四年级奥数课后分层作业-第17讲 数数图形(一) 通用版

合集下载

四年级奥数思维训练专题-数数图形

四年级奥数思维训练专题-数数图形

四年级奥数思维训练专题-数数图形专题简析:当线段、角、三角形、长方形等图形重重叠叠地交错在一起时就构成了复杂的几何图形.要想准确地计数这类图形中所包含的某一种基本图形的个数,必须注意以下几点:1,弄清被数图形的特征和变化规律.2,要按一定的顺序数,做到不重复,不遗漏.例1:数一数下图中共有多少个三角形.分析:以AD上的线段为底边的三角形也是1+2+3=6个;以EF上的线段为底边的三角形也是1+2+3=6个.所以图中共有6×2=12个三角形.试一试1:数一数下面各图中各有多少个三角形.()个三角形()个三角形例2:数一数下图中有多少个长方形.·分析:数长方形与数线段的方法类似.可以这样思考,图中的长方形的个数取决于AB或CD边上的线段,AB边上的线段条数是1+2+3=6条,所以图中有6个长方形.试一试2:数一数下面各图中分别有多少个长方形.()个长方形数数图形(二)专题简析:“数图形”时,既可以逐个计数,也可以把图形分成若干个部分,先对每部分按照各自构成的规律数出图形的个数,再把他们的个数合起来.例1:数一数下图中有多少个长方形?分析:AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边上的每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有6×3=18个长方形.即:长边线段数×宽边线段数=长方形的个数试一试1:数一数,下图中有( )个长方形.例2:数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)分析:图中边长为1个长度单位的正方形有3×3=9个,边长为2个长度单位的正方形有2×2=4个,边长为3个长度单位的正方形有1×1=1个.所以图中的正方形总数为:1+4+9=14个.经进一步分析可以发现,由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n.试一试2:数一数下图中有()个正方形.(每个小方格为边长是1的小正方形)例3:数一数右图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)分析:边长是1个长度单位的正方形有6×4=24个;边长是2个长度单位的正方形有(6-1)×(4-1)=15个;边长是3个长度单位的正方形有(6-2)×(4-2)=8个;边长是4个长度单位的正方形有(6-3)×(4-3)=3个;共有:24+15+8+3=50个.如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m -2)(n-2)+…+(m-n+1)·1试一试3:数一数下图中有( )个正方形.。

四年级奥数课后分层作业-第18讲 数数图形(二) 通用版

四年级奥数课后分层作业-第18讲  数数图形(二) 通用版

四年级奥数重点常考第十八讲数数图形(二)
分层作业
基础卷
1、数一数下图中有多少个正方形。

2、下图中有多少个长方形,其中有多少个正方形?
3、从北京到上海的某次列车中途要停靠10个站,北京站要为这次列车准备多少种不同的车票?有多少种不同的票价?
4、从大连到广州的航运线上,中途有8个停靠码头,若干艘客轮来回往返于大连与广州之间,航运公司共要为这条航运线准备多少种不同的船票?
5、求下图中所有线段长度的总和。

(单位:米)
6、一条线段上有10个点(包括两个端点),相邻两点的距离都是5厘米,那么所有线段长度的总和是多少?
答案。

四年级奥数基础教程第17讲 数阵图(二)

四年级奥数基础教程第17讲 数阵图(二)

第17讲数阵图(二)例1在右图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21。

解:由上一讲例4知中间方格中的数为7。

再设右下角的数为x,然后根据任一行、任一列及每条对角线上的三个数之和都等于21,如下图所示填上各数(含x)。

因为九个数都不大于12,由16-x≤12知4≤x,由x+2≤12知x≤10,即4≤x≤10。

考虑到5,7,9已填好,所以x只能取4,6,8或10。

经验证,当x=6或8时,九个数中均有两个数相同,不合题意;当x=4或10时可得两个解(见下图)。

这两个解实际上一样,只是方向不同而已。

例2将九个数填入右图的空格中,使得每行、每列、每条对角线上的三个数之和都相等,则一定有证明:设中心数为d。

由上讲例4知每行、每列、每条对角线上的三个数之和都等于3d。

由此计算出第一行中间的数为2d——b,右下角的数为2d-c(见下图)。

根据第一行和第三列都可以求出上图中★处的数由此得到3d-c-(2d-b)=3d-a-(2d-c),3d-c-2d+b=3d-a-2d+c,d——c+b=d——a+c,2c=a+b,a+bc=2。

