3.3矩阵的秩
矩阵的知识点总结

矩阵的知识点总结一、基本概念1.1 矩阵的定义矩阵是一个由数字排成的矩形阵列。
它由m行n列的数域(通常是实数域或复数域)中的元素所组成,用A=(aij)m×n表示。
1.2 矩阵的分类按行、列的数量可以将矩阵分为行矩阵、列矩阵和方阵;按元素的类型可以分为实矩阵和复矩阵。
1.3 矩阵的转置矩阵A的转置记作A^T,其中A^T的行数等于A的列数,A^T的列数等于A的行数。
1.4 矩阵的秩矩阵的秩是指矩阵中非零行的最大数目。
二、性质2.1 矩阵的加法性质设A、B是同一维数的矩阵,则它们的和A+B也是同一维数的矩阵,它的元素是A和B 对应元素的和。
2.2 矩阵的数乘性质设A是m×n的矩阵,k是数,则kA是m×n的矩阵,它的元素是k与A中对应元素的乘积。
2.3 矩阵的乘法性质设A是m×n的矩阵,B是n×p的矩阵,那么它们的乘积AB是m×p的矩阵。
2.4 矩阵的逆若存在一个矩阵B,使得AB=BA=I,其中I是单位矩阵,则称B是A的逆矩阵,记作A^-1。
2.5 矩阵的行列式对于n阶方阵A,其行列式是一个标量,通常用det(A)或|A|表示,代表了矩阵A的某种代数性质。
三、运算3.1 矩阵的加法设A=(aij)m×n,B=(bij)m×n,那么A+B=(aij+bij)m×n。
3.2 矩阵的数乘设A=(aij)m×n,k是数,则kA=(kaij)m×n。
3.3 矩阵的乘法设A=(aij)m×n,B=(bij)n×p,那么AB=(cij)m×p,其中cij=∑(k=1→n)aij*bkj。
3.4 矩阵的转置对于n×m的矩阵A,它的转置矩阵是m×n的矩阵,且满足(a^T)ij=aji。
四、特殊矩阵4.1 方阵每个元素是一个标量的矩阵,其中行数和列数相等。
4.2 零矩阵所有元素都是零的矩阵。
研究生《矩阵论》教学大纲

《矩阵论》教学大纲Matrix Theory第一部分大纲说明1. 课程代码:2. 课程性质:专业学位课3. 学时/学分:40/2.54. 课程目标:《矩阵论》课程旨在培养学生学习和掌握信息计算相关的矩阵基础理论及矩阵计算方法。
通过本课程的学习,使得学生在已掌握本科阶段线性代数知识的基础之上,进一步深化和提高矩阵理论的相关知识,为学习后续课程、开展工程与科学研究打下必要基础。
5. 教学方式:课堂讲授6. 考核方式:考试7. 先修课程:线性代数、高等数学9. 教材及教学参考资料:(一)教材:《矩阵论》科学出版社,主编戴华(二)教学参考资料:《矩阵论》华中科技大学出版社主编杨明,刘先忠第二部分教学内容和教学要求第1章线性空间与线性变换教学内容:1.1线性空间的基本概念及性质1.2线性变换及其矩阵表示教学要求:理解线性空间的定义,理解线性空间的基、维数与坐标变换等知识,了解线性空间的子空间。
第2章矩阵的对角化、Jordan标准形教学内容:2.1 矩阵的特征值与特征向量2.2矩阵相似与相似对角化2.3 Hermite矩阵与Hermite二次型2.4 矩阵2.5 矩阵相似的条件2.6 矩阵的Jordan标准形教学要求:掌握矩阵的相似对角化方法;了解Hermite矩阵的概念,掌握向量组正交标准化的方法;理解初等因子及相关理论,掌握矩阵Jordan标准形的求解方法。
第3章矩阵分解教学内容:3.1 Gauss消去法与矩阵的三角分解3.2 矩阵的QR分解3.3 矩阵的满秩分解3.4 矩阵的奇异值分解教学要求:掌握矩阵的三角分解方法,掌握矩阵的QR分解及满秩分解方法,了解矩阵的奇异值分解。
第4章欧式空间与酉空间教学内容:4.1 欧式空间与酉空间的定义4.2 Schmidt正交化方法4.3 酉变换与正交变换教学要求:理解欧式空间的概念,理解酉空间的概念,会判断一个空间是否为酉空间;了解酉变换与正交变换;掌握向量组正交标准化的方法。
3.3 向量组的极大无关组与秩

矩阵 C的列向量组能由 A的列向量组线性表示,
因此r ( C ) r ( A). 又因为 C T B T AT ,由上段证明知 r ( C T ) r ( B T ), 25 即r ( C ) r ( B).
练习
1.求下列向量组的秩:
T T (1) 1 (2, 1, 1) , 2 (5, 4, 2, ) , 3 (3, 6, 0) T T ( 3 , 1 , 0 , 2 ) ( 1 , 1 , 2 , 1 ) (2) 1 , , 2 3 (1, 3, 4, 4) T .
20
得
1 1 3 2 , 2 1 2 .
