数学选修4—5不等式选讲习题集
人教版高中数学选修4-5练习:第一讲1.1-1.1.1不等式的基本性质 Word版含解析

第一讲 不等式和绝对值不等式1.1 不等式1.1.1 不等式的基本性质A 级 基础巩固一、选择题1.若m =2x 2+2x +1,n =(x +1)2,则m ,n 的大小关系为( )A .m >nB .m ≥nC .m <nD .m ≤n解析:因为m -n = (2x 2+2x +1)-(x +1)2=2x 2+2x +1-x 2-2x -1=x 2≥0.所以m ≥n .答案:B2.若a <b <0,则下列不等式关系中不能成立的是( ) A.1a >1bB.1a -b >1a C .|a |>|b | D .a 2>b 2解析:取a =-2,b =-1,则1a -b=-1<-12=1a . 所以B 不成立.答案:B3.设a , b ∈R ,若a +|b |<0,则下列不等式中正确的是( )A .a -b >0B .a 3+b 3>0C .a 2-b 2<0D .a +b <0解析:当b ≥0时,a +b <0,当b <0时,a -b <0,所以a +b <0, 故选D.答案:D4.(2015·浙江卷)设a ,b 是实数,则“a +b >0”是“ab >0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:当a =-2,b =3时,a +b >0,但ab <0;当a =-1,b =-2时,ab >0,但a +b <0.所以“a +b >0”是“ab >0”的既不充分又不必要条件.答案:D5.已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1B .ln(x 2+1)>ln(y 2+1)C .sin x >sin yD .x 3>y 3解析:由a x <a y (0<a <1),可得x >y .又因为函数f (x )=x 3在R 上递增,所以f (x )>f (y ),即x 3>y 3.答案:D二、填空题6.已知0<a <1,则a ,1a,a 2的大小关系是________. 解析:因为a -1a =(a +1)(a -1)a<0, 所以a <1a. 又因为a -a 2=a (1-a )>0,所以a >a 2,所以a 2<a <1a . 答案:a 2<a <1a7.若8<x <10,2<y <4,则x y的取值范围是________. 解析:因为2<y <4,所以14<1y <12. 又8<x <10,所以2<x y<5. 答案:(2,5)8.设a >0,b >0,则b 2a +a 2b与a +b 的大小关系是________. 解析:b 2a +a 2b -(a +b )=(a +b )(a 2-ab +b 2)ab -(a +b )=(a +b )(a -b )2ab. 因为a >0,b >0,所以a +b >0,ab >0,(a -b )2≥0.所以b 2a +a 2b≥a +b . 答案:b 2a +a 2b≥a +b 三、解答题9.判断下列各命题的真假,并阐明理由.(1)若a <b ,c <0,则c a <c b; (2)若ac -3>bc -3,则a >b ;(3)若a >b ,且k ∈N *,则a k >b k ;(4)若a >b ,b >c ,则a -b >b -c .解:(1)因为a <b ,没有指出ab >0,故1a >1b不一定成立, 因此不一定推出c a <c b. 所以是假命题.(2)当c <0时,c -3<0,有a <b .所以是假命题.(3)当a =1,b =-2,k =2时,显然命题不成立.所以是假命题.(4)取a =2,b =0,c =-3满足a >b ,b >c 的条件,但是a -b =2<b -c =3.所以是假命题.10.已知a >b >0,比较a b 与a +1b +1的大小. 解:a b -a +1b +1=a (b +1)-b (a +1)b (b +1)=a -b b (b +1). 因为a >b >0,所以a -b >0,b (b +1)>0.所以a -bb (b +1)>0. 所以a b >a +1b +1. B 级 能力提升1.若0<x <y <1,则( )A .3y <3xB .log x 3<log y 3C .log 4x <log 4y D.⎝ ⎛⎭⎪⎫14x <⎝ ⎛⎭⎪⎫14y 解析:因为函数y =log 4x 是增函数,0<x <y <1,所以log 4x <log 4y .答案:C2.实数a ,b ,c ,d 满足下列三个条件:①d >c ;②a +b =c +d ;③a +d <b +c .试将a ,b ,c ,d 按照从小到大的顺序排列为__________.解析:⎩⎨⎧a +d <b +c ⇒d -b <c -a ,a +b =c +d ⇒c -a =b -d ,⇒⎩⎨⎧d -b <b -d ,a -c <c -a ⇒⎩⎨⎧d <b ,a <c .又由d >c ,得a <c <d <b .答案:a <c <d <b3.已知c a >d b,bc >ad ,求证:ab >0.证明:⎩⎪⎨⎪⎧c a >d b ,bc >ad ⇒⎩⎪⎨⎪⎧c a -d b >0, ①bc -ad >0. ② 又bc >ad ,则bc -ad >0. 由②得bc -ad >0. 故ab >0.。
人教版高中数学选修4-5练习:第一讲1.1-1.1.1不等式的基本性质 Word版含解析

第一讲 不等式和绝对值不等式1.1 不等式1.1.1 不等式的基本性质A 级 基础巩固一、选择题1.若m =2x 2+2x +1,n =(x +1)2,则m ,n 的大小关系为( )A .m >nB .m ≥nC .m <nD .m ≤n解析:因为m -n = (2x 2+2x +1)-(x +1)2=2x 2+2x +1-x 2-2x -1=x 2≥0.所以m ≥n .答案:B2.若a <b <0,则下列不等式关系中不能成立的是( )A.1a >1bB.1a -b >1aC .|a |>|b |D .a 2>b 2 解析:取a =-2,b =-1,则1a -b =-1<-12=1a. 所以B 不成立.答案:B3.设a , b ∈R ,若a +|b |<0,则下列不等式中正确的是( )A.a-b>0 B.a3+b3>0C.a2-b2<0 D.a+b<0解析:当b≥0时,a+b<0,当b<0时,a-b<0,所以a+b<0,故选D.答案:D4.(2015·浙江卷)设a,b是实数,则“a+b>0”是“ab>0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:当a=-2,b=3时,a+b>0,但ab<0;当a=-1,b=-2时,ab>0,但a+b<0.所以“a+b>0”是“ab>0”的既不充分又不必要条件.答案:D5.已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是( )A.1x2+1>1y2+1B.ln(x2+1)>ln(y2+1)C.sin x>sin y D.x3>y3解析:由a x<a y(0<a<1),可得x>y. 又因为函数f(x)=x3在R上递增,所以f(x)>f(y),即x3>y3.答案:D二、填空题6.已知0<a <1,则a ,1a,a 2的大小关系是________. 解析:因为a -1a =(a +1)(a -1)a <0,所以a <1a. 又因为a -a 2=a (1-a )>0,所以a >a 2,所以a 2<a <1a. 答案:a 2<a <1a7.若8<x <10,2<y <4,则x y的取值范围是________. 解析:因为2<y <4,所以14<1y <12. 又8<x <10,所以2<x y<5. 答案:(2,5)8.设a >0,b >0,则b 2a +a 2b与a +b 的大小关系是________. 解析:b 2a +a 2b -(a +b )=(a +b )(a 2-ab +b 2)ab-(a +b )=(a +b )(a -b )2ab. 因为a >0,b >0,所以a +b >0,ab >0,(a -b )2≥0.所以b 2a +a 2b≥a +b .答案:b 2a +a 2b≥a +b 三、解答题9.判断下列各命题的真假,并阐明理由.(1)若a <b ,c <0,则c a <c b; (2)若ac -3>bc -3,则a >b ;(3)若a >b ,且k ∈N *,则a k >b k ;(4)若a >b ,b >c ,则a -b >b -c .解:(1)因为a <b ,没有指出ab >0,故1a >1b不一定成立, 因此不一定推出c a <c b. 所以是假命题.(2)当c <0时,c -3<0,有a <b .所以是假命题.(3)当a =1,b =-2,k =2时,显然命题不成立.所以是假命题.(4)取a =2,b =0,c =-3满足a >b ,b >c 的条件,但是a -b =2<b -c =3.所以是假命题.10.已知a >b >0,比较a b 与a +1b +1的大小. 解:a b -a +1b +1=a (b +1)-b (a +1)b (b +1)=a -b b (b +1). 因为a >b >0,所以a -b >0,b (b +1)>0.所以a -b b (b +1)>0. 所以a b >a +1b +1.B 级 能力提升1.若0<x <y <1,则( )A .3y <3xB .log x 3<log y 3C .log 4x <log 4y D.⎝ ⎛⎭⎪⎫14x <⎝ ⎛⎭⎪⎫14y解析:因为函数y =log 4x 是增函数,0<x <y <1,所以log 4x <log 4y .答案:C2.实数a ,b ,c ,d 满足下列三个条件:①d >c ;②a +b =c +d ;③a +d <b +c .试将a ,b ,c ,d 按照从小到大的顺序排列为__________.解析:⎩⎪⎨⎪⎧a +d <b +c ⇒d -b <c -a ,a +b =c +d ⇒c -a =b -d , ⇒⎩⎪⎨⎪⎧d -b <b -d ,a -c <c -a ⇒⎩⎪⎨⎪⎧d <b ,a <c . 又由d >c ,得a <c <d <b .答案:a <c <d <b3.已知c a >d b,bc >ad ,求证:ab >0. 证明:⎩⎪⎨⎪⎧c a >d b ,bc >ad ⇒⎩⎪⎨⎪⎧c a -d b >0, ①bc -ad >0. ②又bc >ad ,则bc -ad >0.由②得bc -ad >0.故ab >0.。
