以写成:,(二)反比例函数的图象与性质k ............................(1)反比例函数y —(k为常数,k不等于零)的图象是 _________________________ _______ ;(2)当k>0时,双曲线的两个分支分别位于第象限,在每个象限内,y值F® x值的增大而(3)当k<0时,双曲线的两个分支分别位于第象限,在每个象限内,y值F® x值的增大而k(4)在反比例函数y —(k为常数,k不等于零)中,由于x 0且y 0 ,所以两个分支都无限接近但永远不能达到轴和轴.知识要点一一预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习。
请在虚线部分填写预习内容,在实线部分填写课堂学习内容。
课堂笔记或者其它补充填在右栏。
知识点一:反比例函数的应用问题1: A、B两城市相距720千米,一列火车从A城去B城.火车的速度v(千米/时)和行驶的时间t (时)之间的函数关系是 .问题2:某公司计划新建一个容积为50立方米的圆柱形的池子。
(初三数学教案)人教版初中九年级数学下册第26章反比例函数26.1.1 反比例函数教学设计

26.1 反比例函数26.1.1反比例函数一、教学目标【知识与技能】1.理解并掌握反比例函数的概念和意义;2.会判断一个给定的函数是否为反比例函数,并能根据实际问题和已知条件用待定系数法求出反比例函数的解析式.【过程与方法】通过对反比例函数的研究,感悟反比例函数的概念,体会函数思想的应用。
【情感态度与价值观】从现实情境和已有知识经验出发,研究两个变量之间的相互关系,进一步理解常量和变量之间的辩证关系,体验数学来源于生活,激发学生学习数学的热情和兴趣.二、课型新授课三、课时1课时四、教学重难点【教学重点】理解反比例函数的概念,会求反比例函数关系式.【教学难点】反比例函数解析式的确定.五、课前准备教师:课件.六、教学过程(一)导入新课(出示课件2)教师问:什么是函数?学生答:一般地,在一个变化过程中,如果有两个变量x与y ,并且对于x的每个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.教师问:什么是一次函数?什么是正比例函数?学生答:一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫作一次函数.一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫作比例系数.当杂技演员表演滚钉板的节目时,观众们看到密密麻麻的钉子,都为他们捏一把汗,但有人却说钉子越多,演员越安全,钉子越少反而越危险,你认同吗?为什么?(二)探索新知知识点1:反比例函数的定义下列问题中,变量间具有函数关系吗?如果有,请写出它们的解析式. (出示课件4-5)(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;(2)某住宅小区要种植一块面积为1000m 2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化;(3)已知北京市的总面积为1.68×104km 2,人均占有面积S(单位:km 2/人)随全市总人口n(单位:人)的变化而变化.小组合作交流,再进行全班性的问答. ⑴1463v t =;⑵1000y x =;⑶. S = 1.68×104n 教师问:这三个函数解析式有什么共同点?你能否根据这一类函数的共同特点,类比正比例函数写出这种函数的一般形式?(出示课件6) 学生答:都是y k x=的形式,其中k 是非零常数.教师问:这种函数叫反比例函数,那么什么是反比例函数? 归纳:一般地,形如y k x =(k 为常数,k ≠0)的函数,叫做反比例函数,其中x 是自变量,y 是函数.教师问:自变量x 的取值范围是什么?(出示课件7)学生答:因为x 作为分母,不能等于零,因此自变量x 的取值范围是所有非零实数.教师问:在实际问题中自变量x 的取值范围是什么?学生思考后教师总结:要根据具体情况来确定.例如,在前面得到的第二个解析式1000y x =,x 的取值范围是x >0,且当x 取每一个确定的值时,y 都有唯一确定的值与其对应.