概率论和数理统计期末考试题库(完整版)
概率论与数理统计期末试题与详细解答

《概率论与数理统计》期末试卷一、填空题(每题4分,共20分)1、假设事件A 和B 满足1)(=A B P ,则A 和B 的关系是_______________。
2、设随机变量)(~λπX ,且{}{},21===X P X P 则{}==k X P _____________。
3、设X 服从参数为1的指数分布,则=)(2X E ___________。
4、设),1,0(~),2,0(~N Y N X 且X 与Y 相互独立,则~Y X Z -=___________。
5、),16,1(~),5,1(~N Y N X 且X 与Y 相互独立,令12--=Y X Z ,则=YZ ρ____。
二、选择题(每题4分,共20分)1、将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )A 、323B 、83C 、161D 、812、随机变量X 和Y 的,0=XY ρ则下列结论不正确的是( ) A 、)()()(Y D X D Y X D +=- B 、a X +与b Y -必相互独立 C 、X 与Y 可能服从二维均匀分布 D 、)()()(Y E X E XY E =3、样本nX X X ,,,21 来自总体X ,,)(,)(2σμ==X D X E 则有( )A 、2i X )1(n i ≤≤都是μ的无偏估计 B 、X 是μ的无偏估计C 、)1(2n i X i ≤≤是2σ的无偏估计D 、2X 是2σ的无偏估计 4、设nX X X ,,,21 来自正态总体),(2σμN 的样本,其中μ已知,2σ未知,则下列不是统计量的是( ) A 、ini X ≤≤1min B 、μ-X C 、∑=ni iX 1σ D 、1X X n -5、在假设检验中,检验水平α的意义是( ) A 、原假设0H 成立,经检验被拒绝的概率 B 、原假设0H 不成立,经检验被拒绝的概率 C 、原假设0H 成立,经检验不能拒绝的概率D 、原假设0H 不成立,经检验不能拒绝的概率三、计算题(共28分)1、已知离散型随机变量的分布律为求:X 的分布函数,(2))(X D 。
(完整版)概率论与数理统计试题库

《概率论与数理统计》试题(1)判断题(本题共15分,每小题3分。
正确打“V” ,错误打“X” )⑴对任意事件A和B ,必有P(AB)=P(A)P(B) ()⑵ 设A、B是Q中的随机事件,则(A U B)-B=A ()⑶ 若X服从参数为入的普哇松分布,则EX=DX⑷假设检验基本思想的依据是小概率事件原理1 n _⑸ 样本方差S:= —(X i X )2是母体方差DX的无偏估计(n i i、(20分)设A、B、C是Q中的随机事件,将下列事件用A、B、C表示出来(1) 仅A发生,B、C都不发生;(2) 代B,C中至少有两个发生;(3) 代B,C中不多于两个发生;(4) 代B,C中恰有两个发生;(5) 代B,C中至多有一个发生。
三、(15分)把长为a的棒任意折成三段,求它们可以构成三角形的概率四、(10分)已知离散型随机变量X的分布列为X 2 1 0 1 31 1 1 1 11P5 6 5 15 302 求Y X的分布列.1五、(10分)设随机变量X具有密度函数f(x) -e|x|, V x V2求X的数学期望和方差•六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求P(14 X 30).七、(15分)设X1 ,X2,L ,X n是来自几何分布k 1P(X k) p(1 p) , k 1,2,L , 0 p 1 ,的样本,试求未知参数p的极大似然估计•X表示在x 0 0.5 1 1.5 2①(x ) 0.500 0.691 0.841 0.933 0.9772.5 30.994 0.999《概率论与数理统计》试题(1)评分标准⑴ X;(2) X;⑶“;⑷";(5) X o 解(1) ABC(2)ABU AC U BC 或 ABC U ABC U ABC U ABC ;(3) AUBUC 或 ABC U ABC U ABC U ABC U ABC U ABC U ABC ; (4) ABC U ABC U ABC ;(5) AB U AC U BC 或 ABC U ABC U ABC U ABC六解X “ P(14 ^b(k;100,0.20), EX=100 X 0.2=20, DX=100 X 0.2 X 0.8=16.