2022年高考数学(理)总复习教师用书选修4-5 不等式选讲 Word版含答案

选修4-5 ⎪⎪⎪不等式选讲第1课确定值不等式[课前回扣教材] [过双基]1.确定值三角不等式定理1:假如a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立.定理2:假如a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.确定值不等式的解法(1)含确定值的不等式|x |<a 与|x |>a 的解集不等式 a >0 a =0a <0|x |<a {}x |-a <x <a ∅∅ |x |>a{}x |x >a 或x <-a{}x ∈R|x ≠0R(2)|ax +b |≤c ,|ax +b |≥c (c >0)型不等式的解法: ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的解法: ①利用确定值不等式的几何意义求解. ②利用零点分段法求解.③构造函数,利用函数的图象求解. [小题速通]1.不等式|x +1|-|x -2|≥1的解集是________. 解析:f (x )=|x +1|-|x -2|=⎩⎪⎨⎪⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2.当-1<x <2时,由2x -1≥1,解得1≤x <2. 又当x ≥2时,f (x )=3>1, 所以解集为{}x |x ≥1. 答案:{x |x ≥1}2.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________.解析:∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|, 要使|x -a |+|x -1|≤3有解,可使|a -1|≤3, ∴-3≤a -1≤3,∴-2≤a ≤4.答案:[-2,4]3.若不等式|kx -4|≤2的解集为{}x |1≤x ≤3,则实数k =________. 解析:由|kx -4|≤2⇔2≤kx ≤6. ∵不等式的解集为{}x |1≤x ≤3, ∴k =2. 答案:24.设不等式|x +1|-|x -2|>k 的解集为R ,则实数k 的取值范围为____________. 解析:∵||x +1|-|x -2||≤3, ∴-3≤|x +1|-|x -2|≤3,∴k <(|x +1|-|x -2|)的最小值, 即k <-3. 答案:(-∞,-3)5.f (x )=|2-x |+|x -1|的最小值为________. 解析:∵|2-x |+|x -1|≥|2-x +x -1|=1, ∴f (x )min =1. 答案:1 [清易错]1.对形如|f (x )|>a 或|f (x )|<a 型的不等式求其解集时,易忽视a 的符号直接等价转化造成失误. 2.确定值不等式||a |-|b ||≤|a ±b |≤|a |+|b |中易忽视等号成立的条件.如|a -b |≤|a |+|b |,当且仅当ab ≤0时等号成立,其他类似推导.1.设a ,b 为满足ab <0的实数,那么( ) A .|a +b |>|a -b | B .|a +b |<|a -b |C .|a -b |<||a |-|b ||D .|a -b |<|a |+|b |解析:选B ∵ab <0,∴|a -b |=|a |+|b |>|a +b |.2.若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为________. 解析:|x -2y +1|=|(x -1)-2(y -2)-2|≤|x -1|+2|y -2|+2≤5. 答案:5[课堂争辩高考]确定值不等式的解法[典例] (2022·全国卷乙卷)已知函数f (x )=|x +1|-|2x -3|. (1)画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.[解] (1)由题意得f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的函数表达式及图象可知, 当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >5. 所以|f (x )|>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或1<x <3或x >5. [方法技巧](1)求解确定值不等式的两个留意点:①要求的不等式的解集是各类情形的并集,利用零点分段法的操作程序是:找零点,分区间,分段争辩. ②对于解较简单确定值不等式,要恰当运用条件,简化分类争辩,优化解题过程.(2)求解该类问题的关键是去确定值符号,可以运用零点分段法去确定值,此外还常利用确定值的几何意义求解.[即时演练]1.解不等式|2x -1|+|2x +1|≤6.解:法一:当x >12时,原不等式转化为4x ≤6⇒12<x ≤32;当-12≤x ≤12时,原不等式转化为2≤6恒成立;当x <-12时,原不等式转化为-4x ≤6⇒-32≤x <-12.综上知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32.法二:原不等式可化为⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12≤3,其几何意义为数轴上到12,-12两点的距离之和不超过3的点的集合,数形结合知,当x =32或x =-32时,到12,-12两点的距离之和恰好为3,故当-32≤x ≤32时,满足题意,则原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32.2.解不等式|x -1|-|x -5|<2.解:当x <1时,不等式可化为-(x -1)-(5-x )<2, 即-4<2,明显成立,所以此时不等式的解集为(-∞,1); 当1≤x ≤5时,不等式可化为x -1-(5-x )<2,即2x -6<2,解得x <4,所以此时不等式的解集为[1,4); 当x >5时,不等式可化为(x -1)-(x -5)<2, 即4<2,明显不成立.所以此时不等式无解. 综上,不等式的解集为(-∞,4).确定值不等式的证明[典例] 已知x ,y ∈R ,且|x +y |≤6,|x -y |≤4,求证:|x +5y |≤1.[证明] ∵|x +5y |=|3(x +y )-2(x -y )|. ∴由确定值不等式的性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )| =3|x +y |+2|x -y |≤3×16+2×14=1.即|x +5y |≤1. [方法技巧]确定值不等式证明的3种主要方法(1)利用确定值的定义去掉确定值符号,转化为一般不等式再证明. (2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明. (3)转化为函数问题,数形结合进行证明. [即时演练](2022·唐山模拟)设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M .(1)证明:⎪⎪⎪⎪⎪⎪13a +16b <14;(2)比较|1-4ab |与2|a -b |的大小,并说明理由. 解:(1)证明:记f (x )=|x -1|-|x +2| =⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x <1,-3,x ≥1.由-2<-2x -1<0, 解得-12<x <12,则M =⎝ ⎛⎭⎪⎫-12,12. 所以⎪⎪⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14.(2)由(1)得a 2<14,b 2<14.由于|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2) =(4a 2-1)(4b 2-1)>0, 所以|1-4ab |2>4|a -b |2, 故|1-4ab |>2|a -b |.确定值不等式的综合应用[典例] f x x a a (1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. [解] (1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥3,即⎪⎪⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪⎪⎪12-x ≥3-a 2.又⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪⎪⎪12-x min =⎪⎪⎪⎪⎪⎪12-a 2,所以⎪⎪⎪⎪⎪⎪12-a 2≥3-a 2, 解得a ≥2.所以a 的取值范围是[2,+∞). [方法技巧]确定值不等式的恒成立问题(1)争辩含有确定值的函数问题时,依据确定值的定义,分类争辩去掉确定值符号,将原函数转化为分段函数,然后利用数形结合解决问题,这是常用的思想方法.(2)f (x )<a 恒成立⇔f (x )max <a .f (x )>a 恒成立⇔f (x )min >a .[即时演练](2021·西安模拟)设函数f (x )=⎪⎪⎪⎪⎪⎪x -52+|x -a |,x ∈R.(1)求证:当a =-12时,不等式ln f (x )>1成立;(2)关于x 的不等式f (x )≥a 在R 上恒成立,求实数a 的最大值. 解:(1)证明:当a =-12时,由f (x )=⎪⎪⎪⎪⎪⎪x -52+⎪⎪⎪⎪⎪⎪x +12=⎩⎪⎨⎪⎧-2x +2,x <-12,3,-12≤x ≤52,2x -2,x >52,画出草图,分析可得函数f (x )的最小值为3,从而f (x )≥3>e , 所以ln f (x )>1成立.(2)由确定值的性质得f (x )=⎪⎪⎪⎪⎪⎪x -52+|x -a |≥⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫x -52-x -a =⎪⎪⎪⎪⎪⎪a -52,所以f (x )的最小值为⎪⎪⎪⎪⎪⎪52-a ,从而⎪⎪⎪⎪⎪⎪52-a ≥a ,解得a ≤54. 因此a 的最大值为54.1.