教师问:形如1-=kx y (k ≠0)的式子是反比例函数吗?式子k xy =(k ≠0)呢?(出示课件8)学生独立思考后,全班交流.然后教师强调:反比例函数的三种表达方式:(注意k ≠0)xk y =;1-=kx y ;k xy =. 出示课件9-10,学生独立思考后口答,教师订正.考点1 利用反比例函数的定义求字母的值.例 已知函数y =(2m 2+m -1)x2m 2+3m -3是反比例函数,求m 的值.(出示课件11)学生独立思考后,教师板演:解:因为y =(2m 2+m -1)x2m 2+3m -3是反比例函数,所以222m +3 m-3=-1,2m + m-10,⎧⎪⎨≠⎪⎩ 解得m=-2.归纳总结:已知某个函数为反比例函数,只需要根据反比例函数的定义列出方程(组)求解即可,如本题中x 的次数为-1,且系数不等于0.出示课件12,学生独立解决,教师巡视,查看学生完成的情况,并给予及时引导.考点2 利用待定系数法求反比例函数的解析式.例 已知y 是x 的反比例函数,并且当x=2时,y=6.(1)写出y 关于x 的函数解析式;(2)当x=4时,求y 的值.(出示课件13)师生分析:因为y 是x 的反比例函数,所以设y k x =.把x=2和y=6代入上式,就可求出常数k 的值.学生板演:解:(1)设y k x =.因为当 x=2时,y=6,所以有62k =,解得k=12. 因此12y .x= (2)把x=4代入12y x =,得12y 3.4== 归纳总结:用待定系数法求反比例函数解析式的一般步骤是:(出示课件14)(1)设,即设所求的反比例函数解析式为y k x =(k ≠0);(2)代,即将已知条件中对应的x 、y 值代入y k x =中得到关于k 的方程.(3)解,即解方程,求出k 的值.(4)定,即将k 值代入y k x=中,确定函数解析式.出示课件15,学生独立解决,一生板演.知识点2:建立反比例函数的模型解答问题人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体是动态的,车速增加,视野变窄.当车速为50km/h 时,视野为80度,如果视野f(度) 是车速v(km/h)的反比例函数,求f 关于v 的函数解析式,并计算当车速为100km/h 时视野的度数.(出示课件16)学生理解题意,尝试解决,教师板演并强调书写步骤: 解:设k f v=.由题意知,当v=50时,f=80, 所以8050k =, 解得k=4000. 因此4000.f v= 当v=100时,f=40.所以当车速为100km/h 时,视野为40度.出示课件17,学生独立解决,教师加以订正.(三)课堂练习(出示课件18-25)练习课件第18-25页题目,约用时20分钟(四)课堂小结(出示课件26)本节课你有哪些收获?你还有什么困惑吗?(引导学生思考答复)师生一起提炼本节课的重要知识和必须掌握的技能:1.一般地,形如y k x=(k 是常数,k ≠0)的函数,叫做反比例函数,其中x 是自变量,y 是函数.2.反比例函数的三种表达方式:(注意k ≠0)x k y =;1-=kx y ;k xy =. 3.用待定系数法求反比例函数解析式的一般步骤是:(1)设,即设所求的反比例函数解析式为y kx=(k ≠0);(2)代,即将已知条件中对应的x 、y 值代入y k x =中得到关于k 的方程.(3)解,即解方程,求出k 的值.(4)定,即将k 值代入y k x =中,确定函数解析式.(五)课前预习预习下节课(26.1.2第1课时)的相关内容.了解反比例函数的图象及性质.七、课后作业1、教材第3页练习第2,3题.2、七彩课堂第5~6页第1,2,6,8题.八、板书设计26.1.1反比例函数1.反比例函数的定义:一般地,形如y k x=(k 是常数,k ≠0)的函数,叫做反比例函数,其中x 是自变量,y 是函数.自变量x 的取值范围是不等于0的一切实数.2.反比例函数的形式:(1)y =k x (k ≠0);(2)y =kx -1(k ≠0);(3)xy =k (k ≠0).3.确定反比例函数的解析式:待定系数法.九、教学反思让学生从生活实际中发现数学问题,从而引入学习内容,这不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了现实背景.因为反比例函数这一部分内容与正比例函数相似,在教学过程中,以学生学习的正比例函数为基础,在学生之间创设相互交流、相互合作、相互帮助的关系,让学生通过充分讨论交流后得出它们的相同点,在此基础上来揭示反比例函数的意义.在处理课堂练习时,让学生选择自己喜欢的问题来回答,照顾了学生的个体差异,关注了学生的个性发展,真正成为学生学习的组织者、参与者、合作者、促进者.。