-- --5分 分 30 20 14 20、 X 30) ( --------- )( --------------- ) ------------------ V16 J16 ------10(2.5) ( 1.5)=0.994+0.933—10.927. -------------------------------------n——15分七解n x nL(X 1, L ,x n ;p)p(1 p)x i1 p n(1 p)i1---------5分 -------------------------------------- 10 分每小题4分;解 设A '三段可构成三角形'又三段的长分别为x,y,a x y ,Oxa, 0 ya, Oxy a ,不等式构成平面域S .Aa A 发生 0 x —, 02不等式确定S 的子域A , 所以a a y , x y a2 2------------------------------------ 10A 的面积 1S 的面积 4---------------------------------------- 15则 分分分四 解Y 的分布列为Y 0 1 4 91 7 1 11P — ----- — —5 30 5 30Y 的取值正确得2分, 分布列对一组得 2分; 五 解 EXx 2 凶 dx 0, (因为被积函数为奇函数)2D X EX 22 x 1 |x| 1 —e dx x 2e x dx22 xx e0 2 xe x dx 0------------------------- 4 分 2[ xe x 0e x dx] 2.In L n In p d In L n dp p (X i n )l n(1 p),i 1 X i n @0, --------------------------- 10 分 解似然方程 n n X in i 1 得p 的极大似然估计 ------------------------------------------------------------------- 15 分 《概率论与数理统计》期末试题(2) 与解答一、填空题(每小题 3分,共15分) 1. 设事件 代B 仅发生一个的概率为 0.3,且P(A) P(B) 0.5,则 代B 至少有一个不发 生的概率为 ___________ . 2. __________________________________________________________________________ 设随机变量X 服从泊松分布,且P(X 1) 4P(X 2),则P(X 3) _______________________ . 23. _______________________ 设随机变量X 在区间(0,2)上服从均匀分布,则随机变量Y X 在区间(0,4)内的概率 密度为f Y (y) . 的指数分布,P(X 1) e 2,则4. 设随机变量 X,Y 相互独立,且均服从参数为5._______ , P{min( X ,Y) 1} = ____ 设总体X 的概率密度为 (1)x , 0 x 1, f (x)0, 其它 1.X 1 ,X 2, ,X n 是来自X 的样本,则未知参数 的极大似然估计量为 ___________解:1. P(AB AB) 0.3即 0.3 P(AB) P(AB) P(A) P(AB) P(B) P(AB) 0.5 2P(AB)2所以 P(AB) 0.1P(A B) P(AB) 1 P(AB) 092.P(X 1) P(X 0) P(X 1) e e , P(X 2) e由 P(X 1) 4P(X 2)知e e2 2e即2 21 0解得1,故P(X3)1 1 e . 63•设丫的分布函数为F Y (y), X 的分布函数为F x (x),密度为f x (x)则F Y (V ) P(Y y) P(X 2 y) P( ...y X ,y) FxG.y) F x ( ,y) 因为 X ~U (0, 2),所以 F X ( ,y) 0,即 F Y (y) F X G. y)1.ln x in i 1二、单项选择题(每小题 3分,共15分)1 .设A, B,C 为三个事件,且 A, B 相互独立,则以下结论中不正确的是(A) 若P(C) 1,则AC 与BC 也独立. (B) 若P(C) 1,则AUC 与B 也独立. (C) 若P(C) 0,则AUC 与B 也独立.J(y) F Y (y)1 _2丁x(J)0 y 4, 另解 在(0,2)上函数y 所以 2x 严格单调,反函数为h(y)其它..5f Y (y) Afx(7?)诙4孑 0 ,其它.y 4,4. P(X 1) 1 P(X P{min( X ,Y) 1} 111) eP{min( X,Y) 4 e ・ 1} P(X 1)P(Y 1)5.似然函数为L(X 1 ,L ,X n ;n(i 1n1)Xi(1叽1_ X )解似然方程得 ln L n ln(1)ln x i ln x i i 1@0的极大似然估计为EX X(D )若C B ,则A 与C 也独立• ()2•设随机变量 X~N(0,1), X 的分布函数为(x),贝U P(|X| 2)的值为(A )2[1 (2)] . ( B )2 (2)1 .(C ) 2(2).( D )1 2 (2).()3•设随机变量 X 和Y 不相关,则下列结论中正确的是(A ) X 与 Y 独立. (B ) D(X Y) DX DY .(C ) D(X Y) DX DY .(D ) D(XY) DXDY .