(2021·全国卷Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x 23<x <2.(2)由题设可得f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝ ⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).2.(2022·江苏高考)设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a .证明:由于|x -1|<a 3,|y -2|<a3,所以|2x +y -4|=|2(x -1)+(y -2)|≤2|x -1|+|y -2|<2×a 3+a3=a .3.(2021·全国卷Ⅰ)已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3. (1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈⎣⎢⎡⎭⎪⎫-a 2,12时,f (x )≤g (x ),求a 的取值范围. 解:(1)当a =-2时,不等式f (x )<g (x )可化为|2x -1|+|2x -2|-x -3<0.设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1.其图象如图所示.从图象可知,当且仅当x ∈(0,2)时,y <0. 所以原不等式的解集是{x |0<x <2}.(2)当x ∈⎣⎢⎡⎭⎪⎫-a 2,12时,f (x )=1+a .不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈⎣⎢⎡⎭⎪⎫-a 2,12都成立. 故-a 2≥a -2,即a ≤43.从而a 的取值范围是⎝ ⎛⎦⎥⎤-1,43.[高考达标检测]1.(2021·唐山模拟)已知函数f (x )=|2x -a |+|x +1|.(1)当a =1时,解不等式f (x )<3; (2)若f (x )的最小值为1,求a 的值.解:(1)由于f (x )=|2x -1|+|x +1|=⎩⎪⎨⎪⎧-3x ,x ≤-1,-x +2,-1<x <12,3x ,x ≥12,且f (1)=f (-1)=3,所以f (x )<3的解集为{x |-1<x <1}.(2)|2x -a |+|x +1|=⎪⎪⎪⎪⎪⎪x -a 2+|x +1|+⎪⎪⎪⎪⎪⎪x -a 2≥⎪⎪⎪⎪⎪⎪1+a 2+0=⎪⎪⎪⎪⎪⎪1+a 2, 当且仅当(x +1)⎝ ⎛⎭⎪⎫x -a 2≤0且x -a2=0时,取等号.所以⎪⎪⎪⎪⎪⎪1+a 2=1,解得a =-4或0.2.(2021·沈阳模拟)设函数f (x )=|2x +1|-|x -4|. (1)解不等式f (x )>0;(2)若f (x )+3|x -4|>m 对一切实数x 均成立,求实数m 的取值范围. 解:(1)当x ≥4时,f (x )=2x +1-(x -4)=x +5>0,得x >-5,所以x ≥4. 当-12≤x <4时,f (x )=2x +1+x -4=3x -3>0,得x >1,所以1<x <4.当x <-12时,f (x )=-x -5>0,得x <-5,所以x <-5.综上,原不等式的解集为(-∞,-5)∪(1,+∞).(2)f (x )+3|x -4|=|2x +1|+2|x -4|≥|2x +1-(2x -8)|=9, 当-12≤x ≤4时等号成立,所以m <9,即m 的取值范围为(-∞,9). 3.设函数f (x )=|x -1|+|x -2|. (1)求证:f (x )≥1;(2)若f (x )=a 2+2a 2+1成立,求x 的取值范围.解:(1)证明:f (x )=|x -1|+|x -2|≥|(x -1)-(x -2)|=1.(2)∵a 2+2a 2+1=a 2+1+1a 2+1=a 2+1+1a 2+1≥2,当且仅当a =0时等号成立,∴要使f (x )=a 2+2a 2+1成立,只需|x -1|+|x -2|≥2,即⎩⎪⎨⎪⎧x <1,1-x +2-x ≥2或⎩⎪⎨⎪⎧1≤x <2,x -1+2-x ≥2或⎩⎪⎨⎪⎧x ≥2,x -1+x -2≥2,解得x ≤12或x ≥52,故x 的取值范围是⎝ ⎛⎦⎥⎤-∞,12∪⎣⎢⎡⎭⎪⎫52,+∞. 4.(2021·郑州二检)已知函数f (x )=|3x +2|. (1)解不等式f (x )<4-|x -1|;(2)已知m +n =1(m ,n >0),若|x -a |-f (x )≤1m +1n(a >0)恒成立,求实数a 的取值范围.解:(1)不等式f (x )<4-|x -1|,即|3x +2|+|x -1|<4. 当x <-23时,即-3x -2-x +1<4,解得-54<x <-23;当-23≤x ≤1时,即3x +2-x +1<4,解得-23≤x <12;当x >1时,即3x +2+x -1<4,无解.综上所述,x ∈⎝ ⎛⎭⎪⎫-54,12.(2)1m +1n =⎝ ⎛⎭⎪⎫1m +1n (m +n )=1+1+n m +mn≥4,当且仅当m =n =12时等号成立.令g (x )=|x -a |-f (x )=|x -a |-|3x +2|=⎩⎪⎨⎪⎧2x +2+a ,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -2-a ,x >a .∴x =-23时,g (x )max =23+a ,要使不等式恒成立,只需g (x )max =23+a ≤4,即0<a ≤103.所以实数a 的取值范围是⎝⎛⎦⎥⎤0,103.5.(2022·山西考前质量检测)设函数f (x )=|x -3|+|2x -4|-a . (1)当a =6时,求不等式f (x )>0的解集;(2)假如关于x 的不等式f (x )<0的解集不是空集,求实数a 的取值范围. 解析:(1)当a =6时,f (x )=|x -3|+|2x -4|-6,由f (x )>0,可得⎩⎪⎨⎪⎧x <2,-3x +1>0或⎩⎪⎨⎪⎧2≤x ≤3,x -7>0或⎩⎪⎨⎪⎧x >3,3x -13>0,解得x <13或x >133.故f (x )>0的解集为⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫133,+∞.(2)∵|x -3|+|2x -4|<a 的解集不是空集, |x -3|+|2x -4|=⎩⎪⎨⎪⎧-3x +7,x <2,x -1,2≤x ≤3,3x -7,x >3,∴(|x -3|+|2x -4|)min =1, ∴a >1.故实数a 的取值范围为(1,+∞).6.(2022·南宁模拟)已知函数f (x )=|x -a |. (1)若f (x )≤m 的解集为[-1,5],求实数a ,m 的值;(2)当a =2且0≤t ≤2时,解关于x 的不等式f (x )+t ≥f (x +2). 解:(1)∵|x -a |≤m , ∴-m +a ≤x ≤m +a . ∵-m +a =-1,m +a =5, ∴a =2,m =3.(2)f (x )+t ≥f (x +2)可化为|x -2|+t ≥|x |. 当x ∈(-∞,0)时,2-x +t ≥-x,2+t ≥0, ∵0≤t ≤2,∴x ∈(-∞,0);当x ∈[0,2)时,2-x +t ≥x ,x ≤1+t 2,0≤x ≤1+t2,∵1≤1+t2≤2,∴0≤t <2时,0≤x ≤1+t2,t =2时,0≤x <2;当x ∈[2,+∞)时,x -2+t ≥x ,t ≥2, 当0≤t <2时,无解, 当t =2时,x ∈[2,+∞),∴当0≤t <2时原不等式的解集为⎝ ⎛⎦⎥⎤-∞,t2+1;当t =2时x ∈R.7.(2021·九江模拟)已知函数f (x )=|x -3|-|x -a |.(1)当a =2时,解不等式f (x )≤-12;(2)若存在实数a ,使得不等式f (x )≥a 成立,求实数a 的取值范围. 解:(1)∵a =2,∴f (x )=|x -3|-|x -2|=⎩⎪⎨⎪⎧1,x ≤2,5-2x ,2<x <3,-1,x ≥3,∴f (x )≤-12等价于⎩⎪⎨⎪⎧x ≤2,1≤-12或⎩⎪⎨⎪⎧2<x <3,5-2x ≤-12或⎩⎪⎨⎪⎧x ≥3,-1≤-12,解得114≤x <3或x ≥3, ∴不等式的解集为⎣⎢⎡⎭⎪⎫114,+∞.(2)由不等式性质可知f (x )=|x -3|-|x -a |≤|(x -3)-(x -a )|=|a -3|, ∴若存在实数x ,使得不等式f (x )≥a 成立,则|a -3|≥a ,解得a ≤32,∴实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,32. 8.(2021·石家庄模拟)设f (x )=|ax -1|. (1)若f (x )≤2的解集为[-6,2],求实数a 的值;(2)当a =2时,若存在x ∈R ,使得不等式f (2x +1)-f (x -1)≤7-3m 成立,求实数m 的取值范围. 解:(1)明显a ≠0,当a >0时,解集为⎣⎢⎡⎦⎥⎤-1a ,3a ,则-1a =-6,3a=2,无解;当a <0时,解集为⎣⎢⎡⎦⎥⎤3a ,-1a ,则-1a =2,3a=-6,得a =-12.综上所述,a =-12.(2)当a =2时,令h (x )=f (2x +1)-f (x -1)=|4x +1|-|2x -3|=⎩⎪⎨⎪⎧-2x -4,x ≤-14,6x -2,-14<x <32,2x +4,x ≥32,由此可知,h (x )在⎝ ⎛⎭⎪⎫-∞,-14上单调递减,在⎝ ⎛⎭⎪⎫-14,32上单调递增,在⎝ ⎛⎭⎪⎫32,+∞上单调递增,则当x=-14时,h (x )取到最小值-72,由题意知,-72≤7-3m ,解得m ≤72,故实数m 的取值范围是⎝⎛⎦⎥⎤-∞,72.第2课不等式证明[课前回扣教材] [过双基] 1.基本不等式定理1:假如a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:假如a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:假如a ,b ,c ∈R +,那么a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)比差法的依据是:a -b >0⇔a >b .步骤是:“作差→变形→推断差的符号”.变形是手段,变形的目的是推断差的符号.