1 1 0 0 1 1 0 0 1 0 0 1
1 0 1 2 2 3 1 1 2 2 , 0 0 0 0 0 0
2 0 1 1 而 ( 1 , 2 , 1 , 2 ) 3 1 3 1
9
定理3.10
若向量组A可由向量组B线性表示,则
r(A) ≤ r(B)。 推论 若向量组A与向量组B等价,则 r(A) = r(B)。
10
回顾
α1 α2
αm
矩阵A既对应一个行向量组,又对应一 个列向量组: 其中 i ( a i 1 , a i 2 , , a in ), i 1, , m a1 j 1 a2 j 2 j 1, 2, , n
28
23
则r 1 1 , 2 2 , , n n r t r ( A) r ( B) r ( A B) r ( A) r ( B)
r i 1 , i 2 , ir , j 1 , j 2 , jt
求矩阵的秩的步骤

矩阵的秩就是指这个矩阵经过行列变换过后,化为最简式,以后非零行或者是非零列的最小的数目,这里简单介绍一下,怎样求矩阵的秩。
工具/原料•矩阵•matlab方法/步骤1.1启动matlab程序。
2.2在命令窗口任意输入一个矩阵a。
>>a=rand(9,9)3.3调用rank函数,按一下回车键即可求得矩阵的秩=9。
4.4再任意输入一个矩阵b。
>>b=rand(5,8)5.5再次调用rank函数,即可求到矩阵的秩=5。
END注意事项•当一个矩阵的秩等于五的时候,就表示矩阵当中有五个飞线性相关的向量组。
•出现的字肯定是小于行数,或者是小于列数。
r3-2r1,r4-r1~1 12 2 10 2 1 5 -10 -2 -1 -5 10 0 -2 2 -2 r3+r2,交换r3 r4~1 12 2 10 2 1 5 -10 0 -2 2 -20 0 0 0 0只是求秩就不用再计算,显然矩阵的秩为3矩阵的秩一般有2种方式定义1.用向量组的秩定义矩阵的秩= 行向量组的秩= 列向量组的秩2.用非零子式定义矩阵的秩等于矩阵的最高阶非零子式的阶单纯计算矩阵的秩时,可用初等行变换把矩阵化成梯形梯矩阵中非零行数就是矩阵的秩这个定义涉及到向量的极大线性无关组.设a1,a2……as为一个n维向量组,如果向量组中有r个向量线性无关,而任何r+1个向量都线性相关,那么这r个线性无关的向量称为向量组的一个极大线性无关组.向量组的极大线性无关组中所含向量的个数,称为向量的秩. 矩阵的行向量的秩称为行秩.列向量的秩成为列秩.。
线性代数讲义03线性方程组

第三章 线性方程组第一节 线性方程组与矩阵的行等价一 线性方程组以前学过求解二元一次方程组与三元一次方程组的方法. 这里研究一般的一次方程组.定义3.1 多元一次方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111称为线性方程组. 方程组有m 个方程, n 个未知数i x (1,2,,i n =), 而ij a (1,2,,i n =;m j ,,2,1 =)是未知数的系数, j b (m j ,,2,1 =)是常数项.如果0=j b (m j ,,2,1 =), 则称为齐次线性方程组, 否则称为非齐次线性方程组.数组n c c c ,,,21 是方程组的一个解, 如果用它们分别代替方程组中的未知数n x x x ,,,21 , 可以使方程组变成等式组. 方程组的全部解的集合称为方程组的通解. 相对于通解, 称方程组的一个解为特解.定义3.2 如果两个线性方程组有相同的通解, 则称它们同解.按照定义, 两个方程组同解是指它们的解的集合相等. 集合相等是一种等价关系, 因此方程组同解也是一种等价关系. 特别, 方程组同解具有传递性.通过消元, 可将线性方程组变成比较简单的同解方程组, 从而得到原方程组的解.例3.1 解线性方程组⎪⎩⎪⎨⎧=++=++=+-52452132321321321x x x x x x x x x .解 从上向下消元, 得同解方程组1232332312243x x x x x x -+=⎧⎪-=⎨⎪-=-⎩. 这种方程组称为阶梯形方程组. 从下向上消元, 得同解方程组⎪⎩⎪⎨⎧-=-=-=310232321x x x .再除以第一个未知数的系数, 得线性方程组的解2/31-=x , 52=x , 33=x .解线性方程组的基本方法是加减消元法. 求解过程中常用三种运算.定义3.3 下列三种运算称为方程组的初等变换.(1) 交换两个方程的位置;(2) 用一个非零常数乘以一个方程;(3) 将一个方程的k 倍加到另一个方程上去.注意 如果用一种初等变换将一个线性方程组变成另一个线性方程组, 则也可以用初等变换将后者变成前者. 即初等变换的过程是可逆的.定理3.1 用初等变换得到的新的线性方程组与原方程组同解.证 先证明只进行一次初等变换.首先如果一组数是原方程组的解, 则它满足方程组中的每一个方程. 此后, 无论进行的是哪种初等变换, 这组数也满足新方程组的每个方程, 因此是新方程组的解. 反之, 由于初等变换的可逆性, 新方程组的解也是原方程组的解. 因此, 两个方程组同解.最后, 由于方程组同解的传递性, 进行任意多次初等变换所得方程组与原方程组同解.二 矩阵的行等价用矩阵乘法, 可以将线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111写作 11121121222212n n m m mn n a a a x a a a x a a a x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=m b b b 21, 称为线性方程组的矩阵表示. 其中n m ⨯矩阵)(ij a A =称为方程组的系数矩阵, 1⨯n 列矩阵),,,(21'=n x x x x 称为未知数(矩阵), 1⨯m 列矩阵),,,(21'=m b b b b 称为常数(矩阵). 此时, 线性方程组可以简写作b Ax =.如果数组n c c c ,,,21 是线性方程组b Ax =的解, 令列矩阵12(,,,)n c c c ξ'=, 则有矩阵等式A b ξ=. 列矩阵12(,,,)n c c c ξ'=是方程组的解的矩阵表示.将常数矩阵添加到系数矩阵上作为最后一列, 得到分块矩阵),(b A A =, 称为线性方程组的增广矩阵.线性方程组与其增广矩阵是互相唯一确定的. 因此, 可以将方程组的语言翻译成矩阵的语言. 从线性方程组的初等变换, 产生矩阵的行初等变换的概念.定义3.4 设A 是矩阵, 则下列三种运算称为对矩阵A 的行初等变换.(1) 交换A 的两行;(2) 用非零常数k 乘以A 的一行;(3) 将A 的一行的k 倍加到另一行上去.定义 3.5 如果通过行初等变换, 可以将矩阵A 变成矩阵B , 则称矩阵A 与B 行等价. 记作B A r−→−. 仿照定理3.1的证明, 可以得到下面的结果.性质3.1 行等价是一种等价关系, 即具有下述性质.(1) 反身性: A A r −→−; (2) 对称性: 如果B A r −→−, 则A B r −→−; (3) 传递性: 如果B A r −→−,C B r −→−, 则C A r −→−. 当一类对象具有多种不同的等价关系时,要用不同的符号予以区别. 矩阵的相等是一种等价关系, 已经用等号表示为B A =. 作为矩阵的另一种等价关系, 行等价使用符号B A r −→−. 用矩阵的行等价的概念, 可以将定理3.1写作:定理3.2 如果两个线性方程组的增广矩阵行等价,则这两个线性方程组同解.通过初等变换, 可以从线性方程组产生一个阶梯形方程组. 换成矩阵的语言, 通过行初等变换, 可以从矩阵产生下面的具有特殊结构的矩阵.如果矩阵中某行中所有元素都是0, 则称为零行, 否则称为非零行.定义3.6 具有下面的性质的矩阵称为行阶梯形阵.(1) 非零行在上, 零行在下;(2) 每个非零行的第一个非零元素(首元素)在上面的非零行的首元素的右下方.例3.2 用行初等变换化简矩阵⎪⎪⎪⎭⎫ ⎝⎛-=521451121312A .解 做行初等变换, 得⎪⎪⎪⎭⎫ ⎝⎛-=521451121312A ⎪⎪⎪⎭⎫ ⎝⎛---−→−343042201312r ⎪⎪⎪⎭⎫ ⎝⎛----−→−310042201312r . 