值得注意的是,这个结论对于a和b并没有什么限制,可以是自然数,也可以是分数、小数;可以相同,也可以不同。

例3在下页右上图的空格中填入七个自然数,使得每一行、每一列及每一条对角线上的三个数之和都等于90。

解:由上一讲例4知,中心数为90÷3=30;由本讲例2知,右上角的数为(23+57)÷2=40(见左下图)。

其它数依次可填(见右下图)。

例4在右图的每个空格中填入个自然数,使得每一行、每一列及每条对角线上的三个数之和都相等。

解:由例2知,右下角的数为(8+10)÷2=9;由上一讲例4知,中心数为(5+9)÷2=7(见左下图),且每行、每列、每条对角线上的三数之和都等于7×3=21。

人教版四年级数学奥数 数数图形(课件)(共20张PPT)

人教版四年级数学奥数 数数图形(课件)(共20张PPT)

【例题1】数一数下图中有多少个锐角。
【思路导航】 数角的方法和数线段的方法类似,图中的五条射线相当于线段上的五个点, 因此,要求图中有多少个锐角,可根据公式1+2+3……(总射线数-1)求得: 1+2+3+4=10(个).
【例题2】 数一数下图中有多少个长方形?
【思路导航】 图中的AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边பைடு நூலகம்的
第12讲 数数图形
小学奥数 四年级
同学们对于图形肯定不陌生,但数学中经常会出现这样的题目: (1)下图中共有几条线段? (2)下图中共有几个长方形?
要正确解答这类问题,就要做到数图形时不重复、不遗漏。这就需要 我们按照一定的顺序去数,并找出它的规律,巧妙地数出图形的个数。数 图形的方法一般有两种:按顺序数和分类数。今天就让我们用数学的方法 巧妙地数图形吧!
实践与应用
【练习5】 P94 数一数,下图中共有多少个长方形?
同学们,图形世界是不是非赏精彩呢?数学的魅力就在于千变万化的图形和数字。通过 这一进,我们对图形有了更深的认识,遇到数图形的问题也能有序、严密地思索,关于数 图形,我们来总结一些最基本的方法吧。
(1)数线段。假设端点有n个(n是整数),那么线段的总条数就是从比n小1的数开始, 一直加到1。
每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有 6×3=18个长方形。 数长方形可以用下面的公式:长边上的线段×短边上的线段=长方形的个数
【例题3】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个 长度单位的正方形)
【思路导航】 边长是1个长度单位的正方形有3×2=6个,边长是2个长度单位的正方形有 2×1=2个。所以,图中正方形的总数为:6+2=8个。 经进一步分析可以发现,一般情况下,如果一个长方形的长被分成m等份, 宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为: mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.

人教版小学二年级奥数第十七讲数图形

人教版小学二年级奥数第十七讲数图形

学生姓名年级二年级科目数学教师姓名学时第17讲授课时间2013-2-20授课题目数图形教学目标1、熟练掌握图形计数的方法,能够又快又准地计算出图形个数。

2、培养学生的观察能力,提高思维的灵活性。

重点难点按顺序分类,做到不重复,不遗漏。

作业检查教师反馈知识掌握①②③④⑤⑥⑦⑧⑨⑩教师签名:能力培养①②③④⑤⑥⑦⑧⑨⑩思想态度①②③④⑤⑥⑦⑧⑨⑩本次课总体评价:学生签名:学生自评本次课收获和自我感受(对应分值上打√)①②③④⑤⑥⑦⑧⑨⑩家长意见家长签名:教学主管审核:年月日教学过程例1. 数出下面图中有多少条线段。