(2)比商法:若B >0,欲证A ≥B ,只需证AB≥1. 3.综合法与分析法(1)综合法:一般地,从已知条件动身,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论动身,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.4.柯西不等式(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)若a i ,b i (i ∈N *)为实数,则⎝ ⎛⎭⎪⎪⎫∑i =1n a 2i ⎝ ⎛⎭⎪⎪⎫∑i =1n b 2i ≥⎝ ⎛⎭⎪⎪⎫∑i =1n a i b i 2,当且仅当b 1a 1=b 2a 2=…=b n a n (当a i =0时,商定b i =0,i =1,2,…,n )时等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α||β|≥|α·β|,当且仅当α,β共线时等号成立.[小题速通]1.若m =a +2b ,n =a +b 2+1,则m 与n 的大小关系为________. 解析:∵n -m =a +b 2+1-a -2b =b 2-2b +1=(b -1)2≥0,∴n ≥m . 答案:n ≥m2.若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是________(写出全部正确命题的序号).①ab ≤1;② a +b ≤2;③a 2+b 2≥2;④a 3+b 3≥3;⑤1a +1b≥2.解析:令a =b =1,排解②④;由2=a +b ≥2ab ⇒ab ≤1,命题①正确;a 2+b 2=(a +b )2-2ab =4-2ab ≥2,命题③正确;1a +1b=a +b ab =2ab≥2,命题⑤正确.答案:①③⑤3.已知x ,y 均为正数,且x +y =1,则3x +4y 的最大值为________.解析:由柯西不等式得3x +4y =3·x +4·y ≤[]()32+()42x +y =7.答案:7 [清易错]1.在使用作商比较法时易忽视说明分母的符号.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,易忽视性质成立的前提条件.1.已知a >0,b >0,则a a b b________(ab )a +b2(填大小关系).解析:∵a a b b aba +b 2=⎝ ⎛⎭⎪⎫a b a -b 2,∴当a =b 时,⎝ ⎛⎭⎪⎫a b a -b 2=1, 当a >b >0时,a b >1,a -b 2>0,∴⎝ ⎛⎭⎪⎫a b a -b 2>1,当b >a >0时,0<a b<1,a -b2<0,则⎝ ⎛⎭⎪⎫a b a -b 2>1, ∴a a b b≥(ab )a +b2.答案:≥2.已知a ,b ,c 是正实数,且a +b +c =1,则1a +1b +1c的最小值为________.解析:把a +b +c =1代入1a +1b +1c得a +b +c a +a +b +c b +a +b +cc=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,等号成立.答案:9 [课堂争辩高考]比较法证明不等式[典例] (2021·莆田模拟)设a ,b 是非负实数.求证:a 2+b 2≥ab (a +b ). [证明] 由于(a 2+b 2)-ab (a +b ) =(a 2-a ab )+(b 2-b ab ) =a a (a -b )+b b (b -a ) =(a -b )(a a -b b ) =(a 12-b 12)(a 32-b 32),由于a ≥0,b ≥0,所以不论a ≥b ≥0,还是0≤a ≤b ,都有a 12-b 12与a 32-b 32同号,所以(a 12-b 12)(a 32-b 32)≥0,所以a 2+b 2≥ab (a +b ). [方法技巧]比较法证明不等式的方法和步骤 (1)求差比较法:由a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b 只要证明a -b >0即可,这种方法称为求差比较法. (2)求商比较法:由a >b >0⇔a b >1且a >0,b >0,因此当a >0,b >0时,要证明a >b ,只要证明a b>1即可,这种方法称为求商比较法.(3)用比较法证明不等式的一般步骤是:作差(商)—变形—推断—结论,而变形的方法一般有配方、通分和因式分解.[即时演练]已知a =ln 22,b =ln 33,试比较a ,b 大小.解:∵ln 22>0,ln 33>0,∴b a =2ln 33ln 2=log 89>1.∴b >a .综合法证明不等式[典例] a b a b (1)(ax +by )2≤ax 2+by 2;(2)⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.[证明] (1)(ax +by )2-(ax 2+by 2)=a (a -1)x 2+b (b -1)y 2+2abxy , 由于a +b =1,所以a -1=-b ,b -1=-a ,又a ,b 均为正数, 所以a (a -1)x 2+b (b -1)y 2+2abxy =-ab (x 2+y 2-2xy )=-ab (x -y )2≤0,当且仅当x =y 时等号成立. 所以(ax +by )2≤ax 2+by 2.(2)⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2=4+a 2+b 2+⎝ ⎛⎭⎪⎫1a 2+1b 2=4+a 2+b 2+a +b2a 2+a +b2b 2=4+a 2+b 2+1+2ba +b 2a 2+a 2b 2+2a b +1=4+(a 2+b 2)+2+⎝ ⎛⎭⎪⎫2b a +2a b +⎝ ⎛⎭⎪⎫b 2a 2+a 2b 2≥6+a +b 22+4+2=252,当且仅当a =b =12时,等号成立,所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.[方法技巧]1.综合法证明不等式的方法综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.综合法证明时常用的不等式 (1)a 2≥0. (2)|a |≥0.(3)a 2+b 2≥2ab ,它的变形形式有:a 2+b 2≥2|ab |;a 2+b 2≥-2ab ;(a +b )2≥4ab ; a 2+b 2≥12(a +b )2;a 2+b22≥⎝⎛⎭⎪⎫a +b 22.(4)a +b2≥ab ,它的变形形式有:a +1a ≥2(a >0);ab +ba≥2(ab >0);a b +ba≤-2(ab <0). [即时演练]设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a≥1.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca , 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1, 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)由于a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a≥1.分析法证明不等式[典例] 设a ,b ,c >0求证:(1)a +b +c ≥ 3. (2)abc + b ac + cab≥3(a +b +c ). [证明] (1)要证a +b +c ≥3, 由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证:a 2+b 2+c 2+2(ab +bc +ca )≥3, 而ab +bc +ca =1,故需证明:a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ). 即证:a 2+b 2+c 2≥ab +bc +ca . 而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)证得.所以原不等式成立. (2)a bc +b ac+ c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3. 因此要证原不等式成立, 只需证明1abc≥ a +b +c ,即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca . 而a bc =ab ·ac ≤ab +ac2,b ac ≤ab +bc 2,c ab ≤bc +ac2.所以a bc +b ac +c ab ≤ab +bc +ca 当且仅当a =b =c =33时等号成立. 所以原不等式成立. [方法技巧]1.用分析法证“若A 则B ”这个命题的模式 为了证明命题B 为真,只需证明命题B 1为真,从而有… 只需证明命题B 2为真,从而有… ……只需证明命题A 为真,而已知A 为真,故B 必真. 2.分析法的应用当所证明的不等式不能使用比较法,且和重要不等式、基本不等式没有直接联系,较难发觉条件和结论之间的关系时,可用分析法来查找证明途径,使用分析法证明的关键是推理的每一步必需可逆.[即时演练]已知a >0,b >0,2c >a +b ,求证:c -c 2-ab <a <c +c 2-ab . 证明:要证c -c 2-ab <a <c +c 2-ab , 即证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab , 即证(a -c )2<c 2-ab , 即证a 2-2ac <-ab .由于a >0,所以只要证a -2c <-b , 即证a +b <2c .由已知条件知,上式明显成立,所以原不等式成立.柯西不等式的应用[典例] (2021·陕西高考)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值;(2)求at +12+bt 的最大值.[解] (1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得⎩⎪⎨⎪⎧a =-3,b =1.