()4•设离散型随机变量 X 和Y 的联合概率分布为(X,Y) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) P1 1 1 1 691832. X ~ N(0,1)所以 P(| X | 2) 1 P(| X | 2)1 P(2 X1 (2) ( 2) 1 [2 (2) 1] 2[1 (2)]若X,Y 独立,则 7的值为2 112(A ) -, —(A ) J—99991 15 1 (C ), — (D ) — , . ()6618185 •设总体X 的数学期望为,X 1,X 2丄,X n为来自X 的样本,则下列结论中正确的是(A ) X i 是的无偏估计量 (B ) X i 是 的极大似然估计量(C ) X 1是 的相合(一致)估计量(D ) X i 不是 的估计量.() 解:1.因为概率为1的事件和概率为 0的事件与任何事件独立,所以( A ), (B ), (C )可见A 与C 不独立.2)应选(A )都是正确的,只能选(事实上由图EX X12 3 P(X 2, Y 2)1 1 1 11— — ■ 1 、69183(- )(-391 1 23321 1丄92 918故应(A).3•由不相关的等价条件知应选(B ) 4•若X,Y 独立则有)P(X 2)P(Y 2)f(o三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1) 一个产品经检查后被认为是合格品的概率;(2) 一个经检查后被认为是合格品的产品确是合格品的概率解:设A ‘任取一产品,经检验认为是合格品’B ‘任取一产品确是合格品’则(1) P(A) P(B)P(A|B) P(B)P(A|B)0.9 0.95 0.1 0.02 0.857.P(AB) 0.9 0.95 (2) P(B| A) 0.9977 .P(A) 0.857四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5.设X为途中遇到红灯的次数,求X的分布列、分布函数、数学期望和方差.解:X的概率分布为k2 k3 3 kP(X k) cf(5)k(5)3kX 0 1 2即P27 54 36 125 125 12X的分布函数为0 , x 0,27125 ,0 x 1,F(x )81 1 x 2, 125117 2 x3, 1251 , x 3.2 6 EX3 --5 5DX c 2 3 183 --5 5 25五、(10分)设二维随机变量(X,Y)在区域 D匀分布.求(1)(X,Y)关于X的边缘概率密度;38125{(x,y)|x 0, y 0, x y 1}上服从均(2)Z X Y的分布函数与概率密(1) (X ,Y)的概率密度为f(x, y) 2, (x, y) D 0,其它.k 0,1,2,3.2 2x, 0 x 1f(x,y)dy0 ,其它(2)利用公式f Z(z) f (x, z x)dx其中f(x,z x) 2, 0 x 1,0 z x 1 x0,其它2, 0 x 1, x z 1.0,其它.当z 0 或z 1 时f z (z) 0z的分布函数为z z0 z 1 时f z(z) 2 q dx 2x02z 故Z的概率密度为f z(z)2z, 0 z 1,0,其它.0, z 0 0, z 0,fZ⑵z zf Z(y)dy 02ydy,0 z 1 2z , 0 z 1,1,1 z 1.z 1或利用分布函数法0 , z 0,F Z(Z) P(Z z) P(X Y z) 2dxdy, 0 z 1D11 , z 1.0 , z 0,2z , 0 z 1,1 , z 1.f z (z) F z⑵2z,0 ,0 z 1,其它.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X和纵坐标Y相互独立,且均服从N(0,22)分布.求(1)命中环形区域D {( x, y) |1 x2 y2 2}的概率;(2)命中点到目标中心距离Z X Y2的数学期望.D (1)P{X,Y) D} f(x,y)dxdyDx28dxdy 8rdrdf x(X)4 41 2 -8re 8 rdrd1 e 8 r 2dr 8 04 0r2re 丁r 2e T dr 02冷dr阪七、(11分)设某机器生产的零件长度(单位: cm ) X 〜N ( , 2),今抽取容量为样本,测得样本均值 X 10,样本方差s 2 0.16. ( 1)求的置信度为0.952区间;(2)检验假设H 。
概率论和数理统计期末考试试题

k}
5 k
0.2
k
0.8
5
k
,
k
0,1,,5
------------------------------------------------------ 3 分
10, X 0;
Y
g(X )
5, 0,
X 1; X 2;
2, X 3
-----------------------------------------------------------------------------6 分
(5) 已知 X ~ B(n, p) ,且 E(X ) 8 , D( X ) 4.8 , 则 n =__________.