画龙点睛:按照一定的顺序来数,做到不重复,不遗漏。

从图中可以看出,从A点出发的不同线段有3条:AB、AC、AD;从B点出发的不同线段有2条:BC、BD;从C点出发的不同线段有1条:CD。

因此,图中共有3+2+1=6条线段。

数线段的规律:线段上有n个点(包括两个端点),n个点把这条线段共分成线段总数为:1+2+3+…+(n-1)。

举一反三:1、数一数,下图中共有多少条线段?(1)A B C D E(2)A B C D E F(3)观察下图,数一数图共中多少条线段?例2.数出下面图中有多少个角。

数角的规律:数角的方法和数线段的方法类似,图中共有n 条射线组成若干个角,角的总个数为1+2+3+…+(n-1)。

解:图中有4条射线,所以角的个数为:1+2+3=6(个)答:共有6个角。

举一反三:数出下列图中有多少个角。

例3. 数一数图中共有多少个三角形?举一反三:数一数,下列各图中有多少个三角形。

(1)(2)(3) (4)例4 数一数下图中共有多少个正方形。

(1)(2)举一反三数一数下图中共有多少个正方形。

(1)(2)(3)(4)(5)小红在纸上画了一条线段,小亮又拿起笔,在小红画的线段上点了5个点,然后问小红:“你知道现在一共有多少条线段吗?”小红一会儿就说出了答案。

聪明的小朋友,你知道小红说的是几吗?作业1.下列图形各有几条线段。

小学四年级奥数思维训练-数数图形

小学四年级奥数思维训练-数数图形

小学四年级奥数思维训练-数数图形数数图形专题简析:当线段、角、三角形、长方形等图形重重叠叠地交错在一起时就构成了复杂的几何图形.要想准确地计数这类图形中所包含的某一种基本图形的个数,必须注意以下几点:1,弄清被数图形的特征和变化规律.2,要按一定的顺序数,做到不重复,不遗漏.例1:数一数下图中共有多少个三角形.分析:以AD上的线段为底边的三角形也是1+2+3=6个;以EF上的线段为底边的三角形也是1+2+3=6个.所以图中共有6×2=12个三角形..()个三角形()个三角形例2:数一数下图中有多少个长方形.·分析:数长方形与数线段的方法类似.可以这样思考,图中的长方形的个数取决于AB或CD 边上的线段,AB边上的线段条数是1+2+3=6条,所以图中有6个长方形.试一试2:数一数下面各图中分别有多少个长方形.()个长方形数数图形(二)专题简析:“数图形”时,既可以逐个计数,也可以把图形分成若干个部分,先对每部分按照各自构成的规律数出图形的个数,再把他们的个数合起来.例1:数一数下图中有多少个长方形?分析:AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边上的每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有6×3=18个长方形.即:长边线段数×宽边线段数=长方形的个数试一试1:数一数,下图中有( )个长方形.例2:数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)分析:图中边长为1个长度单位的正方形有3×3=9个,边长为2个长度单位的正方形有2×2=4个,边长为3个长度单位的正方形有1×1=1个.所以图中的正方形总数为:1+4+9=14个.经进一步分析可以发现,由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n.试一试2:数一数下图中有()个正方形.(每个小方格为边长是1的小正方形)例3:数一数右图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)分析:边长是1个长度单位的正方形有6×4=24个;边长是2个长度单位的正方形有(6-1)×(4-1)=15个;边长是3个长度单位的正方形有(6-2)×(4-2)=8个;边长是4个长度单位的正方形有(6-3)×(4-3)=3个;共有:24+15+8+3=50个.如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)·1试一试3:数一数下图中有( )个正方形.。