人教版数学九年级下册《反比例函数在实际中的应用》教案1

人教版数学九年级下册《反比例函数在实际中的应用》教案1一. 教材分析人教版数学九年级下册《反比例函数在实际中的应用》这一章节,主要让学生了解反比例函数的概念,掌握反比例函数的性质,并能够运用反比例函数解决实际问题。
这部分内容是初中数学的重要知识点,也是高考的考点之一。
通过本节课的学习,学生能够进一步理解函数与实际生活的联系,提高解决问题的能力。
二. 学情分析九年级的学生已经学习了函数的基本概念和性质,对函数有一定的认识。
但是,对于反比例函数的理解可能还比较模糊,特别是其在实际生活中的应用。
因此,在教学过程中,教师需要结合学生的实际情况,用生动具体的实例引导学生理解反比例函数的含义,并能够运用反比例函数解决实际问题。
三. 教学目标1.了解反比例函数的概念,掌握反比例函数的性质。
2.能够运用反比例函数解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.反比例函数的概念和性质。
2.反比例函数在实际中的应用。
五. 教学方法采用讲授法、案例教学法、问题驱动法、小组合作法等教学方法,引导学生通过观察、思考、讨论、操作等活动,掌握反比例函数的知识,提高解决问题的能力。
六. 教学准备1.准备相关的教学案例和实际问题。
2.准备教学PPT,包括反比例函数的定义、性质和应用实例。
3.准备黑板和粉笔,用于板书关键知识点和解答学生的疑问。
七. 教学过程1.导入(5分钟)通过一个实际问题引出反比例函数的概念,如:一辆汽车以60千米/时的速度行驶,行驶1小时,行驶的路程是多少?引导学生思考速度、时间和路程之间的关系。
2.呈现(15分钟)讲解反比例函数的定义和性质,引导学生通过观察、思考、讨论,理解反比例函数的含义。
同时,给出一些实际问题,让学生尝试运用反比例函数解决。
3.操练(15分钟)让学生分组讨论,选取一些实际问题,运用反比例函数进行解答。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)选取一些典型的实际问题,让学生独立解答,巩固反比例函数的应用。
人教版九年级下册数学《实际问题与反比例函数》反比例函数说课教学教学说课研讨课件复习

巩固新知
课堂小结
布置作业
创设情境
应用新知
探究新知
例1.码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v(单位:吨/天)与卸货天数(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?
不超过5天是什么意思
阿基米德 : (古希腊哲学家、数学家、物理学家)
杠杆问题
CLICK
阿基米德真的能撬动地球吗?
电学问题ELEC
01.电学问题
ELEC
电学知识告诉我们,用电器的功率
U2/R
U2/
电学问题
ELEC
解析
ANALY
(1)由电学知识可知: 当U=220v时 得
回忆杠杆平衡原理:动力×动力臂=阻力×阻力臂 ,
01.杠杆问题
LEVERAGE
阻力×阻力臂=动力×动力臂
阻力臂
动力臂
01.杠杆问题
LEVERAGE
引入实例
小伟欲用撬棍撬动一块大石头已知阻力和阻力臂分别为1200N和0.5m.
01.杠杆问题
LEVERAGE
探究新知
例1.码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间.(3)如果码头工人先以每天30吨的速度卸载货物两天后,由于紧急情况,船上的货物必须在不超过4天卸载完毕,那么平均每天至少要卸载多少吨?
答:平均每天至少要卸载45吨.