(2)-3t +12+t =3·4-t +t≤ [32+12][4-t2+t2]=24-t +t =4, 当且仅当4-t 3=t1,即t =1时等号成立,故(-3t +12+t )max =4. [方法技巧]柯西不等式的常见类型及解题策略(1)求表达式的最值.依据已知条件,利用柯西不等式求最值,留意等号成立的条件;(2)求解析式的值.利用柯西不等式的条件,留意等号成立的条件,进而求得各个量的值,从而求出解析式的值;(3)证明不等式.留意所证不等式的结构特征,查找柯西不等式的条件,然后证明. [即时演练]已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a . (1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3. 解:(1)由于|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当-1≤x ≤2时,等号成立,所以f (x )的最小值等于3,即a =3. (2)证明:由(1)知p +q +r =3,又由于p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9,即p 2+q 2+r 2≥3.1.(2022·全国甲卷)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.解:(1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x≥12时,由f(x)<2得2x<2,解得x<1.所以f(x)<2的解集M={x|-1<x<1}.(2)证明:由(1)知,当a,b∈M时,-1<a<1,-1<b<1,从而(a+b)2-(1+ab)2=a2+b2-a2b2-1=(a2-1)(1-b2)<0.因此|a+b|<|1+ab|.2.(2021·全国卷Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则a+b>c+d;(2)a+b>c+d是|a-b|<|c-d|的充要条件.证明:(1)由于(a+b)2=a+b+2ab,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd,得(a+b)2>(c+d)2.因此a+b>c+d.(2)①必要性:若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.由于a+b=c+d,所以ab>cd.由(1),得a+b>c+d.②充分性:若a+b>c+d,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.由于a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.3.(2022·全国卷Ⅰ)若a>0,b>0,且1a+1b=ab.(1)求a3+b3的最小值;(2)是否存在a,b,使得2a+3b=6?并说明理由.解:(1)由ab=1a+1b≥2ab,得ab≥2,且当a=b=2时等号成立.故a3+b3≥2a3b3≥42,且当a=b=2时等号成立.所以a3+b3的最小值为4 2.(2)由(1)知,2a+3b≥26ab≥4 3.由于43>6,从而不存在a,b,使得2a+3b=6.[高考达标检测]1.设a,b,c为正数且a+b+c=1,求证:⎝⎛⎭⎪⎫a+1a2+⎝⎛⎭⎪⎫b+1b2+⎝⎛⎭⎪⎫c+1c2≥1003.证明:⎝⎛⎭⎪⎫a+1a2+⎝⎛⎭⎪⎫b+1b2+c+1c2=13(12+12+12)⎝⎛⎭⎪⎫a+1a2+⎝⎛⎭⎪⎫b+1b2+⎝⎛⎭⎪⎫c+1c2≥131×⎝⎛⎭⎪⎫a+1a+1×b+1b+1×⎝⎛⎭⎪⎫c+1c2=131+1a+1b+1c2=131+(a+b+c)1a+1b+1c2≥13×(1+9)2=1003.即原不等式成立.2.(2021·大连双基测试)已知x,y是两个不相等的正实数,求证:(x2y+x+y2)(xy2+y+x2)>9x2y2.证明:由于x,y是正实数,所以x2y+x+y2≥33x2y·x·y2=3xy,当且仅当x2y=x=y2,即x=y=1时,等号成立;同理:xy2+y+x2≥33xy2·y·x2=3xy,当且仅当xy2=y=x2,即x=y=1时,等号成立.所以(x2y+x+y2)(xy2+y+x2)≥9x2y2,当且仅当x=y=1时,等号成立.由于x≠y,所以(x2y+x+y2)(xy2+y+x2)>9x2y2.3.已知x,y∈R,且|x|<1,|y|<1.求证:11-x2+11-y2≥21-xy.证明:法一:(分析法)∵|x|<1,|y|<1,∴11-x2>0,11-y2>0,∴11-x 2+11-y2≥21-x21-y2.故要证明结论成立, 只要证明21-x21-y2≥21-xy成立. 即证1-xy ≥1-x 21-y2成马上可.∵(y -x )2≥0,有-2xy ≥-x 2-y 2, ∴(1-xy )2≥(1-x 2)(1-y 2), ∴1-xy ≥1-x21-y2>0. ∴不等式成立.法二:(综合法)∵211-x 2+11-y2≤1-x 2+1-y22=2-x 2+y 22≤2-2|xy |2=1-|xy |,∴11-x 2+11-y 2≥21-|xy |≥21-xy, ∴原不等式成立.4.设函数f (x )=|x -4|+|x -3|,f (x )的最小值为m . (1)求m 的值;(2)当a +2b +3c =m (a ,b ,c ∈R)时,求a 2+b 2+c 2的最小值.解:(1)法一:f (x )=|x -4|+|x -3|≥|(x -4)-(x -3)|=1,故函数f (x )的最小值为1,即m =1. 法二:f (x )=⎩⎪⎨⎪⎧2x -7,x ≥4,1,3≤x <4,7-2x ,x <3.当x ≥4时,f (x )≥1;当x <3时,f (x )>1;当3≤x <4时,f (x )=1,故函数f (x )的最小值为1,即m =1.(2)(a 2+b 2+c 2)(12+22+32)≥(a +2b +3c )2=1, 故a 2+b 2+c 2≥114, 当且仅当a =114,b =17,c =314时取等号.故a 2+b 2+c 2的最小值为114.5.(2021·云南统一检测)已知a 是常数,对任意实数x ,不等式|x +1|-|2-x |≤a ≤|x +1|+|2-x |都成立.(1)求a 的值;(2)设m >n >0,求证:2m +1m 2-2mn +n 2≥2n +a .解:(1)设f (x )=|x +1|-|2-x |, 则f (x )=⎩⎪⎨⎪⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2,∴f (x )的最大值为3.∵对任意实数x ,|x +1|-|2-x |≤a 都成立,即f (x )≤a , ∴a ≥3.设h (x )=|x +1|+|2-x |, 则h (x )=⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2,则h (x )的最小值为3.∵对任意实数x ,|x +1|+|2-x |≥a 都成立,即h (x )≥a , ∴a ≤3. ∴a =3.(2)证明:由(1)知a =3.∵2m +1m 2-2mn +n2-2n =(m -n )+(m -n )+1m -n2,且m >n >0,∴(m -n )+(m -n )+1m -n2≥33m -nm -n1m -n2=3.∴2m +1m 2-2mn +n 2≥2n +a .6.(2021·吉林试验中学模拟)设函数f (x )=|x -a |. (1)当a =2时,解不等式f (x )≥4-|x -1|;(2)若f (x )≤1的解集为[0,2],1m +12n =a (m >0,n >0),求证:m +2n ≥4.解:(1)当a =2时,不等式为|x -2|+|x -1|≥4, ①当x ≥2时,不等式可化为x -2+x -1≥4,解得x ≥72;②当1<x <2时,不等式可化为2-x +x -1≥4,不等式的解集为∅;③当x ≤1时,不等式可化为2-x +1-x ≥4,解得x ≤-12.综上可得,不等式的解集为⎝ ⎛⎦⎥⎤-∞,-12∪⎣⎢⎡⎭⎪⎫72,+∞. (2)证明:∵f (x )≤1,即|x -a |≤1,解得a -1≤x ≤a +1,而f (x )≤1的解集是[0,2],∴⎩⎪⎨⎪⎧a -1=0,a +1=2,解得a =1,所以1m +12n=1(m >0,n >0),所以m +2n =(m +2n )⎝ ⎛⎭⎪⎫1m +12n =2+m 2n +2nm≥2+2m 2n ·2nm=4, 当且仅当m =2,n =1时取等号.7.(2021·合肥模拟)已知a >0,b >0,记A =a +b ,B =a +b . (1)求2A -B 的最大值;(2)若ab =4,是否存在a ,b ,使得A +B =6?并说明理由. 解:(1)2A -B =2a -a +2b -b =-⎝ ⎛⎭⎪⎫a -222-⎝ ⎛⎭⎪⎫b -222+1≤1, 当且仅当a =b =12时等号成立,即2A -B 的最大值为1.(2)A +B =a +b +a +b ≥2ab +2ab ,由于ab =4,所以A +B ≥4+22>6,所以不存在这样的a ,b ,使得A +B =6. 8.(2022·西安质检)已知函数f (x )=|x -1|. (1)解不等式f (2x )+f (x +4)≥8; (2)若|a |<1,|b |<1,a ≠0,求证:f ab |a |>f ⎝ ⎛⎭⎪⎫b a . 解:(1)f (2x )+f (x +4)=|2x -1|+|x +3|=⎩⎪⎨⎪⎧-3x -2,x <-3,-x +4,-3≤x <12,3x +2,x ≥12,当x <-3时,由-3x -2≥8,解得x ≤-103;当-3≤x <12时,-x +4≥8无解;当x ≥12时,由3x +2≥8,解得x ≥2.所以不等式f (2x )+f (x +4)≥8的解集为⎝ ⎛⎦⎥⎤-∞,-103∪[2,+∞). (2)证明:f ab |a |>f ⎝ ⎛⎭⎪⎫b a 等价于f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a , 即|ab -1|>|a -b |. 由于|a |<1,|b |<1,所以|ab -1|2-|a -b |2=(a 2b 2-2ab +1)-(a 2-2ab +b 2)=(a 2-1)(b 2-1)>0, 所以|ab -1|>|a -b |. 故所证不等式成立.。