(完整版)四年级奥数第一讲_图形的计数问题

第一讲图形的计数问题一、知识点:几何图形计数问题常常没有不言而喻的次序,并且要数的对象往常是重叠交织的,要正确计数就需要一些智慧了.实质上,图形计数问题,往常采纳一种简单原始的计数方法-一列举法.详细而言,它是指把所要计数的对象一一列举出来,以保证列举时无一重复、.无一遗漏,而后计算其总和.正确地解答较复杂的图形个数问题,有助于培育同学们思想的有序性和优秀的学习习惯.二、典例解析:例( 1)数出右图中总合有多少个角解析:在∠ AOB内有三条角分线 OC1、OC2、OC3,∠ AOB被这三条角分线分红 4 个基本角,那么∠ AOB内总合有多少个角呢?第一有这 4 个基本角,其次是包括有 2 个基本角构成的角有 3 个(即∠ AOC2、∠ C1OC3、∠ C2OB),而后是包括有 3 个基本角构成的角有 2 个(即∠ AOC3、∠C1OB),最后是包括有 4 个基本角构成的角有 1 个(即∠ AOB),因此∠ AOB内总合有角:4+3+2+1=10(个)解:4+3+ 2+ 1=10(个)答:图中总合有10 个角。

方法 2:用公式计算:边数×(边数—1)÷ 25 ×( 5-1 )÷ 2=10练一练:数一数右图中总合有多少个角?例( 2 )数一数共有多少条线段?共有多少个三角形?解析:①要数多少条线段:先看线段 AB、AD、AE、AF、AC纵向线段,再看 BC、MN、 GH 这 3 条横向线段:(4×3÷2)×5+(5×4÷2)×3=60(条)②要数有多少个三角形,先看在△ ABC中,被 GH和 MN分红了三层,每一层的三角形同样多,因此只需算出一层三角形个数就能够了。

(5 ×4÷2)×3=30(个)答:在△ ABC中共有线段60 条,共有三角形30 个。

练一练:图中共有多少个三角形?例( 3)数一数图中长方形的个数解析:长边线段有:6× 5÷ 2=15宽边线段有: 4 ×3÷2=6共有长方形: 15×6 = 90(个)答:共有长方形90 个。

四年级数学奥数讲义与练习-第十七讲 错中求解(无答案)全国通用

第十七讲错中求解【知识要点】在加、减、乘、除试题的计算中,如果粗心大意将算式中的一些数字或符号抄错,会使结果发生错误。

能不能根据错误的计算结果,求出正确的结果呢?这就是说为的:“错中求解”。

解答这样的题目,我们要熟悉加、减、乘、除各部分间的关系。

一个加数=和-另一个加数减数=被减数-差被减数=减数+ 差一个因数=积÷另一个因数除数=被除数÷商被除数=商⨯除数在有余数的除法里还有:被除数=商⨯除数+余数除数=(被减数-余数)÷商【经典例题】【例1】小马虎在做一道加法题时,把一个加数十位的5错看成2,另一个加数个位上的4错看成1,结果计算的和为241。

正确的和是多少?【基础巩固】小马虎在做一道加法题时,把一个加数个位上的3看作了5,十位上的4看作7,得到结果为376。

正确的和是多少?【例2】小马虎在做一道减法时,把减数十位上的2看作了5,结果得到的差是342,正确的差是多少?【基础巩固】在减法算式中,错把减数个位上的3写成了5,结果得到的差是254。