课堂小结
布置作业
创设情境
探究新知
应用新知
图 26-2-1
2 A.I= R 3 B.I= R
01.电学问题
ELEC
人教版数学九年级下册:(反比例函数)反比例函数(教案)
第二十六章反比例函数26.1 反比例函数26.1.1 反比例函数【知识与技能】1.理解反比例函数的意义.2.能够根据已知条件确定反比例函数的解析式.【过程与方法】经历从实际问题中抽象出反比例函数模型的过程中,体会反比例函数来源于生活实际,并确定其解析式.【情感态度】经历反比例函数的形成过程,体验函数是描述变量关系的重要数学模型,培养学生合作交流意识和探索能力.【教学重点】理解反比例函数的意义,确定反比例函数的解析式【教学难点】反比例函数解析式的确定.一、情境导入,初步认识问题京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该次列车平均速度v(单位:km/h)的变化而变化,速度v和时间t的对应关系可用怎样的函数式表示?【教学说明】教师提出问题,学生思考、交流,予以回答.教师应关注学生能否正确理解路程一定时,运行时间与运行速度两个变量之间的对应关系,能否正确列出函数关系式,对有困难的同学教师应及时予以指导.二、思考探究,获取新知问题1某住宅小区要种植一个面积为1000 m2的长方形草坪,草坪的长为y (单位:m)随宽x(单位:m)的变化而变化,你能确定y与x之间的函数关系式吗?问题2已知北京市的总面积为1. 68 ×104平方千米,人均占有的土地面积S(单位平方千米/人)随全市人口 n(单位:人)的变化而变化,则S与n的关系式如何?说说你的理由.思考观察你列出的三个函数关系式,它们有何特征,不妨说说看看.【教学说明】学生相互交流,探寻三个问题中的三个函数关系式,教师再引导学生分析三个函数的特征,找出其共性,引入新知.反比例函数:形如y =kx(k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,自变量x的取值范围是不等于0的一切实数.试一试下列问题中,变量间的对应关系,可用怎样的函数解析式表示?(1)一个游泳池的容积为2000m 3,注满游泳池所用的时间t(单位:h)随注水速度v(单位: m 3/h)的变化而变化;(2)某长方体的体积为1000cm 3,长方体的高h(单位:cm)随底面积S (单位:cm 2 )的变化而变化.(3)—个物体重100牛,物体对地面的压强 P 随物体与地面的接触面积S 的变化而变化.【教学说明】学生独立完成(1)、(2)、(3)题,教师巡视,关注学生完成情况,肯定他们的成绩,提出个别同学问题,帮助学生加深对构建反比例函数模型的理解.三、典例精析,掌握新知例1 已知y 是x 的反比例函数,当x =2 时,y = 6.(1) 写出y 与x 之间的函数解析式;(2) 当x =4时,求y 的值.【分析】由于y 是x 的反比例函数,故可说其表达式为y =k x,只须把x =2,y=6代入,求出k 值,即可得y =12x,再把x =4代入可求出 y=3. 【教学说明】本例展示了确定反比例函数表达式的方程,教师在评讲时应予以强调.在评讲前,仍应让学生自主探究,完成解答,锻炼学生分析问题,解决问题的能力.例2 如果y 是z 的反比例函数,z 是x 的 正比例函数,且x ≠0,那么y 与x 是怎样的函数关系?【分析】 因为y 是z 的反比例函数,故可设y =1k z(K 1≠0),又z 是x 的正比例函数,则可设 z = 2k x (2k ≠0) x ≠0,∴ y =12k k x . 11220,k 0,0,k k k ≠≠∴≠ 故y =12k k x是y 关于x 的反比例函数. 【教学说明】本例仍可让学生先独立思考,然后相互交流探索结论.最后教师予以评讲,针对学生可能出现的问题(如设:y =k x,z=kx 时没有区分比例系数)予以强调,并对题中x ≠0的条件的重要性加以解释,帮助学生加深对反比例函数意义的理解.四、运用新知,深化理解1.下列哪个等式中y 是x 的反比例函数? y = 4x, y x= 3, y=6x+1,xy=123. 2.已知y 与x 2成反比例,并且当x= 3时,y=4.(1)写出y 和x 之间的函数关系式,y 是x 的反比例函数吗?(2)求出当x =1.5时y 的值.【教学说明】让学生通过对上述两道题的探究,加深对反比例函数意义的理解,增强确定反比例函数表达式的解题技能,教师巡视,再给出答案并解决易错点.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.只有等式xy=123中,y 是x 的反比例函数.2.解:(1)由题知可设y =2,3k y x x==时y=4,∴ k= 4×9 = 36,即 y = 236x,y 不是 x 的反比例函数. (2)y=236x ,x=1.5 时,y=361.5 1.5⨯ =16. 