经过消元, 得到的已经是行阶梯形阵. 继续消元, 得⎪⎪⎪⎭⎫ ⎝⎛----−→−310042201312r A ⎪⎪⎪⎭⎫ ⎝⎛----−→−3100100208012r ⎪⎪⎪⎭⎫ ⎝⎛---−→−3100100203002r .最后, 每行除以其首元素, 得⎪⎪⎪⎭⎫ ⎝⎛---−→−3100100203002r A ⎪⎪⎪⎭⎫ ⎝⎛-−→−310050102/3001r .定义3.7 具有下列性质的行阶梯形阵称为行最简阵.(1) 每个非零行的首元素等于1;(2) 包含首元素的列的其它元素都是0.在例3.2中, 最后得到的是行最简阵. 由以上的讨论, 可得下面的定理.定理3.3 对于任意矩阵A , 存在一个行最简阵R , 使得A 与R 行等价.如果矩阵A 与行阶梯形阵R 行等价,则称R 是A 的行阶梯形阵. 如果A 与行最简阵R 行等价, 则称R 为矩阵A 的行等价标准形.其实, 例3.2中的矩阵就是例3.1中线性方程组的增广矩阵. 而矩阵的行初等变换的过程与线性方程组的初等变换的过程完全一样. 唯一的区别在于这里只有系数和常数, 没有未知数和等号. 由于增广矩阵与线性方程组可以互相唯一确定, 缺少未知数和等号完全不影响问题的解决.习题3-11. 写出线性方程组⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x 的系数矩阵与增广矩阵, 并用消元法求解.2. 设线性方程组的增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛------1681355422351312, 写出该线性方程组, 并用消元法求解.3. 求下列矩阵的行等价标准形.(1)102120313043-⎛⎫ ⎪ ⎪ ⎪-⎝⎭; (2) 023*********-⎛⎫ ⎪- ⎪ ⎪--⎝⎭; (3) 11343335412232033421--⎛⎫ ⎪-- ⎪ ⎪-- ⎪ ⎪---⎝⎭; (4) 23137120243283023743--⎛⎫ ⎪-- ⎪ ⎪- ⎪ ⎪-⎝⎭. 4. 求t 的值, 使得矩阵⎪⎪⎪⎭⎫ ⎝⎛-----t 22122351311321的行等价标准形恰有两个非零行.第二节 矩阵的秩一 矩阵的秩的定义定义 3.8 设矩阵n m ij a A ⨯=)(, 从A 中任意选取k 行,k 列(},min{n m k ≤), 位于这些行与列的交叉点上的2k 个元素按照原来的相对位置构成的k 阶行列式称为A 的一个k 阶子式. 例如, 位于矩阵⎪⎪⎪⎭⎫ ⎝⎛---=312097102431A 的第一,三行, 第二,四列的二阶子式为133223-=-. 一个n m ⨯矩阵有kn k m C C 个k 阶子式. 矩阵的每个元素都是它的一个一阶子式. 而n 阶方阵的行列式是它的唯一的n 阶子式.定义3.9 如果矩阵n m ij a A ⨯=)(中有一个r 阶子式不等于零, 而所有1+r 阶子式都等于零, 则称矩阵A 的秩等于r . 记作r A =)rank(.如果矩阵的所有1+r 阶子式都等于零, 根据行列式按照一行展开, 可以证明所有更高阶的子式也都等于零. 因此, 矩阵的秩等于它的不等于零的子式的最高阶数.约定 对于零矩阵O , 约定0)rank(=O .由矩阵的秩的定义, 可以得到下面简单事实:(1) 设A 是非零矩阵, 则1)rank(≥A ;(2) 设A 是n m ⨯矩阵, 则},min{)rank(n m A ≤;(3) n 阶方阵A 可逆的充分必要条件为n A =)rank(. 于是, 可逆阵又称为满秩阵.例3.3 设⎪⎪⎪⎭⎫ ⎝⎛=064212100321A , 求它的秩.解 左上角的二阶子式不等于零. 而所有四个三阶子式都等于零. 于是, 2)rank(=A . 例3.4 求对角阵),,,diag(21n a a a A =的秩.解 由不等于0的主对角元素所在的行与列确定的子式不等于0. 而阶数高于这个子式的子式必然有零行. 因此对角阵的秩等于其不等于0的主对角线元素的个数.例3.5 设矩阵A 的秩等于0>r , 从A 删除一行得到矩阵B , 问B 的秩可能取哪些值? 如果给A 添加一行呢?解 因为矩阵B 的子式也是矩阵A 的子式, 所以B 的秩不大于A 的秩.已知r A =)r a n k (, 不妨设A 的r 阶子式D 不等于0. 如果D 也是B 的子式, 则r B =)rank(. 否则, 根据行列式按照一行展开, 在D 的未被删除的1-r 行中, 至少有一个1-r 阶子式不等于0. 于是1)rank(-≥r B .仿照上面的证明, 添加一行所得矩阵的秩等于r , 或者1+r .性质3.2 设A 是矩阵, k 是数, 则(1) 转置: )rank()rank(A A =';(2) 数乘: 如果0≠k , 则)rank()rank(A kA =.证 只证(2).考虑矩阵A 的一个s 阶子式s D , 根据矩阵的性质2.6, 矩阵kA 的相应的子式等于s s D k .已知0≠k , 因此0=s s D k 的充分必要条件为0=s D .设r A =)rank(, 则A 有一个r 阶子式不等于0, 而所有1+r 阶子式都等于0. 根据前面的分析, 矩阵kA 具有相同的性质. 因此, r kA =)rank(.二 行初等变换用定义计算矩阵的秩时, 需要计算许多个行列式. 计算量非常大.定理3.4 设矩阵A 与B 行等价, 则rank()rank()A B =.证 设一次行初等变换将矩阵A 变成矩阵B ,且r A =)r a n k (, 则A 的所有1+r 阶子式都等于0. 下面对于三种行初等变换证明矩阵B 的所有1+r 阶子式也都等于0.(1) 矩阵A 的一行乘以非零常数k . 此时B 的一个1+r 阶子式或者就是A 的相同位置的1+r 阶子式, 或者是A 的相同位置的1+r 阶子式的一行乘以非零常数k . 于是, B 的所有1+r 阶子式都等于0.(2) 交换矩阵A 的两行. 考虑B 的一个1+r 阶子式D , 则A 有一个1+r 阶子式与D 的差别至多是行的顺序不同. 于是, B 的所有1+r 阶子式都等于0.(3) 将A 的第j 行的k 倍加到第i 行. 如果B 的一个1+r 阶子式不包含A 的第i 行, 它就是A 的相同位置的1+r 子式. 如果B 的一个1+r 阶子式D 包含A 的第i 行, 用行列式的性质, 这个子式可以分解为21kD D +, 其中1D 就是A 的相同位置的1+r 子式. 如果D 不包含A 的第j 行, 则2D 可以由A 的某个1+r 阶子式经交换行得到. 如果D 包含A 的第j 行, 则2D 有两个相同的行. 于是, B 的所有1+r 阶子式都等于0.总之, )rank()rank(A r B =≤.另一方面, 由矩阵的行等价的对称性, 也可以用行初等变换将矩阵B 变成矩阵A . 从而还有)rank()rank(B A ≤. 于是, 无论做哪种行初等变换, 都有rank()rank()A B =.最后, 由矩阵的行等价的传递性, 进行多次行初等变换也不改变矩阵的秩.推论 3.1 矩阵的秩等于它的行阶梯形阵中非零行的个数, 也就是行等价标准形中非零行的个数.证 设矩阵A 的行等价标准形R 中恰有r 个非零行, 则所有1+r 阶子式都等于0. 另一方面, 它的非零行的首元素所在的列的前r 行构成r 阶单位阵. 于是r R =)rank(. 根据定理 3.4, 有r A =)rank(.例3.6 求矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=7931181332111511A 的秩. 解 用行初等变换, 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=7931181332111511A −→−r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----81440472047201511−→−r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0000000047201511. 