……………………………… 装 ……………………………… 订 ………………………………… 线 ………………………………
《概率论与数理统计》试卷标准答案和评分标准
一、选 择 题(5×3 分)
当 z 0 时, fZ (z)
f X (x) fY (z x)dx 0;
-----------------------------------------------------------------------5 分
当 0 z 1时, fZ (z)
f X (x) fY (z x)dx
0,
y 0.
求:随机变量 Z X Y 的概率密度函数.
4、(8 分)设随机变量 X 具有概率密度函数
x 8, 0 x 4;
fX
(x)
0,
其他,
求:随机变量 Y e X 1的概率密度函数.
(5)二维随机变量(X,Y)服从二维正态分布,则 X+Y 与 X-Y 不相关的充要条件为
《概率论与数理统计》期末复习试卷4套+答案

《概率论与数理统计》期末复习试卷4套+答案第⼀套⼀、判断题(2分?5)1、设A ,B 是两事件,则()A B B A -=U 。
()2、若随机变量X 的取值个数为⽆限个,则X ⼀定是连续型随机变量。
()3、 X 与Y 独⽴,则max{,}()()()X Y X Y F z F z F z =。
()4、若X 与Y 不独⽴,则EY EX XY E ?≠)(。
()5、若(,)X Y 服从⼆维正态分布,X 与Y 不相关与X 与Y 相互独⽴等价。
()⼆、选择题(3分?5)1、对于任意两个事件A 和B ().A 若AB φ=,则,A B ⼀定独⽴ .B 若AB φ≠,则,A B ⼀定独⽴ .C 若AB φ=,则,A B ⼀定不独⽴ .D 若AB φ≠,则,A B 有可能独⽴2、设,X Y 相互独⽴,且(1,2)X N -:,(1,3)Y N :,则2X Y +服从的分布为().A (1,8)N .B (1,14)N .C (1,22)N .D (1,40)N3、如果随机变量X 与Y 满⾜()()D X Y D X Y +=-,则下列说法正确的是().A X 与Y 相互独⽴ .B X 与Y 不相关.C ()0D Y = .D ()()0D X D Y =《概率与数理统计》⾼教第四版(浙江⼤学、盛骤)期末试卷复习题4、样本12,,,n X X X L 取⾃正态总体(0,1)N ,X ,S 分别为样本均值与样本标准差,则().A (0,1)X N : .B 221(1)ni i X n χ=-∑:.C(0,1)N : .D (1)X S t n -:5、在假设检验中,设0H 为原假设,犯第⼀类错误的情况为().A 0H 真,拒绝0H .B 0H 不真,接受0H .C 0H 真,接受0H .D 0H 不真,拒绝0H三、填空题(3分?5)1、设,A B 为两个随机事件,已知()13P A B =U ,()19P AB =,则()P B =2、若袋中有5只⽩球和6只⿊球,现从中任取三球,则它们为同⾊的概率是 3、设⼆维随机变量(,)X Y 的概率密度为:601(,)0x x y f x y ≤≤≤?=?,则(1)P X Y +≤=4、设随机变量X 服从参数为1的指数分布,则数学期望()E X =5、在总体X 的数学期望µ的两个⽆偏估计123141214X X X ++和12312131X X X ++中,最有效的是精品⽂档四、计算题 1、(10分)甲箱中有a 个红球,b 个⿊球,⼄箱中有a 个⿊球,b 个红球,先从甲箱中随机地取出⼀球放⼊⼄箱。
完整word版概率论与数理统计期末考试试题及答案

X其概率分布为设随机变量)(2P 0.2 0.3 0.1 0.4
则()。}{X1.5P(D) (A)0.6 (B) 1 (C) 0
3)(AA同时发生必导致事件发生,则下列结论正确的是(与)设事件A21P(A)P(AA)P(A)P(A))A()(B112P(A)P(AA)P(A)P(A))C()(D211
(4)
3,1),Y~N(N(2,1),X~且设随机变量7,Z~X2Y(Z,).则立令0,54).(C)30N);,((A)N05(B)(,);N(0,46);
12P(A)12P(A)12XY相互独与(D)N(
2的一个简单随机样本,其中设X,XX,,2N为正态总体)(,)(5n1,2未知,则()是一个统计量。
解:因为是单调可导的,故可用公式法计算………….1分1y2x
当时,………….2分0X1Yy11,x'x得,由…………4分12yx22y11y1f()22从而的密度函数为…………..5分Yy)(fY0y1
1y1ey122…………..6=分y01
8分已知随机变量和的概率分布为YX)六、(01011YX
11111PP22442而且P{XY0}1.