五、师生互动,课堂小结1.知识回顾.2.谈谈这节课你有哪些收获?【教学说明】教师应与学生一起进行交流,共同回顾本节知识,理清解题思路与方法,对普遍存在的疑虑,可共同探讨解决,对少数同学还面临的问题,可让学生与同伴交流获得结果,也可课后个别辅导,帮助他分析,找出问题原因,及时查漏补缺.1.布置作业:从教材“习题26. 1”中选取.2.完成创优作业中本课时的“课时作业”部分.反比例函数是初中学习阶段的第二种函数类型.因此本课时教学仍然是从实际问题入手,充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相互关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理性认识一旦建立,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,可以利用它通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.此外,教师在例题的处理上,应要求学生将解题步骤写完整.。
初中数学_人教版数学九年级下册反比例函数教学设计学情分析教材分析课后反思
《反比例函数》教学设计学习目标1、理解并掌握反比例函数的概念。
2、能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。
3、能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。
学习重点:理解反比例函数的概念,能根据已知条件写出函数解析式学习难点:理解反比例函数的概念。
学习准备:1、回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2、体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?学习过程:一、探索研讨【活动1】问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;_________________(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;_________________(3)已知北京市的总面积为1.68×104平方千米,人均占有的土地面积S(平方千米/人)随全市总人口数n(单位:人)的变化而变化。
_________________上面的函数关系式,都具有_____________的形式,其中_________是常数。
【活动2】下列问题中,变量间的对应关系可用这样的函数式表示吗?(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度u的变化而变化;_________________(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;_________________(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化。
_________________概念:如果两个变量x,y 之间的关系可以表示成___________的形式,那么y 是x 的反比例函数,反比例函数的自变量x____为零。
九年级数学下册 26.2 实际问题与反比例函教案1 (新版)新人教版
实际问题与反比例函数教学目标:1.体验现实生活与反比例函数的关系。
2.能解决确定反比例函数中自变量及取值范围和求函数值的实际问题。
学习重点:运用反比例函数解决实际问题。
学习难点:把实际问题转化为反比例函数问题。
一、问题引入1.若圆柱的底面积为S,高为h,体积为V ,则V= ,h= .2.小明家用购电卡买了1000度电,那么这些电能够使用的天数y与平均每天用电度数x之间的函数关系式是;如果平均每天用5度,这些电可以用______天;如果这些电想用250天,那么平均每天用电______度. 二、新知探究问题一:市煤气公司要在地下修建一个容积为10000立方米的圆柱形煤气储存室.(1)储存室的底面积S(单位:平方米)与其深度d(单位:米)有怎样的函数关系式?(2)公司决定把储存室的底面积S定为500平方米,施工队施工时应该向下掘进多深?(3)当施工队按(2)中的计划掘进到地下15米时,公司临时改变计划,把储存室的深度改为15米.相应地,储存室的底面积应改为多少? (结果保留小数点后两位) 解:(1)(2)(3)问题二:简记简记码头工人以每天40吨的速度往一艘轮船上装载货物, 把轮船上的货物装载完毕恰好用了9天时间.轮船到达目的地后开始卸货,卸货速度v(单位: 吨/天)与卸货时间t (单位:天)之间有怎样的函数关系?