矩阵A 的行阶梯形阵有两个非零行, 因此, 2)rank(=A .例3.7 设分块矩阵⎪⎪⎭⎫ ⎝⎛=C O O B A , 求证: )rank()rank()rank(C B A +=. 证 设矩阵C B ,的行等价标准形分别为R 和S , 分别对B 和C 所在的行做行初等变换, 得⎪⎪⎭⎫ ⎝⎛=C O O B A ⎪⎪⎭⎫ ⎝⎛−→−S O O R r , 其中R 和S 分别是B 和C 的行等价标准形. 将R 所在的行中的零行移动到矩阵的最下方, 而不改变非零行的上下顺序, 可得到一个行最简阵. 而且, 这就是A 的行等价标准形. 于是, A 的行等价标准形中非零行的个数恰等于B 与C 的行等价标准形中非零行的个数之和.用这个方法可以证明: 准对角阵的秩等于各对角块的秩的和.习题3-21. 设矩阵⎪⎪⎭⎫ ⎝⎛=75211111A ,按照从小到大的顺序排列它的所有二阶子式. 2. 设n m ⨯矩阵A 的秩等于r , 任取A 的s 行构成矩阵B , 求证: m s r B -+≥)rank(. *3. 设A 是n m ⨯矩阵,求证:1)rank(=A 的充分必要条件为: 存在1⨯m 非零矩阵B 与n ⨯1非零矩阵C ,使得BC A =.4. 用行初等变换求下列矩阵的秩.(1) 123235471⎛⎫ ⎪- ⎪ ⎪⎝⎭; (2) 321322131345561---⎛⎫ ⎪-- ⎪ ⎪--⎝⎭; (3) 1010011000011000011001011⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭; (4) 132541413514243273613-⎛⎫ ⎪ ⎪ ⎪ ⎪-⎝⎭. 5. 求t 的值, 使得方阵⎪⎪⎪⎭⎫ ⎝⎛-=t A 23312231的秩等于2.第三节 齐次线性方程组的基础解系齐次线性方程组的矩阵表示为0=Ax . 此时方程组与其系数矩阵A 互相唯一确定.齐次线性方程组0=Ax 总有零解. 于是, 解齐次线性方程组的基本问题是:(1) 对给定的齐次线性方程组,判定是否有非零解;(2) 如果有非零解, 求出所有的解(通解). 性质 3.3 如果列矩阵1ξ与2ξ是齐次线性方程组0=Ax 的两个特解, 则对于任意的数k h ,, 列矩阵21ξξk h +也是方程组的解.证 将21ξξk h +代入方程组, 得)(21ξξk h A +00021=+=+=ξξkA hA . 由定理3.2与定理3.3可得解齐次线性方程组的基本路线. 下面通过例题予以说明.例1求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++=-+++=-----=+++0434503223006225432154321543215432x x x x x x x x x x x x x x x x x x x 的通解. 解 首先写出方程组的系数矩阵.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------=14345321231111162210A . 然后做行初等变换, 由矩阵A 产生行阶梯形阵. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------14345321236221011111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----−→−00000010006221011111r . 继续做行初等变换, 得到矩阵A 的行等价标准形.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000010006021050101⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--−→−00000010006021050101r . 从行等价标准形得到同解方程组⎪⎪⎩⎪⎪⎨⎧===++=--000062054532531x x x x x x x .将行等价标准形的非零行中的首元素对应的未知数留在方程组的左边, 将其余未知数移到方程组的右边, 得到⎪⎪⎩⎪⎪⎨⎧==--=+=0006254532531x x x x x x x . 任意取定右边未知数(自由未知数)的值, 则左边未知数(约束未知数)的值也随之确定, 由此产生方程组的一个解.实际上,由此可以得到方程组的全部解. 设),,,,(54321'd d d d d 是方程组的任意的特解, 上面求解时3x 与5x 可以任意取值, 自然包含取值33d x =与55d x =. 由于),,,,(54321'd d d d d 是方程组的解, 必须满足方程组.因此5315d d d +=,53262d d d --=,04=d . 于是, 这个特解可以由上面的方法产生.令h x =3,k x =5, 得到齐次线性方程组的通解k h x 51+=,k h x 622--=,h x =3, 04=x , k x =5, 其中k h ,是任意常数.在通解中令1=h ,0=k , 得到齐次线性方程组的一个特解1(1,2,1,0,0)ξ'=-. 反之, 令0=h ,1=k , 得到另一个特解2(5,6,0,0,1)ξ'=-. 从而得到齐次线性方程组的通解的矩阵表示: 12x h k ξξ=+, 其中k h ,是任意常数. 为了得到方程组的通解, 只须求得特解1ξ与2ξ, 因此, 称12,ξξ为齐次线性方程组的基础解系.注意 将一个自由未知数取1, 其他自由未知数取0, 得到齐次线性方程组的一个特解. 这些特解的集合就是基础解系. 因此, 如果有s 个自由未知数, 则方程组的基础解系包含s 个特解.定理 3.5 设A 是n m ⨯矩阵, 则齐次线性方程组0=Ax 的基础解系中所包含的特解的个数等于)rank(A n -.证 根据推论 3.1, 系数矩阵A 的秩等于行等价标准形R 中非零行的个数, 也就是约束未知数的个数. 于是, 未知数的个数n 与系数矩阵的秩)rank(A 的差等于自由未知数的个数, 也就是基础解系中所包含的特解的个数.推论 3.2 齐次线性方程组只有零解的充分必要条件为: 系数矩阵的秩等于它的列数.证 根据定理 3.5, 此时没有自由未知数, 于是只有一个零解.推论3.3 设A 是n 阶方阵,求证:齐次线性方程组0=Ax 只有零解的充分必要条件为: 行列式0||≠A .证 根据推论3.2, 齐次线性方程组0=Ax 只有零解的充分必要条件为n A =)rank(. 由矩阵的秩的定义, n A =)rank(的充分必要条件为0||≠A .例 3.9 设A 是n 阶方阵, 且n r A <=)rank(, 求证: 存在n 阶方阵B , 满足O AB =, 且r n B -=)rank(.证 考虑齐次线性方程组0=Ax , 根据定理3.5, 它的r n -个特解12,,,n r ξξξ-组成基础解系. 即有0i A ξ=, r n i -=,,2,1 .构造分块n 阶方阵12(,,,,0,,0)n rB ξξξ-=, 即B 的前r n -列是基础解系中的特解构成的列矩阵, 后面的r 个列的元素都是0. 由基础解系的构造, 在B 的前r n -列中, 与自由未知数对应的行可以构成一个单位阵, 因此r n B -=)rank(.另一方面, 由分块矩阵的运算规则, 有12(,,,,0,,0)n r AB A ξξξ-=12(,,,,0,,0)n r A A A O ξξξ-==.习题3-31. 求下列齐次线性方程组的通解.(1)⎪⎩⎪⎨⎧=+=++=+-03200231321321x x x x x x x x ; (2)⎪⎩⎪⎨⎧=-+-+=+--+=-+-+024242052420632543215432154321x x x x x x x x x x x x x x x ; (3)⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++033450622032305432154325432154321x x x x x x x x x x x x x x x x x x x ; (4)⎪⎪⎩⎪⎪⎨⎧=+-+-=-+--=-+-+=+-+-02252022303220254321543215432154321x x x x x x x x x x x x x x x x x x x x .2. 