)(1
设随机变量的分布函数为X)(2x0,0,F(x)xx0.1(1x)e,则的密度函数,.f()2P(x)XX
(3)
???????,,,a2,3设的无偏估计量是总体分布中参数123123?,.a________时当也是的无偏估计量
X,X,X是来自总体的,相互独立设总体和,且都服从),1N(0YXX)4(921XX91UYYY,,是来自总体样本,的样本,则统计量Y91222YY91。服从分布(要求给出自由度)
(1)求随机变量和的联合分布;YX(2)判断与是否相互独立?YX
《概率论与数理统计》期末考试题(附答案)

《概率论与数理统计》期末考试题一. 填空题(每小题2分,共计60分)1、A 、B 是两个随机事件,已知0.1p(AB)0.3,)B (p ,5.0)A (p ===,则 =)B -A (p 0.4 、=)B A (p 0.7 、=)B A (p 1/3 ,)(B A P ⋅= 0.3 。
2、一个袋子中有大小相同的红球4只黑球2只,(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为: 8/15 。
(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 4/9 。
(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 13/21 .3、设随机变量X 服从参数为6的泊松分布,则{}=≥1X p 1- 6-e4、设随机变量X 服从B (2,0. 6)的二项分布,则{}==2X p 0.36 , Y 服从B (8,0. 6)的二项分布, 且X 与Y 相互独立,则Y X +服从 B (10,0. 6) 分布,=+)(Y X E 6 。
5、设二维随机向量),(Y X 的分布律是有则=a _0.3_,X 的数学期望=)(X E ___0.5_______,Y X 与的相关系数=xy ρ___0.1_______。
第 1页共 4 页6、三个可靠性为p>0的电子元件独立工作,(1)若把它们串联成一个系统,则系统的可靠性为:3p ;(2)若把它们并联成一个系统,则系统的可靠性为:3)1(1p --;7、(1)若随机变量X )3,1(~U ,则{}=20〈〈X p 0.5;=)(2X E _13/3, =+)12(X D 3/4 .(2)若随机变量X ~)4 ,1(N 且8413.0)1(=Φ则=<<-}31{X P 0.6826 , (~,12N Y X Y 则+= 3 , 16 )。
8、随机变量X 、Y 的数学期望E(X)=1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:=+)2(Y X E 5 ,=+)2(Y X D 17 。
概率论与数理统计期末考试试卷及答案
姓名: 班级: 学号: 得分:
一.选择题(18 分,每题 3 分) 1. 如果 P ( A ) + P ( B ) > 1 ,则 事件 A 与 B 必定 ( A ) 独立; ( B ) 不独立; (C ) 相容; ( )
( D ) 不相容.
概率统计试卷 A (评分标准)
一. 选择题(15 分,每题 3 分) [ 方括弧内为 B 卷答案 ] C A C A D . . [ A D B C A ]
二. 填空题(18 分,每题 3 分) 1.
0 . 62 [ 0 . 84 ];
)
ì 1 / p , x 2 + y 2 < 1 , 设 ( X , Y ) ~ f ( x , y 则 X 与 Y 为 ) = í 其 他 . î 0 ,
)
( A ) 独立同分布的随机变量; (C ) 不独立同分布的随机变量; 4.
( B ) 独立不同分布的随机变量; ( D ) 不独立也不同分布的随机变量.