由于遇到紧急情况,船上的货物必须在不超过6天内卸载完毕,那么平均每天至少要卸多少吨货物?三、当堂达标1.已知三角形的面积一定,则它的底边a上的高h与底边a之间的函数关系的图象大致是( )A B C D2.长方体的体积为103 m3,底面积为S,高度为d,则d与S之间的函数关系式为 ____________;当S=500时,d=____________.3.小林家离工作单位的距离为3600米,他每天骑自行车上班的速度为v 米/分钟,所用时间为t分钟.(1)则速度v与时间t之间有怎样的函数关系?(2)若小林到单位用15分钟,那么他骑车的平均速度是多少?(3)若小林骑车的速度最高为300米/分钟,那他至少需要几分钟到单位?四、教后反思:。
九年级数学下册《应用反比例函数解决实际问题》教案、教学设计
三、教学重难点和教学设想
(二)讲授新知
在导入新课之后,我会正式介绍反比例函数的定义,解释其一般形式y=k/x(k≠0)中的各个参数含义。通过数学软件或板书,演示反比例函数图像的绘制过程,让学生观察图像的特点,如双曲线形状以及图像在第一、三象限的分布。接着,我会讲解反比例函数的性质,如对称性、渐近线等,并强调k值对图像的影响。
4.教学评价:
-过程性评价:观察学生在课堂讨论、小组合作中的表现,评价其参与度和合作能力。
-终结性评价:通过课后作业、小测验等形式,评价学生对反比例函数知识点的掌握程度。
-反思性评价:鼓励学生在学习结束后进行自我反思,总结学习中的收获和不足。
四、教学内容与过程
(一)导入新课
课堂开始时,我将向学生展示一副地图,并提出问题:“同学们,你们在地图上查找距离时,是如何确定实际距离的?”通过这个问题,引导学生回忆比例尺的概念,进而导入反比例函数的学习。我会让学生观察比例尺上的比例关系,发现当实际距离变化时,比例尺上的长度也相应变化,而这种变化恰好符合反比例的关系。通过这个实际例子,学生能够初步感受到反比例函数在生活中的应用。
-学生在识别实际情境中的反比例关系时可能会感到困难,需要教师引导和练习。
-在解决综合性的数学问题时,学生需要灵活运用反比例函数知识,结合其他数学知识点,如方程、不等式等。
(二)教学设想
1.教学方法:
-采用问题驱动的教学模式,通过引入实际问题,激发学生的好奇心和探究欲望。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与反比例函数第1课时实际问题与反比例函数(1)【知识与技能】进一步运用反比例函数的知识解决实际问题.【过程与方法】经历“实际问题一建立模型一问题解决”的过程,发展学生分析问题,解决问题的能力.【情感态度】运用反比例函数知识解决实际应用问题的过程中,感受数学的应用价值,提高学习兴趣.【教学重点】运用反比例函数的意义和性质解决实际问题.【教学难点】用反比例函数的思想方法分析、解决实际应用问题.一、情境导入,初步认识问题我们知道,确定一个一次函数y = kx+b的表达式需要两个独立的条件,而确定一个反比例函数表达式,则只需一个独立条件即可,如点A(2,3)是一个反比例函数图象上的点,则此反比例函数的表达式是,当x=4时,y的值为,而当y=13时,相应的x的值为,用反比例函数可以反映很多实际问题中两个变量之间的关系,你能举出一个反比例函数的实例吗?二、典例精析,掌握新知例1 市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2 )与其深度 d(单位:m)有怎样的函数关系?(2 )公司决定把储存室的底面积定为 500m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰到坚硬的岩石,为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应地,储存室的底面积应改为多少才能满足需要(精确到0.01m2)?【分析】已知圆柱体体积公式V=S • d,通过变形可得S=Vd,当V—定时,圆柱体的底面积S是圆柱体的高(深)d的反比例函数,而当S= 500m2时,就可得到d的值,从而解决问题(2),同样地,当d= 15m —定时,代入S = Vd可求得S,这样问题(3)获解.例2 码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度V(单位:吨/天)与卸货时间t 单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多货?【分析】由装货速度×装货时间=装货总量,可知轮船装载的货物总量为240吨;再根据卸货速度=卸货总量÷卸货时间,可得V与t的函数关系式为V=240t,获得问题(1)的解;在(2)中,若把t=5代入关系式,可得V=48,即每天至少要卸载48吨,则可保证在5天内卸货完毕.