设齐次线性方程组的系数矩阵的列数大于行数, 求证: 该方程组有非零解.3. 当a 满足什么条件时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x ax x x x ax 只有零解?4. 求a 的值, 使得齐次线性方程组⎪⎩⎪⎨⎧=+-=++=++004202321321321x x x x x x x x ax 有非零解. 并求其基础解系.5. 设0>n , 求证: n 次多项式至多有n 个两两不同的零点.第四节 非齐次线性方程组的通解解非齐次线性方程组b Ax =的基本问题是:(1) 对于给定的方程组, 判断是否有解;(2) 如果有解, 求出全部解(通解).定义 3.10 将非齐次线性方程组b Ax =中各方程的右边变成0, 得到的齐次线性方程组0=Ax 称为方程组b Ax =的导出组.性质3.4 设列矩阵1η与2η是线性方程组b Ax =的两个特解, 则它们的差21ηηξ-=是它的导出组0=Ax 的解.证 将21ηηξ-=代入导出组的左边, 得)(21ηηξ-=A A 021=-=-=b b A A ηη.推论 3.4 如果非齐次线性方程组有解, 则它的通解是它的一个特解与它的导出组的通解的和.证 首先, 设列矩阵η是方程组b Ax =的特解, 列矩阵ξ是其导出组0=Ax 的特解, 则有b b A A A =+=+=+0)(ηξηξ,即列矩阵ηξ+是方程组b Ax =的解.其次, 设列矩阵ζ是方程组b Ax =的任意的特解, 根据性质3.4, 列矩阵ηζξ-=是导出组0=Ax 的解. 移项, 得ξηζ+=, 即方程组b Ax =的任意的特解ζ可以表示为它的取定的特解η与导出组0=Ax 的解ξ的和.综合两方面, 即得本推论.注意 求非齐次线性方程组的通解, 只须求出它的一个特解, 以及它的导出组的通解. 而后面的问题已经解决.在齐次线性方程组的解题路线中, 用增广矩阵代替系数矩阵, 得非齐次线性方程组的解题路线. 现举例说明.例 3.10 求非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++-=-+++-=-----=+++13334533237246225432154321543215432x x x x x x x x x x x x x x x x x x x 的通解. 解 首先写出方程组的增广矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------13133453311237111112462210. 然后做行初等变换, 由增广矩阵产生行阶梯形阵.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------13133453311232462210711111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------−→−0000000000002462210711111r . 继续做行初等变换, 得到增广矩阵的行等价标准形.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000000000024622101751101⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----−→−00000000000024622101751101r . 从行等价标准形得到同解方程组⎪⎪⎩⎪⎪⎨⎧===+++-=---00002462217554325431x x x x x x x x . 将自由未知数移到右边, 得⎪⎪⎩⎪⎪⎨⎧==+---=-++=00002462217554325431x x x x x x x x . 将自由未知数取值0, 计算约束未知数的值, 即得非齐次方程组的一个特解)0,0,0,24,17('-=η.根据推论 3.3, 还需要求它的导出组的基础解系. 注意到: 如果删除增广矩阵的最后一列, 就是系数矩阵. 在做行初等变换之后, 如果删除增广矩阵的行等价标准形的最后一列, 也就是系数矩阵的行等价标准形. 于是, 如果将非齐次方程组的同解方程组的常数项变成0, 就是它的导出组的同解方程组. 用前面的方法, 得基础解系)0,0,1,2,1(1'-=ξ, )0,1,0,2,1(2'-=ξ,)1,0,0,6,5(2'-=ξ.于是, 非齐次线性方程组的通解的矩阵表示为332211ξξξηk k k x +++=, 其中321,,k k k 是任意常数.例 3.11 解非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++-=-+++-=-----=+++13334523237246225432154321543215432x x x x x x x x x x x x x x x x x x x .解 这个方程组的增广矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------13133453311237111112462210. 通过行初等变换, 得到行阶梯形阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------0000001000002462210711111. 在这里, 有一个非零行的首元素在最后一列. 当从行阶梯形阵出发, 得同解方程组时, 该行对应矛盾方程: 10=. 因此, 同解方程组无解. 于是, 原线性方程组无解. 反之, 如果不出现这种情况, 则用前面的方法可以求出通解.于是, 非齐次线性方程组有解的充分必要条件为: 它的增广矩阵的行阶梯形阵的非零行的首元素不出现在最后一列(常数项). 下面的定理用矩阵的秩表述这个结论.定理 3.6 非齐次线性方程组有解的充分必要条件为: 它的系数矩阵的秩等于它的增广矩阵的秩.证 在增广矩阵的行阶梯形阵中, 首元素不出项在最后一列的充分必要条件为: 增广矩阵的行阶梯形阵的非零行的个数等于系数矩阵的行阶梯形阵的非零行的个数. 由推论 3.1, 即系数矩阵与增广矩阵有相同的秩.推论 3.5 非齐次线性方程组有唯一解的充分必要条件为: 它的系数矩阵的秩等于其列数, 且等于增广矩阵的秩.证 综合定理3.6和推论3.2即可.例 3.12 当b a ,取何值时, 非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++1232)3(122043214324324321ax x x x bx x a x x x x x x x x 有唯一解, 无解, 有无穷多解? 对后者求通解.解 对增广矩阵做行初等变换, 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----112323101221001111a b a⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------−→−1321023101221001111a b a r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-−→−01000101001221001111a b a r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+----−→−01000101001221011101a b a r 根据定理3.6, 当1,1-≠=b a 时无解.当1,1-==b a 时, 非齐次线性方程组的特解为)0,0,1,1('-=η, 导出组的基础解系为)0,1,2,1(1'-=ξ, )1,0,2,1(2'-=ξ,通解为2211ξξηk k x ++=, 其中21,k k 是任意常数.