高中文科数学第十三章 不等式选讲(选修4-5)

第十三章⎪⎪⎪不等式选讲(选修4-5)第一节 绝对值不等式1.绝对值三角不等式定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立. 定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集(2)|ax +b |①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的解法: ①利用绝对值不等式的几何意义求解. ②利用零点分段法求解.③构造函数,利用函数的图象求解. [小题体验]1.(教材习题改编)设ab >0,下面四个不等式中,正确的是( ) ①|a +b |>|a |;②|a +b |<|b |;③|a +b |<|a -b |;④|a +b |>|a |-|b |. A .①和② B .①和③ C .①和④D .②和④解析:选C ∵ab >0,即a ,b 同号, 则|a +b |=|a |+|b |, ∴①④正确,②③错误.2.若不等式|kx -4|≤2的解集为{}x |1≤x ≤3,则实数k =________.解析:由|kx -4|≤2⇔2≤kx ≤6. ∵不等式的解集为{}x |1≤x ≤3, ∴k =2. 答案:23.不等式|x +1|-|x -2|≥1的解集是________. 解析:f (x )=|x +1|-|x -2|=⎩⎪⎨⎪⎧-3, x ≤-1,2x -1, -1<x <2,3, x ≥2.当-1<x <2时,由2x -1≥1,解得1≤x <2. 又当x ≥2时,f (x )=3>1恒成立. 所以不等式的解集为{}x |x ≥1. 答案:{}x |x ≥11.对形如|f (x )|>a 或|f (x )|<a 型的不等式求其解集时,易忽视a 的符号直接等价转化造成失误.2.绝对值不等式||a |-|b ||≤|a ±b |≤|a |+|b |中易忽视等号成立的条件.如|a -b |≤|a |+|b |,当且仅当ab ≤0时等号成立,其他类似推导.[小题纠偏]1.设a ,b 为满足ab <0的实数,那么( ) A .|a +b |>|a -b | B .|a +b |<|a -b | C .|a -b |<|||a |-|b |D .|a -b |<|a |+|b |解析:选B ∵ab <0,∴|a -b |=|a |+|b |>|a +b |.2.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________. 解析:∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|, 要使|x -a |+|x -1|≤3有解,可使|a -1|≤3, ∴-3≤a -1≤3,∴-2≤a ≤4. 答案:[-2,4]考点一 绝对值不等式的解法(基础送分型考点——自主练透)[题组练透]1.(易错题)若不等式|x -a |+3x ≤0(其中a >0)的解集为{}x |x ≤-1,求实数a 的值.解:不等式|x -a |+3x ≤0等价于⎩⎪⎨⎪⎧ x ≥a ,x -a +3x ≤0或⎩⎪⎨⎪⎧x <a ,a -x +3x ≤0,即⎩⎪⎨⎪⎧x ≥a ,x ≤a4或⎩⎪⎨⎪⎧x <a ,x ≤-a 2. 因为a >0,所以不等式组的解集为⎩⎨⎧⎭⎬⎫x |x ≤-a 2 .由题设可得-a2=-1,故a =2.2.在实数范围内,解不等式|2x -1|+|2x +1|≤6. 解:法一:当x >12时,原不等式转化为4x ≤6⇒12<x ≤32;当-12≤x ≤12时,原不等式转化为2≤6,恒成立;当x <-12时,原不等式转化为-4x ≤6⇒-32≤x <-12.综上知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32. 法二:原不等式可化为⎪⎪⎪⎪x -12 +⎪⎪⎪⎪x +12 ≤3, 其几何意义为数轴上到12,-12两点的距离之和不超过3的点的集合,数形结合知,当x=32或x =-32时,到12,-12两点的距离之和恰好为3,故当-32≤x ≤32时,满足题意,则原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32 .3.(2015·山东高考改编)解不等式|x -1|-|x -5|<2.解:当x <1时,不等式可化为-(x -1)-(5-x )<2,即-4<2,显然成立,所以此时不等式的解集为(-∞,1);当1≤x ≤5时,不等式可化为x -1-(5-x )<2,即2x -6<2,解得x <4,所以此时不等式的解集为[1,4);当x >5时,不等式可化为(x -1)-(x -5)<2,即4<2,显然不成立.所以此时不等式无解.综上,不等式的解集为(-∞,4).[谨记通法]1.求解绝对值不等式要注意两点:(1)要求的不等式的解集是各类情形的并集,利用零点分段法的操作程序是:找零点,分区间,分段讨论.(2)对于解较复杂绝对值不等式,要恰当运用条件,简化分类讨论,优化解题过程.如“题组练透”第1题要注意分类讨论.2.求解该类问题的关键是去绝对值符号,可以运用零点分段法去绝对值,此外还常利用绝对值的几何意义求解.考点二 绝对值不等式的证明 (重点保分型考点——师生共研)[典例引领](2015·唐山三模)设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪13a +16b <14;(2)比较|1-4ab |与2|a -b |的大小,并说明理由. 解:(1)证明:记f (x )=|x -1|-|x +2| =⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x <1,-3,x ≥1.由-2<-2x -1<0,解得-12<x <12,则M =⎝⎛⎭⎫-12,12 . 所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14.因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2) =(4a 2-1)(4b 2-1)>0, 所以|1-4ab |2>4|a -b |2, 故|1-4ab |>2|a -b |.[由题悟法]证明绝对值不等式主要的3种方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明.(2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明. (3)转化为函数问题,数形结合进行证明.[即时应用]已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.证明:∵|x +5y |=|3(x +y )-2(x -y )|. ∴由绝对值不等式的性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )| =3|x +y |+2|x -y |≤3×16+2×14=1.即|x +5y |≤1.考点三 绝对值不等式的综合应用 (重点保分型考点——师生共研)[典例引领](2016·大同调研)已知函数f (x )=|2x -1|+|x -2a |. (1)当a =1时,求f (x )≤3的解集;(2)当x ∈[1,2]时,f (x )≤3恒成立,求实数a 的取值范围. 解:(1)当a =1时,由f (x )≤3,可得|2x -1|+|x -2|≤3, ∴⎩⎪⎨⎪⎧x <12,1-2x +2-x ≤3①或⎩⎪⎨⎪⎧12≤x <2,2x -1+2-x ≤3② 或⎩⎪⎨⎪⎧x ≥2,2x -1+x -2≤3.③ 解①求得0≤x <12;解②求得12≤x <2;解③求得x =2.综上可得,0≤x ≤2,即不等式的解集为[0,2]. (2)∵当x ∈[1,2]时,f (x )≤3恒成立, 即|x -2a |≤3-|2x -1|=4-2x ,故2x -4≤2a -x ≤4-2x ,即3x -4≤2a ≤4-x . 再根据3x -4的最大值为6-4=2, 4-x 的最小值为4-2=2, ∴2a =2,∴a =1, 即a 的取值范围为{1}.[由题悟法]1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,将原函数转化为分段函数,然后利用数形结合解决问题,这是常用的思想方法.2.f (x )<a 恒成立⇔f (x )max <a . f (x )>a 恒成立⇔f (x )min >a .[即时应用](2015·重庆高考改编)若函数f (x )=|x +1|+2|x -a |的最小值为5,求实数a 的值. 解:当a =-1时,f (x )=3|x +1|≥0,不满足题意; 当a <-1时,f (x )=⎩⎪⎨⎪⎧-3x -1+2a , x ≤a ,x -1-2a , a <x ≤-1,3x +1-2a , x >-1,f (x )min =f (a )=-3a -1+2a =5, 解得a =-6;当a >-1时,f (x )=⎩⎪⎨⎪⎧-3x -1+2a , x ≤-1,-x +1+2a , -1<x ≤a ,3x +1-2a , x >a ,f (x )min =f (a )=-a +1+2a =5, 解得a =4.综上所述,实数a 的值为-6或4.1.(2016·福建四地六校联考)已知函数f (x )=|x -1|+|x +1|. (1)求不等式f (x )≥3的解集;(2)若关于x 的不等式f (x )≥a 2-a 在R 上恒成立,求实数a 的取值范围.解:(1)原不等式等价于⎩⎪⎨⎪⎧ x ≤-1,-2x ≥3或⎩⎪⎨⎪⎧ -1<x ≤1,2≥3或⎩⎪⎨⎪⎧x >1,2x ≥3,解得x ≤-32或x ∈∅或x ≥32.∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-32或x ≥32. (2)由题意得,关于x 的不等式|x -1|+|x +1|≥a 2-a 在R 上恒成立. ∵|x -1|+|x +1|≥|(x -1)-(x +1)|=2, ∴a 2-a ≤2,即a 2-a -2≤0,解得-1≤a ≤2.∴实数a 的取值范围是[-1,2].2.(2016·忻州模拟)已知|2x -3|≤1的解集为[m ,n ]. (1)求m +n 的值;(2)若|x -a |<m ,求证:|x |<|a |+1.