此处,若由V=240t得到t=240V,由t≤5,得240V≤5,从而V≥48,即每天至少要卸货48吨,才能在不超过5天内卸货完毕.【教学说明】例2仍可由学生自主探究,得到结论.鼓励学生多角度出发,对问题(2)发表自己的见解,在学生交流过程中,教师可参与他们的讨论,帮助学生寻求解决问题的方法,对有困难的学生及时给予点拨,使不同层次的学生在学习中都有所收获.例3如图所示是某一蓄水池每1h的排水量V(m3/h)与排完水池中的水所用时间t(h)之间的函数图象.(1) 请你根据图象提供的信息求出此蓄水的蓄水量.(2) 写出此函数的函数关系式.(3) 若要6h排完水池的水,那么每1h的排水量应该是多少?(4) 如果每1h排水量是5m3,那么水池中的水将用多长时间排完?【分析】解此题关键是从图象中获取有关信息,会根据图象回答.解:(1)由图象知:当每1h排水4m3时,需12h排完水池中的水,∴蓄水量为4×12 = 48(m3 )(2)由图象V与t成反比例,设V=kt(k≠0).把V=4,t=12代入得k=48,∴V =48t(t>0).(3)当t=6时,486V== 8,即每1h排水量是8m3⑷当V=5时,5 = 48t,485t∴== 9.6(h),即水池中的水需要用9.6h排完.【教学说明】例3相比前面两例,难度增加,教师在讲解本题时,要辅导学生从图象中获取信息,会根据图象回答问题.三、运用新知,深化理解1.某玻璃器皿公司要挑选一种容积为1升 (1升=1立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?2.市政府计划建设一项水利工程,工程需要运送的土石方总量为106m3,某运输公司承办了这项工程运送土石方的任务.(1)运输公司平均每天的工作量V(单位:m3/天)与完成运送任务所需的时间t (单位:天)之间具有怎样的函数关系?(2)这个运输公司共有100辆卡车,每天一共可运送土石方104m3.则公司完成全部运输任务需要多长时间?【教学说明】以上两题让学生相互交流,共同探讨,获得结果,使学生通过对上述问题的思考,巩固所学知识,增强运用反比例函数解决问题的能力.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.解:(1)13Sd=1,S =3d(d>0)(2)100cm2 = 1dm2,当S = 1dm2时,3d=1,d=3dm.2.解:(1)661010,(Vt V tt==>0) .(2)t=662410101010V== .即完成任务需要100天.四、师生互动,课堂小结谈谈这节课的收获和体会,与同伴交流.1.布置作业:从教材“习题26. 2”中选取.2.完成创优作业中本课时的“课时作业”部分.本节课是用函数的观点处理实际问题,其中蕴含着体积、面积这样的实际问题.而解决这些问题的关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么,可以是什么,从而逐步形成考察实际问题的能力.在解决问题时,应充分利用函数的图象,渗透数形结合的思想.学生已经有了反比例函数的概念及其图象与性质这些知识作为基础,另外在小学也学过反比例,并且上学期已经学习了正比例函数、一次函数,学生已经有了一定的知识准备.因此,本节课教师可从身边事物入手,使学生真正体会到数学知识来源于生活,有一种亲切感.在学习中要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来进行交流活动,不断引导学生利用数学知识来解决实际问题.第2课时实际问题与反比例函数(2)【知识与技能】运用反比例函数解决实际应用问题,增强数学建模思想.【过程与方法】经历“实际问题一数学建模一拓展应用”的过程,发展学生分析问题,解决问题的能力.【情感态度】进一步锻炼学生的数学应用能力,增强数学应用意识,提高学习数学的兴趣. 【教学重点】用反比例函数的有关知识解决实际应用问题.【教学难点】构建反比例函数模型解决实际应用问题,巩固反比例函数性质.一、情境导入,初步认识“给我一个支点,我可以撬动地球”,古希腊科学家阿基米德曾如是说,他的“杠杆定律”通俗地讲是:阻力×阻力臂=动力×动力臂.由上述等式,我们发现,当阻力、阻力臂一定时,动力和动力臂成反比例函数关系.二、典例精析,掌握新知例1 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为1200 N和0.5 m.(1 )动力F和动力臂l有怎样的函数关系?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂l至少要加长多少?【分析】显然本题应用杠杆定律相关知识来解决问题,首先由阻力和阻力臂的数据得到动力F与动力臂l的函数关系式为F=600l(l>0),再把l=1 . 