当1≠a 时有唯一解)0,1,32,2(11'+--+--=b b a a b a η. 例3.13 设A 是n 阶方阵, 且0||≠A . 将A 分块),(C B A =, 其中C 是A 的最后一列, 求证: 线性方程组C Bx =无解.证 线性方程组的增广矩阵就是A , 由0||≠A , 增广矩阵的秩等于n . 而线性方程组的系数矩阵B 只有1-n 列, 它的秩不大于1-n . 根据定理3.6, 线性方程组C Bx =无解.推论 3.6 设A 是n 阶方阵, 则线性方程组b Ax =有唯一解的充分必要条件为: 行列式0||≠A .证 充分性. 设0||≠A , 则方阵A 的秩等于其列数n . 又方程组的增广矩阵),(b A 只有n 行, 于是, 由例3.5, 有≤=)rank(A n n b A ≤),rank(.根据推论3.5, 方程组有唯一解.必要性. 设方程组b Ax =有唯一解, 根据推论 3.5, 方阵A 的秩等于其列数n . 于是, 行列式0||≠A .条件0||≠A 保证方阵A 可逆. 用A 的逆阵左乘b Ax =, 得b A x 1-=. 这个公式是用逆阵表示线性方程组的唯一解. 从这个公式出发, 可以得到另一个公式. 根据定理2.1, 有 b A x 1-=b A A *||1=, 其中方阵*A 是A 的伴随阵. 计算这个矩阵等式的第j 行的元素, 得)(||12211n nj j j j b A b A b A A x +++= , n j ,,2,1 =. 根据定理 1.3, 等式右边的括号可以看作: 用常数矩阵b 代替系数行列式||A 的第j 列所得的行列式, 按照第j 列的展开式. 将这个行列式记作j D , 又将||A 改写作D , 则上式为D D x jj =, n j ,,2,1 =.这个公式是用行列式的商表示线性方程组的唯一解,称为克拉默法则.习题3-41. 设列矩阵i η(m i ,,,2,1 =)是非齐次线性方程组Ax b =的特解, 数i k (m i ,,,2,1 =)满足121=+++m k k k , 求证: 列矩阵1122m mk k k ηηη+++也是方程组Ax b =的特解.2. 求下列非齐次线性方程组的通解. (1)⎪⎪⎩⎪⎪⎨⎧=-+=++-=-+--=-+337713434234313214321431x x x x x x x x x x x x x ; (2) ⎪⎩⎪⎨⎧-=-+-=+-=-+-22344324314324321x x x x x x x x x x ; (3) ⎪⎪⎩⎪⎪⎨⎧=++-=+-=--=++0644352523222321321321321x x x x x x x x x x x x ; (4) ⎪⎪⎩⎪⎪⎨⎧=+++=++++=++++----nx x x x x x x x x x x x n n n n n n 122113113221 , 其中1>n .3. 求证: 线性方程组⎪⎩⎪⎨⎧=++-=+++=-++2543222432143214321x x x x x x x x x x x x 无解. 4. 求b的值, 使得线性方程组⎪⎩⎪⎨⎧=+-+=+-+=++-b x x x x x x x x x x x x 432143214321114724212有解, 并求其通解.5. 当d c b a ,,,满足什么条件时, 线性方程组⎪⎪⎩⎪⎪⎨⎧=+=+=+=+d x x cx x b x x a x x 42314321有解? 并求其通解.6. 当b a ,取何值时, 线性方程组⎪⎩⎪⎨⎧=++=++=++b ax x x x x x x x x 32132132132263132有唯一解, 无解, 有无穷多解? 对后者求其通解.*7. 设A 是n 阶方阵, b 是1⨯n 矩阵, 且分块方阵满足)rank(0rank A b b A =⎪⎪⎭⎫ ⎝⎛', 求证: 非齐次线性方程组b Ax =有解.第五节 初等方阵与初等变换一 初等方阵定义3.11 对单位阵E 做行初等变换所得方阵称为初等方阵.三种行初等变换产生三种初等方阵:(1) 交换E 的第i 行与第j 行所得方阵记作ij P ;(2) 用非零常数k 乘以E 的第i 行所得方阵记作)(k D i ;(3) 将E 的第j 行的k 倍加到第i 行所得方阵记作)(k T ij .三种初等方阵是可逆阵, 且它们的逆阵也是初等方阵. 实际上, 有ij ij P P =-1, ⎪⎭⎫ ⎝⎛=-k D k D i i 1)(1, )()(1k T k T ij ij -=-.定理 3.7 对矩阵A 做一种行初等变换, 相当于左乘一个相应的初等方阵.注意 定理3.7在矩阵的相等与矩阵的行等价之间建立了联系, 从而可以用矩阵的运算性质研究矩阵的行等价. 下面将看到, 有时这是非常方便的.推论 3.7 任意矩阵A 可以表示成R E E E A s 21=, 其中i E 是初等方阵, R 是A 的行等价标准形.证 对A 做行初等变换, 可得其行等价标准形R . 这个过程相当于用一系列初等方阵i E 左乘矩阵A . 即有R A E E E s =12 . 由于初等方阵可逆, 用它们的逆阵逐个左乘此式, 得R E E E A s 11211---= . 因为初等方阵的逆阵还是初等方阵, 换符号即得推论中的表示.推论3.8 方阵A 可逆的充分必要条件为: 它可以表示成初等方阵的乘积.例3.14 设B A ,都是n m ⨯矩阵, 求证: A 与B 行等价的充分必要条件为存在m 阶可逆阵P , 使得B PA =.二 矩阵方程矩阵方程B AX =, 其中A 是n 阶可逆阵, B 是m n ⨯矩阵, 而X 是m n ⨯未知矩阵.已知A 是可逆阵, 用其逆阵左乘方程, 得矩阵方程的解B A X 1-=. 对于可逆阵A , 存在初等方阵i E , 使得E A E E E s =12 . 用同样的初等方阵左乘矩阵方程B AX =, 得EX AX E E E s =12 B E E E X s 12 ==这个等式说明, 对可逆阵A 与矩阵B 做相同的行初等变换, 当将A 变成单位阵时, 矩阵B 变成矩阵方程B AX =的解B A X 1-=.例3.15设方阵⎪⎪⎪⎭⎫⎝⎛--=111012112A ,⎪⎪⎪⎭⎫ ⎝⎛--=521234311B , 解矩阵方程B AX =.解 做分块矩阵: 左边部分是A ,右边部分是B . 做行初等变换, 得()=B A |⎪⎪⎪⎭⎫⎝⎛----521111234012311112⎪⎪⎪⎭⎫⎝⎛----−→−311112234012521111r⎪⎪⎪⎭⎫ ⎝⎛-------−→−143100872230521111r⎪⎪⎪⎭⎫ ⎝⎛---−→−1431003/1053/80103/813/2001r .于是,⎪⎪⎪⎭⎫ ⎝⎛---==-1433/1053/83/813/21B A X . 如果矩阵方程B AX =中的方阵A 可逆, 方阵B 是单位阵E , 则用这个方法得到的矩阵方程的解E A X 1-=1-=A 就是A 的逆阵. 由此得到计算逆阵的简单方法.例3.16 求方阵⎪⎪⎪⎭⎫ ⎝⎛--=523012101A 的逆阵. 解 用初等变换法.()=E A |⎪⎪⎪⎭⎫ ⎝⎛--100523010012001101⎪⎪⎪⎭⎫ ⎝⎛---−→−127200012210001101r⎪⎪⎪⎭⎫ ⎝⎛----−→−2/112/71001150102/112/5001r于是 ⎪⎪⎪⎭⎫ ⎝⎛----=-2/112/71152/112/51A . 如果X 与B 是列矩阵, 用这里的方法可以得到线性方程组B AX =的解B A X 1-=. 而且这种解法正是前面的消元法.性质 3.5 两个矩阵的乘积的秩不大于每个因子的秩.证 设A 是p m ⨯矩阵, B 是n p ⨯矩阵, r A =)rank(. 先证明r AB ≤)rank(.根据推论 3.7, 有R A E E E s =12 , 其中A 的行等价标准形R 恰有r 个非零行. 用矩阵B 右乘此式, 得RB AB E E E s =)(12 . 根据矩阵乘法定义, 矩阵RB 至多有r 个非零行. 根据定理3.4, 有)rank()rank()rank(A r RB AB =≤=.