解:(1)由不等式|2x -3|≤1可化为-1≤2x -3≤1, 得1≤x ≤2,∴m =1,n =2,m +n =3.(2)证明:若|x -a |<1,则|x |=|x -a +a |≤|x -a |+|a |<|a |+1. 3.设函数f (x )=|x -1|+|x -2|. (1)求证:f (x )≥1; (2)若f (x )=a 2+2a 2+1成立,求x 的取值范围.解:(1)证明:f (x )=|x -1|+|x -2|≥|(x -1)-(x -2)|=1. (2)∵a 2+2a 2+1=a 2+1+1a 2+1=a 2+1+1a 2+1≥2,当且仅当a =0时等号成立, ∴要使f (x )=a 2+2a 2+1成立,只需|x -1|+|x -2|≥2,即⎩⎪⎨⎪⎧ x <1,1-x +2-x ≥2或⎩⎪⎨⎪⎧ 1≤x <2,x -1+2-x ≥2或⎩⎪⎨⎪⎧x ≥2,x -1+x -2≥2, 解得x ≤12或x ≥52,故x 的取值范围是⎝⎛⎦⎤-∞,12 ∪⎣⎡⎭⎫52,+∞. 4.(2016·唐山一模)已知函数f (x )=|2x -a |+|x +1|. (1)当a =1时,解不等式f (x )<3; (2)若f (x )的最小值为1,求a 的值.解:(1)当a =1时,f (x )=|2x -1|+|x +1|=⎩⎪⎨⎪⎧-3x ,x ≤-1,-x +2,-1<x <12,3x ,x ≥12,且f (1)=f (-1)=3,所以f (x )<3的解集为{}x |-1<x <1.(2)|2x -a |+|x +1|=⎪⎪⎪⎪x -a 2 +|x +1|+⎪⎪⎪⎪x -a 2 ≥⎪⎪⎪⎪1+a 2 +0=⎪⎪⎪⎪1+a2 , 当且仅当(x +1)⎝⎛⎭⎫x -a 2 ≤0且x -a2=0时,取等号. 所以⎪⎪⎪⎪1+a2 =1,解得a =-4或0.5.(2015·南宁二模)已知函数f (x )=|x -a |.(1)若f (x )≤m 的解集为{}x |-1≤x ≤5,求实数a ,m 的值; (2)当a =2且0≤t ≤2时,解关于x 的不等式f (x )+t ≥f (x +2). 解:(1)∵|x -a |≤m ,∴-m +a ≤x ≤m +a . ∵-m +a =-1,m +a =5, ∴a =2,m =3.(2)f (x )+t ≥f (x +2)可化为|x -2|+t ≥|x |. 当x ∈(-∞,0)时,2-x +t ≥-x,2+t ≥0, ∵0≤t ≤2,∴x ∈(-∞,0);当x ∈[0,2)时,2-x +t ≥x ,x ≤1+t 2,0≤x ≤1+t 2,∵1≤1+t 2≤2,∴0≤x ≤1+t2;当x ∈[2,+∞)时,x -2+t ≥x ,t ≥2,当0≤t <2时,无解,当t =2时,x ∈[2,+∞). ∴当0≤t <2时原不等式的解集为⎝⎛⎦⎤-∞,t2+1; 当t =2时原不等式的解集为[2,+∞).6.(2015·全国卷Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0, 解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x 23<x <2.(2)由题设可得f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎫2a -13,0,B (2a +1,0),C (a ,a +1),则△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).7.(2015·郑州二检)已知函数f (x )=|3x +2|. (1)解不等式f (x )<4-|x -1|;(2)已知m +n =1(m ,n >0),若|x -a |-f (x )≤1m +1n (a >0)恒成立,求实数a 的取值范围.解:(1)不等式f (x )<4-|x -1|,即|3x +2|+|x -1|<4. 当x <-23时,即-3x -2-x +1<4,解得-54<x <-23;当-23≤x ≤1时,即3x +2-x +1<4,解得-23≤x <12;当x >1时,即3x +2+x -1<4,无解. 综上所述,x ∈⎝⎛⎭⎫-54,12 . (2)1m +1n =⎝⎛⎭⎫1m +1n (m +n )=1+1+n m +m n ≥4, 当且仅当m =n =12时等号成立.令g (x )=|x -a |-f (x )=|x -a |-|3x +2|= ⎩⎪⎨⎪⎧2x +2+a ,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -2-a ,x >a .∴x =-23时,g (x )max =23+a ,要使不等式恒成立,只需g (x )max =23+a ≤4,即0<a ≤103.所以实数a 的取值范围是⎝⎛⎦⎤0,103 . 8.(2016·大庆模拟)设函数f (x )=|2x -1|-|x +4|. (1)解不等式:f (x )>0;(2)若f (x )+3|x +4|≥|a -1|对一切实数x 均成立,求a 的取值范围.解:(1)原不等式即为|2x -1|-|x +4|>0,当x ≤-4时,不等式化为1-2x +x +4>0,解得x <5,即不等式组⎩⎪⎨⎪⎧x ≤-4,|2x -1|-|x +4|>0的解集是{}x |x ≤-4.当-4<x <12时,不等式化为1-2x -x -4>0,解得x <-1,即不等式组⎩⎪⎨⎪⎧-4<x <12,|2x -1|-|x +4|>0的解集是{}x |-4<x <-1.当x ≥12时,不等式化为2x -1-x -4>0,解得x >5,即不等式组⎩⎪⎨⎪⎧x ≥12,|2x -1|-|x +4|>0的解集是{}x |x >5.综上,原不等式的解集为{}x |x <-1或x >5.(2)∵f (x )+3|x +4|=|2x -1|+2|x +4|=|1-2x |+|2x +8|≥|(1-2x )+(2x +8)|=9. ∴由题意可知|a -1|≤9,解得-8≤a ≤10, 故所求a 的取值范围是[]-8,10.第二节 不等式的证明1.基本不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)比差法的依据是:a -b >0⇔a >b .步骤是:“作差→变形→判断差的符号”.变形是手段,变形的目的是判断差的符号.(2)比商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.[小题体验]1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( ) A .s ≥t B .s >t C .s ≤tD .s <t解析:选A ∵s -t =b 2-2b +1=(b -1)2≥0,∴s ≥t .2.若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是________(写出所有正确命题的序号).①ab ≤1;② a +b ≤2;③a 2+b 2≥2; ④a 3+b 3≥3;⑤1a +1b ≥2. 解析:令a =b =1,排除②④;由2=a +b ≥2ab ⇒ab ≤1,命题①正确; a 2+b 2=(a +b )2-2ab =4-2ab ≥2,命题③正确; 1a +1b =a +b ab =2ab ≥2,命题⑤正确. 答案:①③⑤1.在使用作商比较法时易忽视说明分母的符号.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,易忽视性质成立的前提条件.[小题纠偏]1.已知a >0,b >0,则a a b b________(ab )+2a b (填大小关系).解析:∵a ab b(ab )+2a b =⎝⎛⎭⎫a b -2a b,∴当a =b 时,⎝⎛⎭⎫a b -2a b=1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b -2a b>1,当b >a >0时,0<ab <1,a -b 2<0,则⎝⎛⎭⎫a b -2a b>1,∴a a b b≥(ab ) +2a b .答案:≥2.已知a ,b ,c 是正实数,且a +b +c =1,则1a +1b +1c 的最小值为________. 解析:把a +b +c =1代入1a +1b +1c 得a +b +c a +a +b +c b +a +b +c c =3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,等号成立.答案:9考点一 比较法证明不等式(基础送分型考点——自主练透)[题组练透]1.(2016·莆田模拟)设a ,b 是非负实数, 求证:a 2+b 2≥ab (a +b ). 证明:因为a 2+b 2-ab (a +b ) =(a 2-a ab )+(b 2-b ab ) =a a (a -b )+b b (b -a ) =(a -b )(a a -b b )=(a 12-b 12)(a 32-b 32),因为a ≥0,b ≥0,所以不论a ≥b ≥0,还是0≤a ≤b ,都有a 12-b 12与a 32-b 32同号,所以(a 12-b 12)(a 32-b 32)≥0,所以a 2+b 2≥ab (a +b ). 2. 已知a =ln 22,b =ln 33,试比较a ,b 大小. 解:∵ln 22>0,ln 33>0, ∴b a =2ln 33ln 2=log 89>1.∴b >a .[谨记通法]作差比较法证明不等式的步骤(1)作差;(2)变形;(3)判断差的符号;(4)下结论.其中“变形”是关键,通常将差变形成因式连乘积的形式或平方和的形式,再结合不等式的性质判断出差的正负.考点二 综合法证明不等式 (重点保分型考点——师生共研)[典例引领]设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a ≥1.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1,所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c , 故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a ≥1.[由题悟法]1.