ˆ ( A) m 1 = 1 3 1 X 1 + X 2 + X 3 ; 5 10 2
1 6 1 2
)
ˆ 2 = ( B ) m
1 2 4 X 1 + X 2 + X 3 ; 3 9 9 1 1 5 X 1 + X 2 + X 3 . 3 4 12
域为( ) a = 0. 1
2 2 2 2 ( A) c 2 £ c 0 n ) ; ( B ) c 2 ³ c 0 n ) ; (C ) c 2 £ c 0 n ) ; ( D ) c 2 ³ c 0 n ) . . 1 ( . 1 ( . 05 ( . 05 (
2020年大学基础课概率论与数理统计期末考试题及答案(完整版)
2020年大学基础课概率论与数理统计期末考试题及答案(完整版)一、单选题1、在一个确定的假设检验中,与判断结果相关的因素有(A )样本值与样本容量 (B )显著性水平α (C )检验统计量 (D )A,B,C 同时成立 【答案】D2、设X 1,X 2,…X n ,X n+1, …,X n+m 是来自正态总体2(0,)N σ的容量为n+m 的样本,则统计量2121ni i n mi i n m V n =+=+X =X ∑∑服从的分布是(A) (,)F m n (B) (1,1)F n m -- (C) (,)F n m (D)(1,1)F m n -- 【答案】C3、对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =⋅,则 A )()()()D XY D X D Y =⋅ B )()()()D X Y D X D Y +=+ C )X 和Y 独立 D )X 和Y 不独立 【答案】B4、在假设检验问题中,犯第一类错误的概率α的意义是( ) (A)在H 0不成立的条件下,经检验H 0被拒绝的概率 (B)在H 0不成立的条件下,经检验H 0被接受的概率 (C)在H 00成立的条件下,经检验H 0被拒绝的概率 (D)在H 0成立的条件下,经检验H 0被接受的概率 【答案】C5、设X ,Y 是相互独立的两个随机变量,它们的分布函数分别为F X (x),F Y (y),则Z = max {X,Y} 的分布函数是A )F Z (z )= max { F X (x),F Y (y)}; B) F Z (z )= max { |F X (x)|,|F Y (y)|} C) F Z (z )= F X (x )·F Y (y) D)都不是 【答案】C6、对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受00:H μμ=,那么在显著水平0.01下,下列结论中正确的是(A )必须接受0H (B )可能接受,也可能拒绝0H (C )必拒绝0H (D )不接受,也不拒绝0H 【答案】A7、总体X ~2(,)N μσ,2σ已知,n ≥ 时,才能使总体均值μ的置信水平为0.95的置信区间长不大于L (A )152σ/2L (B )15.36642σ/2L (C )162σ/2L (D )16 【答案】B8、设n X X ,,1 是来自总体X 的样本,且μ=EX ,则下列是μ的无偏估计的是( ))(A ∑-=111n i i X n )(B ∑=-n i i X n 111 )(C ∑=ni i X n 21 )(D ∑-=-1111n i i X n 【答案】D9、设离散型随机变量(,)X Y 的联合分布律为 (,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)1/61/91/181/3X Y P αβ且Y X ,相互独立,则A ) 9/1,9/2==βαB ) 9/2,9/1==βαC ) 6/1,6/1==βαD ) 18/1,15/8==βα 【答案】A10、设12,,,n X X X ⋅⋅⋅为总体X 的一个随机样本,2(),()E X D X μσ==,12211()n i i i C XX θ-+==-∑为 2σ的无偏估计,C =(A )1/n (B )1/1n - (C ) 1/2(1)n - (D ) 1/2n - 【答案】C 二、填空题1、用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 【答案】F (a,b)2、设()2,0.3X N μ~,容量9n =,均值5X =,则未知参数μ的置信度为0.95的置信区间是 (查表0.025 1.96Z =)【答案】(4.808,5.196)3、设1621,,,X X X 是来自总体X ),4(~2σN 的简单随机样本,2σ已知,令 ∑==161161i i X X ,则统计量σ-164X 服从分布为 (必须写出分布的参数)。
概率论与数理统计期末考试试题及解答
概率论与数理统计期末考试试题及解答概率论与数理统计》期末试题一、填空题(每小题3分,共15分)1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.9.解:由题意可得P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1-e^(-6)。
解:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ),P(X=2)=λ^2e^(-λ)/2,且P(X≤1)=4P(X=2),可得λ=1,因此P(X=3)=λ^3e^(-λ)/3!=1-e^(-6)。
3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<2;f_Y(y)=1,2<y<4;其它为0.解:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=P(-y≤X≤y)=F_X(y)-F_X(-y)。