转置可证明另一部分.例3.17 设A 是可逆阵,则)rank()rank(B AB =.证1 记矩阵AB C =. 由性质 3.5, 有)rank()rank(B C ≤. 用逆阵1-A 左乘AB C =, 得C A B 1-=, 从而有)rank()rank(C B ≤.上面的证明主要体现了逆阵的一种应用, 并不是最简捷的证明.证2 已知A 是可逆阵,根据推论3.8, 有B E E E AB s 12 =. 再根据定理 3.4, 有)rank()rank(B AB =.三 初等变换与矩阵的行初等变换类似, 可以定义矩阵的列初等变换.定义3.12 设A 是矩阵, 称下面三种变换为对矩阵A 的列初等变换.(1) 交换A 的两列;(2) 用非零常数k 乘以A 的一列;(3) 将A 的一列的k 倍加到另一列上去,与行初等变换类似, 可以定义矩阵的列等价与列等价标准形.性质 3.6 列初等变换与列等价具有下述性质.(1) 列初等变换不改变矩阵的秩;(2) 对一个矩阵做列初等变换, 相当于用相应的初等方阵右乘这个矩阵;(3) 矩阵的列等价是等价关系;(4) 矩阵B 与A 列等价的充分必要条件为: 存在可逆阵Q , 使得B AQ =.与用行初等变换解矩阵方程B AX =类似, 可以用列初等变换解矩阵方程B XA =.例3.18设⎪⎪⎪⎭⎫ ⎝⎛--=111012112A , ⎪⎭⎫ ⎝⎛-=234311B , 解矩阵方程B XA =.解 做分块矩阵, 上边是A , 下边是B . 然后做列初等变换. 当将A 变成单位阵时, B变成矩阵方程的解1-=BA X . 如果用→表示列等价, 则有⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---234311111012112⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→423131*********⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→253321301011001⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→3/253/8122100010001. 于是⎪⎭⎫ ⎝⎛---=3/253/8122X . 例 3.19 设分块矩阵),(B A , 求证: )rank()rank(),rank(B A B A +≤.证 设矩阵B A ,的列等价标准形分别为S R ,,则R 与S 分别有)ra nk(A 与)rank(B 个非零列. 从而分块矩阵),(S R 有)rank()rank(B A +个非零列. 另一方面, 如果在矩阵),(B A 中分别对两个子块做列初等变换, 则可以得到分块矩阵),(S R . 于是, 有)rank()rank(),rank(),rank(B A S R B A +≤=.。
线性相关性定理在高等代数中的应用探究

线性相关性定理在高等代数中的应用探究 目录 一、内容概述................................................2 1.1 研究背景与意义.......................................2 1.2 国内外研究现状综述...................................4 1.3 研究目的与方法.......................................5 二、线性相关性的基本概念....................................6 2.1 向量空间的基本定义...................................7 2.2 线性组合与线性相关性.................................8 2.3 基与维数的概念.......................................9 三、线性相关性定理的理论基础...............................10 3.1 线性相关性定理概述..................................11 3.2 线性无关向量组的性质................................12 3.3 线性相关性与矩阵秩的关系............................13 四、线性相关性定理的应用实例...............................14 4.1 在解线性方程组中的应用..............................14 4.1.1 齐次线性方程组解的性质..........................15 4.1.2 非齐次线性方程组解的存在性......................16 4.2 在矩阵分解中的应用..................................18 4.2.1 行列式与特征值..................................19 4.2.2 矩阵的LU分解....................................20 4.3 在向量空间变换中的应用..............................20 五、线性相关性定理在其他领域的拓展应用.....................21 5.1 在计算机科学中的应用................................23 5.2 在经济学中的应用....................................24 5.3 在工程学中的应用....................................26 六、结论...................................................27 6.1 主要发现总结........................................28 6.2 对未来研究的建议....................................29 一、内容概述 线性相关性不仅是向量空间理论的基石,也是理解线性方程组解的存在性与唯一性的关键。本文首先从定义出发,明确线性相关与线性无关的概念,并通过具体示例阐述其直观意义。随后,文章将分析线性相关性定理的基本形式及其证明方法,包括但不限于线性组合、基底与坐标表示等核心概念。在此基础上,进一步讨论该定理在线性变换、矩阵论以及特征值问题中的具体应用,揭示其在解决实际数学问题中的作用与地位。此外,还将结合最新研究进展,探索线性相关性定理在数值分析、数据科学等领域的新应用,展现其跨学科的重要影响。文章提出未来研究方向,鼓励学者们继续深化对线性相关性定理的理解,以期促进相关领域的发展。
3.3 向量组的秩与极大线性无关组
2014年9月23日7时13分
11
解:令A=(a1 , a 2 , a 3 , a 4 , a 5)
对其施行初等行变换变为行阶梯形矩阵
2 1 1 1 1 1 2 1 A 4 6 2 2 3 6 9 7 2 4 4 9
1 初等行变换 0 ~ 0 0 1 2 1 4 1 1 1 0 , 0 0 1 3 0 0 0 0
A
初等行变换
~
即得
a 3 a1 a 2 a 5 4a1 3a 2 3a 4
2014年9月23日7时13分 13
例4: 证明:R( A, B) R( A) R( B)
证:设a1, a2, …,ar是矩阵A的列向量组的极大线性无 关组,β1, β2, …, βt是矩阵B的列向量组的极大线 性无关组 则 (A,B)的列向量组可由a1, a2, …,ar,β1, β2, …, βt
2014年9月23日7时13分 10
例3: 求向量组a 1 =(2,1, 4, 3)T , a 2 =(-1,1,-6,6)T , a 3 =
(-1,-2,2,-9) , a 4 =(1,1,-2,7) , a 5 =(2,4,4,9) 的秩
T T T
和一个极大线性无关组,并把不属极大线 性无关组的列向量用极大线性无关组线性 表示.