5代入,求出动力的大小.注意“橇动石头至少需要多大的力”表面上看是不等关系,但用相等关系来解决更方便些.而(2)中的问题即可用F=400×12= 200代入求动力臂的长度的最小值,也可利用不等关系,600l≤400×12,得l的范围是l≥3,而动力臂至少应加长1.5米才行.【教学说明】在本例教学时,应仍由学生自主探究,构建适合题意的反比例函数关系式,让学生加深对反比例函数意义的理解,进一步增强分析问题和解决问题的能力.教师在学生练习过程中,巡视指导,帮助有困难同学形成正确认知,在大部分学生自主完成后,可提出以下问题让学生思考,巩固提高:(1 )用反比例函数知识解释:在我们使用撬棍时,为什么动力臂越长就越省力?(2)你能再举一些应用杠杆原理做实际例子吗?例2—个用电器的电阻是可调节的,其范围是110〜220Ω,已知电压为220 V,这个用电器的电路图如图所示.(1 )输出功率犘与电阻只有怎样的函数关系?(2)这个用电器功率的范围是多少?【分析】要想顺利解决本题,应了解电学中关于电功率P、电阻R和电压U的关系,即有PR= U2,可以发现2UPR=或2URP=.这样由于用电器电压U = 220V是确定的,从而可得(1)的解应为P =2220R,再把R = 110和R = 220代入可得电功率P值分别为440 W和220 W,故电功率P的范围为220≤P≤440.事实上,这里还可以由2220RP=及 110≤R≤220,得110≤2220P≤220,得220≤P≤440.【教学说明】教学时,教师应先让学生熟悉与本例相关的电学知识,即PR= U2,然后让学生独立完成,由于题目难度不大,学生应该能予以解决,对个别有困难的同学,可予以指导,也可让他们与同伴交流,从而能解决问题,在大多数同学完成以后,教师仍可设置以下两个问题,让学生进一步加深对知识的理解:(1 )想一想,为什么收音机的音量,某些台灯的亮度以及电风扇的转速都可以调节?(2)你还能列举一些生活中用电器应用反比例函数性质的例子吗?培养学生学以致用的能力,即能用所学知识解决现实世界中实际问题的能力,也可增强学生的学习兴趣.三、运用新知,深化理解1.一司机驾驶汽车从甲地去乙地,他以80 km/h的平均速度用6小时到达目的地.(1)当他按原路返回来,汽车的平均速度v与时间t有怎样的函数关系?(2)如果该司机必须在4 h之内回到甲地,则返程时的平均速度不能低于多少?2.新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需贴瓷砖,已知楼体的外表面面积为5×103 m2 .(1)所需的瓷砖块数n与每块瓷砖的面积 S有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白、蓝三种颜色的瓷砖,每块瓷砖的面积都是80 cm2,灰、白、蓝瓷砖使用比例为2:2: 1,则需要三种瓷砖各多少块?3.如图是放置在桌面上的一个圆台,已知圆台的上底面积是下底面积的1/4,此时圆台对桌面的压强为100 Pa.若把圆台翻过来放,则它对桌面的压强是多大呢?【教学说明】由学生独立完成,然后相互交流,发现问题,及时纠正,从而巩固对反比例函数的性质的理解.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1. ( 1 )V=806t ⨯ ,V =480t (t >0). (2)V =4804= 120 (km/h). 2.(1)n • S = 5× 103 , n =3510S⨯ (S >0). (2)80cm 2=8×10-3m 2.353510 6.2510810n -⨯==⨯⨯(块), 则有n 灰=6.25×105×25= 2.5×105(块),n 白=6.25×105×25 =2.5×105(块) ,n 蓝=6.25×105×51=1.25×105(块).3. 解:设下底面积为S 0,则上底面积为04S . 由F p S= ,且当S = S 0时,p = 100,∴0100F pS S ==⨯ . 同一物体质量不变,∴ F=100S 0是定值.000100400(Pa)44S S F S p S S ∴====当时,. 因此,当把圆台翻过来放置时,它对桌面的压强是400Pa.四、师生互动,课堂小结1.请举出一些应用反比例函数的实例,同伴之间相互交流.2.说说这节课你又有哪些收获?1. 布置作业:从教材“习题26.2”中选取.2. 完成创优作业中本课时的“课时作业”部分.本节课讨论了反比例函数的其他一些应用(主要是在物理学科中的应用).在这些实际应用中,备课时应注意到与学生的实际生活相联系,并且注意用函数观点来对这些问题做出某种解释,从而加深对函数的认识,并突出知识之间的内在联系,特别是与物理知识之间的联系.。