因为X~U(0,2),所以F_X(-y)=0,即F_Y(y)=F_X(y)。
又因为f_Y(y)=F_Y'(y)=f_X(y),所以f_Y(y)=1/2,0<y<2;f_Y(y)=1,2<y<4;其它为0.另解:在(0,2)上函数y=x严格单调,反函数为h(y)=y,所以f_Y(y)=f_X(y)/h'(y)=f_X(y)/2y=1/2,0<y<2;f_Y(y)=f_X(y)/h'(y)=f_X(y)/2y=1,2<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-2),则λ=2,P{min(X,Y)≤1}=1-e^(-2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理统计练习一、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B |A)=0.8,则P (A+B)=__ 0.7 __。
2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。
3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。
4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(--X X E =1,则=λ___1____。
5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时 ,成功次数的方差的值最大,最大值为 25 。
6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN 。
7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34。
8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。
9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。
设Z =2X -Y +5,则Z ~ N(-2, 25) 。
10、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。
1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。
2、设X ~B (2,p ),Y ~B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。
3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。
4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。
5、设随机变量X 的概率密度是:⎩⎨⎧<<=其他103)(2x x x f ,且{}784.0=≥αX P ,则α=0.6 。
6、利用正态分布的结论,有⎰∞+∞---=+-dx e x x x 2)2(22)44(21π1 。
7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (Y )= 3/4 。
8、设(X ,Y )为二维随机向量,D (X )、D (Y )均不为零。
若有常数a >0与b 使{}1=+-=b aX Y P ,则X 与Y 的相关系数=XY ρ-1 。
9、若随机变量X ~N (1,4),Y ~N (2,9),且X 与Y 相互独立。
设Z =X -Y +3,则Z ~ N (2, 13) 。
10、设随机变量X ~N (1/2,2),以Y 表示对X 的三次独立重复观察中“2/1≤X ”出现的次数,则}2{=Y P = 3/8 。
1、设A ,B 为随机事件,且P (A)=0.7,P (A -B)=0.3,则=⋃)(B A P 0.6 。
2、四个人独立地破译一份密码,已知各人能译出的概率分别为61,31,41,51,则密码能被译出的概率是 11/24 。
5、设随机变量X 服从参数为λ的泊松分布,且{}{}423===X P XP ,则λ= 6 。
6、设随机变量X ~ N (1, 4),已知Φ(0.5)=0.6915,Φ(1.5)=0.9332,则{}=<2X P 0.6247 。
7、随机变量X 的概率密度函数1221)(-+-=x xe xf π,则E (X )= 1 。
8、已知总体X ~ N (0, 1),设X 1,X 2,…,X n 是来自总体X 的简单随机样本,则∑=ni iX12~)(2n x 。
9、设T 服从自由度为n 的t 分布,若{}αλ=>T P ,则{}=-<λT P 2a 。
10、已知随机向量(X ,Y )的联合密度函数⎩⎨⎧≤≤≤≤=其他,010,20,),(y x xy y x f ,则E (X )= 4/3 。
1、设A ,B 为随机事件,且P (A)=0.6, P (AB)= P (B A ), 则P (B )= 0.4 。
2、设随机变量X 与Y 相互独立,且5.05.011P X -,5.05.011P Y -,则P (X =Y )=_ 0.5_。
3、设随机变量X 服从以n , p 为参数的二项分布,且EX =15,DX =10,则n = 45 。
4、设随机变量),(~2σμN X ,其密度函数644261)(+--=x x ex f π,则μ= 2 。
5、设随机变量X 的数学期望EX 和方差DX >0都存在,令DXEX X Y/)(-=,则D Y= 1 。