2014年9月23日7时13分
9
注: 求极大线性无关组和秩的方法: ⑴先将所给向量写成矩阵A的列向量
⑵再对矩阵A作初等行变换化为行阶梯形
则在行阶梯形中:
①非零行的行数即为向量组的秩
②在每个非零行取一个非零元素所在的列即构成向量组
的一个极大线性无关组(通常取第一个非零元所在的列) ⑶继续将矩阵作初等行变换化为行最简形,则利用行 最简形,可将其余向量由极大线性无关组线性表示
第3.3节 向量组的秩
例2 证明
(1) n维基本单位向量组 1 , 2 , , n 是Rn的极大无关组; (2) Rn中任意n个线性无关的向量都是Rn的极大无关组. 证 (1) 1 , 2 , , n 显然线性无关;又 ( a1 , a2 , , an ) R n , 有
( a1 , a2 , , an ) a1 1 a2 2 an n ,
因此,1 , 2 , 4 是向量组A的极大无关组,且
3 1 2 0 4 1 2 .
例7 设向量组 (I) 1 (1, 1, 0, 0)T, 2 (1, 0, 1, 1) T , (II) 1 (2, 1, 3, 3)T, 2 (0, 1, 1, 1) T . 证明向量组(I)与向量组(II)等价. 证 方法1 考虑向量组 (III)
例1 考察下列向量组的极大无关组.
(1) 1 (0, 0, 0);
不存在
(2) 1 (0, 0, 0), 2 (1, 0, 0), 3 (0,1, 0); (3) 1 (1, 0, 0), 2 (0,1, 0), 3 (0, 0,1); (4) 1 (1, 0, 0), 2 (0,1, 0), 3 (1,1, 0).
不难归纳
2 , 3
1,2,3
1,2; 1,3;2,3
(1)只含零向量的向量组不存在极大无关组; (2)含有非零向量的向量组必存在极大无关组; (3)线性无关向量组的极大无关组是其本身; (4)线性相关组的极大无关组所含向量个数少于 原向量组所含向量个数; (5)向量组的极大无关组可能不唯一.
故而r1 r2 .
(2)略.
例4
已知向量组 1 , 2 , , s ( s 1) 的秩为r ,且
《线性代数教学PPT》向量组的秩
代
1,2, ,r为(A)的一个极大(最大)无关组 数
( A)的极大无关组必与(A)等价 : 最本质的性质.
注: (1)向量组的极大无关组不是唯一的.
=
(2)同一向量组的两个极大无关组间是等价的;
=
问题:如果(A)的极大无关组不唯一,问其任意
两个极大无关组所含向量个数是否唯一?
线
定理5 设有两个向量组: 性
数
1 2 3 0 1 2 3 0
=
0 1 1 1 0 1 1 1 所求秩为3. 0 0 12 0 0 0 1 0
=
0 0 12 0 0 0 0 0
例3.11: 求下列向量组的一个极大无关组及向量组的秩
1 (1,1, 2, 2,1)T ,2 (0, 2,1,5, 1)T ,3 (2, 0,3, 1,3)T ,
1 0
性
0 0 0
代
且有 3 21 2
1 0 0 2 0 1 0 1
数
这是因为1
2
4
3
0 0
0 0
1 0
0
0
=
0 0 0 0
=
例12 将 = (1,0,-4)T 用1 =(0,1,1)T,
2 =(1,0,1)T,3 =(1,1,0)T 线性表出.
2
5
1
4
0
5
5
2
0
5
5
2
数
1 1 3 1 0 1 1 2 0 1 1 2
1 0 2 1 1 0 2 1 1 0 2 0
0 1 1
0
0 1
1
3.5 行列式与矩阵的秩
0 B
注 1884年, Sylvester首先证明了该不等式.
行列式与矩阵的秩
18/19
例3.19 设 n 阶矩阵 A 满足 A2 A, 证明
rank A rank(E A) n .
行列式与矩阵的秩
19/19
内容小结
1. 矩阵秩的定义: 等价标准形中1的个数.
2. 矩阵秩的等价定义: 非零子式的最高阶数. 3. 求矩阵秩的方法 (1) 对矩阵做初等行变换化为阶梯矩阵, 阶梯矩阵中非零行的数目就是矩阵的秩. (2) 寻找矩阵中非零子式的最高阶数. 4. 矩阵秩的一些等式和不等式.
行列式与矩阵的秩
5/19
假如阶梯矩阵 A 有 r 个非零行, 那么 A 的秩等于 r , 并且
A 有一个 r 阶子式不为零, 而所有的 r 1 阶子式全为零,
于是 A 中阶数大于 r 的子式都为零, 因此阶梯矩阵 A 的
秩等于 A 中非零子式的最高阶数.
规定零矩阵的非零子式的最高阶数为0. 定理3.19 矩阵 A 的秩等于 A 的非零子式的最高阶数. 注 1879年, Frobenius 给出了矩阵秩的上述定义.
行列式与矩阵的秩
6/19
注 1. 若 A 中有一个 s 阶子式不为零, 则 rank A s.
若 A 中所有 t 阶子式全为零, 则 rankபைடு நூலகம்A t.
2. rank A r 说明 A 中至少有一个 r 阶子式不等于零,
并且所有的 r 1 阶子式全为零, 即所有阶数大于
r 的各阶子式全为零.
max{rank A, rank B} rank[A B].
行列式与矩阵的秩
12/19
应用分块倍加行变换可得