正确的差是多少?【例3】小马虎在计算一道题目时,把某数乘3加20,误看成某数除以3减20,得数是72。

某数是多少?正确的得数是多少?【基础巩固】小粗心在计算时,把一个数除以2减4,误看成乘2加上4,得数是36。

正确结果是多少?【例4】小马虎在做两位数乘两位数的题时,把乘数的个位上的5看作2,乘得的结果是550,实际应为625。

这两个两位数各是多少?【基础巩固】小华在做一道两位数乘法时,把乘数个位上的3错写成5,乘得的结果是875,正确的结果是805。

这两个两位数分别是多少?【例5】小林在计算有余数除法时,把被除数137当作173,结果商比正确结果大了4,但余数恰好相同。

正确的除法算式应是什么?【基础巩固】王刚在计算有余数除法时,把被除数171错写成117,结果商比原来少9,但余数恰好相同。

正确的除法算式是怎样的?【自我检测】1.王小明在做一道加法题时,把一个加数十位的5错看成2,另一个加数个位上的4错看成1,结果计算的和为241。

四年级奥数-数数图形-教案.doc

四年级奥数第十三章《数数图形》教案教学目标:1、在学过一些基本的几何图形的基础上,通过观察掌握数线段、角、三角形、长方形的规律和方法。

2、学生通知亲身体验明白数图形时不重复、不遗漏的规律,锻炼数学思维的严谨性。

教学重、难点:在观察的基础上,自己总结出数图形的规律和方法。

教学过程:一、复习:复习以前所学的数简单的线段、三角形、角的方法。

二、新授:例 1:数一数,下图中有多少条线段(1)(2)解答:( 1)4+ 3+ 2+ 1=10(条)答:有10 个线段。

(2) 6+ 5+ 4+3+ 2+ 1=21(条)答:有21 条线段。

总结:如果线段上有 5 个点,就构成了 4 条基本线段,线段总数为:4+ 3+ 2+ 1 这 4 个连续自然数的和。

以此类推。

练习:数线段:师在黑板上画图(线段上有8 个点)。

7+6+ 5+ 4+ 3+2+ 1=28(条)例 2:数角、数三角形。

(1)数角。

(2)数三角形。

(2)数三角形。

解答:( 1) 4+3+ 2+ 1=10(个)答:有10 个角。

(2)4+ 3+ 2+ 1=10(个)答:有 10 个三角形。

(3)(4+ 3+ 2+ 1)× 2=20(个)答:有 20 个三角形。

总结:数角、三角形规律的数线段类似。

练习:数线段:师在黑板上画图(数角和数三角形的)。

例 3:数长方形。

(1)(2)(3)(3)解答:( 1)6 个6=6×1(6=3+ 2+1)(2) 18 个18=6× 3(6=3+ 2+ 1,3=2+ 1)( 3) 60 个60=10× 6(10=4+3+ 2+ 1,6=3+ 2+ 1)总结:数长方形的个数可以用公式:长边上的线段数×宽边上的线段数=长方形的个数练习:师在黑板上画图(数长方形的)。

(如果学生接受好,还可以补充数正方形的方法。

不过,数正方形的方法将在五年级奥数里会学到。

)方法学会了,那么,会有什么用途呢接下来学习数图形的应用。

小学四年级奥数讲义专题一 巧数图形

专题一 数图形
【例题1】数出下图中有多少条线段?
练习1:
(1)数出下图中有多少条线段? (2)数出下图中有几个长方形?
【例题2】数出图中有几个角?
练习2:数出图中有几个角?
(1) (2)
【例题3】
数出右图中共有多少个三角形?
E
A B C D D
A
B
C
O
D
C B A O
C
B
A E
D O
C B
A P
D
C
B
A
练习3:数出图中共有多少个三角形?
(1) (2)
【例题4】数出下图中有多少个长方形?
练习4:
(1)数出下图中有多少个长方形? (2)数出下图中有多少个正方形?
【例题5】有5个同学,每两个人握手一次,一共要握手多少次? 练习5:
(1)银海学校三年级有9个班,每两个班要比赛拔河一次,这样一共要拔河几次?
(2)有1,2,3,4,5,6,7,8等8个数字,能组成多少个不同的两位数?
D
C B A
K
G
I H G
A
D
C
B
A
D
C
B
A
课后习题一
1.下列图形中各有多少条线段?
2.下列图形中各有多少个三角形?
3.数三角形
( )个三角形 ( )个三角形
4.数长方形
( )个长方形 ( )个长方形
( )个长方形 ( )个长方形
5.数正方形
()个正方形()个正方形()个正方形*6. 下图中,包含“*”号的正方形有多少个?长方形呢?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档