6、设随机变量X 服从区间[0,5]上的均匀分布,Y 服从5=λ的指数分布,且X ,Y 相互独立,则(X , Y )的联合密度函数f (x ,y )= ⎩⎨⎧≥≤≤-其它,505y x e y。
7、随机变量X 与Y 相互独立,且D (X )=4,D (Y )=2,则D (3X -2Y )= 44。
8、设n X X X ,,,21 是来自总体X ~ N (0, 1)的简单随机样本,则∑=-ni iX X12)(服从的分布为)1(2-n x 。
9、三个人独立地向某一目标进行射击,已知各人能击中的概率分别为31,41,51,则目标能被击中的概率是3/5 。
10、已知随机向量(X , Y )的联合概率密度⎩⎨⎧>≤≤=-其它0,10,4),(2y x xe y x f y ,则E Y = 1/2 。
1、设A,B 为两个随机事件,且P(A)=0.7, P(A-B)=0.3,则P(AB )=__0.6 __。
2、设随机变量X 的分布律为21211pX ,且X 与Y 独立同分布,则随机变量Z =max{X ,Y }的分布律为434110PZ。
3、设随机变量X ~N (2,2σ),且P {2 < X <4}=0.3,则P {X < 0}=0.2 。
4、设随机变量X 服从2=λ泊松分布,则{}1≥X P =21--e 。
5、已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为)2(21yf X -。
6、设X 是10次独立重复试验成功的次数,若每次试验成功的概率为0.4,则=)(X D 2.4 。
7、X 1,X 2,…,X n 是取自总体()2,σμN 的样本,则212)(σ∑=-ni iX X~)1(2-n x 。
8、已知随机向量(X , Y )的联合概率密度⎩⎨⎧>≤≤=-其它0,10,4),(2y x xe y x f y ,则E X = 2/3 。
9、称统计量θθ为参数ˆ的 无偏 估计量,如果)(θE =θ。
10、概率很小的事件在一次试验中几乎是不可能发生的,这个原理称为 小概率事件原理。
1、设A 、B 为两个随机事件,若P (A)=0.4,P (B)=0.3,6.0)(=⋃B A P ,则=)(B A P 0.3 。
2、设X 是10次独立重复试验成功的次数,若每次试验成功的概率为0.4,则=)(2X E 18.4 。
3、设随机变量X ~N (1/4,9),以Y 表示对X 的5次独立重复观察中“4/1≤X ”出现的次数,则}2{=Y P = 5/16 。
4、已知随机变量X 服从参数为λ的泊松分布,且P(X =2)=P(X =4),则λ=32。
5、称统计量θθ为参数ˆ的无偏估计量,如果)(θE =θ 。
6、设)(~),1,0(~2n x Y N X ,且X ,Y 相互独立,则~n YXt(n) 。
7、若随机变量X ~N (3,9),Y ~N (-1,5),且X 与Y 相互独立。
设Z =X -2Y +2,则Z ~ N (7,29) 。
8、已知随机向量(X , Y )的联合概率密度⎩⎨⎧>≤≤=-其它0,10,6),(3y x xey x f y,则E Y = 1/3 。
9、已知总体n X X X N X ,,,),,(~212 σμ是来自总体X 的样本,要检验202σσ=:o H ,则采用的统计量是202)1(σS n -。
10、设随机变量T 服从自由度为n 的t 分布,若{}αλ=>T P ,则{}=<λT P 21a-。
1、设A 、B 为两个随机事件,P (A)=0.4, P (B)=0.5,7.0)(=B A P ,则=)(B A P 0.55 。
2、设随机变量X ~ B (5, 0.1),则D (1-2X )= 1.8 。
3、在三次独立重复射击中,若至少有一次击中目标的概率为6437,则每次射击击中目标的概率为 1/4 。
4、设随机变量X 的概率分布为5.0)3(,3.0)2(,2.0)1(======X P X P X P ,则X 的期望E X = 2.3。
5、将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于-1。
6、设(X , Y )的联合概率分布列为若X 、Y 相互独立,则a = 1/6 ,b = 1/9 。
7、设随机变量X 服从[1,5]上的均匀分布,则{}=≤≤42X P 1/2 。
8、三个人独立地破译一份密码,已知各人能译出的概率分别为31,41,51,则密码能被译出的概率是3/5 。
9、若n X X X N X ,,,),,(~2121 σμ是来自总体X 的样本,2,S X 分别为样本均值和样本方差,则SnX )(μ-~ t (n-1) 。
10、θθθ是常数21ˆ,ˆ的两个无偏估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ 有效 。
1、已知P (A)=0.8,P (A -B)=0.5,且A 与B 独立,则P (B) = 3/8 。
2、设随机变量X ~N (1,4),且P{ X ≥ a }= P{ X ≤ a },则a = 1 。
3、随机变量X 与Y 相互独立且同分布,21)1()1(=-==-=Y P X P ,21)1()1(====Y P X P ,则()0.5P X Y ==。
4、已知随机向量(X , Y )的联合分布密度⎩⎨⎧≤≤≤≤=其它010,104),(y x xy y x f ,则EY = 2/3 。
5、设随机变量X ~N (1,4),则{}2>X P = 0.3753 。
(已知Φ(0.5)=0.6915,Φ(1.5)=0.9332) 6、若随机变量X ~N (0,4),Y ~N (-1,5),且X 与Y 相互独立。