综合法证明不等式的方法综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.综合法证明时常用的不等式 (1)a 2≥0. (2)|a |≥0.(3)a 2+b 2≥2ab ,它的变形形式有:a 2+b 2≥2|ab |;a 2+b 2≥-2ab ;(a +b )2≥4ab ; a 2+b 2≥12(a +b )2;a 2+b 22≥⎝⎛⎭⎫a +b 22.(4)a +b2≥ab ,它的变形形式有:a +1a ≥2(a >0);ab +b a ≥2(ab >0); a b +ba ≤-2(ab <0).[即时应用]已知a ,b ,c >0且互不相等,abc =1.试证明:a +b +c <1a +1b +1c .证明:因为a ,b ,c >0,且互不相等,abc =1, 所以a +b +c =1bc +1ac +1ab<1b +1c 2+1a +1c 2+1a +1b 2=1a +1b +1c ,即a +b +c <1a +1b +1c .考点三 分析法证明不等式 (重点保分型考点——师生共研)[典例引领](2016·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证: (1)a +b +c ≥ 3. (2)abc +b ac +cab ≥ 3(a +b +c ).证明:(1)要证a+b+c≥3,由于a,b,c>0,因此只需证明(a+b+c)2≥3.即证:a2+b2+c2+2(ab+bc+ca)≥3,而ab+bc+ca=1,故只需证明:a2+b2+c2+2(ab+bc+ca)≥3(ab+bc+ca).即证:a2+b2+c2≥ab+bc+ca.而这可以由ab+bc+ca≤a2+b22+b2+c22+c2+a22=a2+b2+c2(当且仅当a=b=c时等号成立)证得.所以原不等式成立.(2) abc+bac+cab=a+b+cabc.在(1)中已证a+b+c≥ 3. 因此要证原不等式成立,只需证明1abc≥a+b+c,即证a bc+b ac+c ab≤1,即证a bc+b ac+c ab≤ab+bc+ca.而a bc=ab·ac≤ab+ac2,b ac≤ab+bc2,c ab≤bc+ac2.所以a bc+b ac+c ab≤ab+bc+ca(当且仅当a=b=c=33时等号成立).所以原不等式成立.[由题悟法]1.用分析法证“若A则B”这个命题的模式为了证明命题B为真,只需证明命题B1为真,从而有…只需证明命题B2为真,从而有………只需证明命题A为真,而已知A为真,故B必真.2.分析法的应用当所证明的不等式不能使用比较法,且和重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.[即时应用]已知a>b>c,且a+b+c=0,求证:b2-ac<3a.证明:要证b2-ac<3a,只需证b2-ac<3a2.∵a+b+c=0,只需证b2+a(a+b)<3a2,只需证2a2-ab-b2>0,只需证(a-b)(2a+b)>0,只需证(a-b)(a-c)>0.∵a>b>c,∴a-b>0,a-c>0.∴(a-b)(a-c)>0显然成立,故原不等式成立.1.设不等式|2x-1|<1的解集为M.(1)求集合M.(2)若a,b∈M,试比较ab+1与a+b的大小.解:(1)由|2x-1|<1得-1<2x-1<1,解得0<x<1.所以M={x|0<x<1}.(2)由(1)和a,b∈M可知0<a<1,0<b<1,所以(ab+1)-(a+b)=(a-1)(b-1)>0.故ab+1>a+b.2.已知a>0,b>0,2c>a+b,求证:c-c2-ab<a<c+c2-ab.证明:要证:c-c2-ab<a<c+c2-ab,只需证:-c2-ab<a-c<c2-ab,只需证:|a-c|<c2-ab,只需证:(a-c)2<c2-ab,只需证:a2+c2-2ac<c2-ab,即证:2ac>a2+ab.因为a>0,所以只需证2c>a+b,由题设,上式显然成立.故c-c2-ab<a<c+c2-ab.3.(2015·湖南高考)设a >0,b >0,且a +b =1a +1b .证明:(1)a +b ≥2;(2)a 2+a <2与b 2+b <2不可能同时成立. 证明:由a +b =1a +1b =a +bab ,a >0,b >0, 得ab =1.(1)由基本不等式及ab =1, 有a +b ≥2ab =2, 即a +b ≥2.(2)假设a 2+a <2与b 2+b <2同时成立, 则由a 2+a <2及a >0,得0<a <1; 同理,0<b <1,从而ab <1, 这与ab =1矛盾.故a 2+a <2与b 2+b <2不可能同时成立.4.(2015·长春三模)(1)已知a ,b 都是正数,且a ≠b ,求证:a 3+b 3>a 2b +ab 2; (2)已知a ,b ,c 都是正数,求证:a 2b 2+b 2c 2+c 2a 2a +b +c ≥abc .证明:(1)(a 3+b 3)-(a 2b +ab 2)=(a +b )(a -b )2. 因为a ,b 都是正数,所以a +b >0. 又因为a ≠b ,所以(a -b )2>0.于是(a +b )(a -b )2>0,即(a 3+b 3)-(a 2b +ab 2)>0, 所以a 3+b 3>a 2b +ab 2. (2)因为b 2+c 2≥2bc ,a 2>0, 所以a 2(b 2+c 2)≥2a 2bc .① 同理b 2(a 2+c 2)≥2ab 2c . ② c 2(a 2+b 2)≥2abc 2. ③①②③相加得2(a 2b 2+b 2c 2+c 2a 2)≥2a 2bc +2ab 2c +2abc 2, 从而a 2b 2+b 2c 2+c 2a 2≥abc (a +b +c ). 由a ,b ,c 都是正数,得a +b +c >0, 因此a 2b 2+b 2c 2+c 2a 2a +b +c ≥abc .5.若a >0,b >0,且1a +1b =ab . (1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.解:(1)由ab =1a +1b ≥2ab,得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6. 6.(2016·吉林实验中学模拟)设函数f (x )=|x -a |. (1)当a =2时,解不等式f (x )≥4-|x -1|;(2)若f (x )≤1的解集为[0,2],1m +12n =a (m >0,n >0),求证:m +2n ≥4.解:(1)当a =2时,不等式为|x -2|+|x -1|≥4,①当x ≥2时,不等式可化为x -2+x -1≥4,解得x ≥72;②当12<x <72时,不等式可化为2-x +x -1≥4,不等式的解集为∅;③当x ≤12时,不等式可化为2-x +1-x ≥4,解得x ≤-12.综上可得,不等式的解集为⎝⎛⎦⎤-∞,-12∪⎣⎡⎭⎫72,+∞. (2)证明:∵f (x )≤1,即|x -a |≤1,解得a -1≤x ≤a +1,而f (x )≤1的解集是[0,2],∴⎩⎪⎨⎪⎧a -1=0,a +1=2,解得a =1, 所以1m +12n =1(m >0,n >0),所以m +2n =(m +2n )⎝⎛⎭⎫1m +12n =2+m 2n +2nm≥2+2m 2n ·2nm=4, 当且仅当m =2,n =1时取等号.7.(2015·全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab ,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd,得(a+b)2>(c+d)2.因此a+b>c+d.(2)①必要性:若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1),得a+b>c+d.②充分性:若a+b>c+d,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.8.已知x,y∈R,且|x|<1,|y|<1.求证:11-x2+11-y2≥21-xy.证明:法一:(分析法)∵|x|<1,|y|<1,∴11-x2>0,11-y2>0,∴11-x2+11-y2≥2(1-x2)(1-y2).故要证明结论成立,只要证明2(1-x2)(1-y2)≥21-xy成立.即证1-xy≥(1-x2)(1-y2)成立即可.∵(y-x)2≥0,有-2xy≥-x2-y2,∴(1-xy)2≥(1-x2)(1-y2),∴1-xy≥(1-x2)(1-y2)>0.∴不等式成立.法二:(综合法)∵211-x2+11-y2≤1-x2+1-y22=2-(x2+y2)2≤2-2|xy|2=1-|xy|,∴11-x2+11-y2≥21-|xy|≥21-xy,∴原不等式成立.提升考能、阶段验收专练卷(一)集合与常用逻辑用语、函数、导数及其应用(时间:70分钟 满分:104分)Ⅰ.小题提速练(限时45分钟)(一)选择题(本大题共12小题,每小题5分)1.命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( )A .∃x 0∉∁R Q ,x 30∈QB .∃x 0∈∁R Q ,x 30∉QC .∀x ∉∁R Q ,x 3∈QD .∀x ∈∁R Q ,x 3∉Q解析:选D 根据特称命题的否定为全称命题知D 正确. 2.(2015·安徽高考)下列函数中,既是偶函数又存在零点的是( ) A .y =ln x B .y =x 2+1 C .y =sin xD .y =cos x解析:选D A 是非奇非偶函数,故排除;B 是偶函数,但没有零点,故排除;C 是奇函数,故排除;y =cos x 是偶函数,且有无数个零点.3.(2015·南昌一模)若集合A ={}x |1≤3x ≤81,B ={}x |log 2x 2-x,则A ∩B =()A .(2,4]B .[2,4]C .(-∞,0)∪(0,4]D .(-∞,-1)∪[0,4]解析:选A 因为A ={}x |1≤3x≤81 ={}x |30≤3x ≤34={}x |0≤x ≤4, B ={}x |log 2x 2-x={}x |x 2-x >2={}x |x <-1或x >2,所以A ∩B ={}x |0≤x ≤4∩{}x |x <-1或x >2={}x |2<x ≤4=(2,4].4.(2016·陕西质检)已知直线y =-x +m 是曲线y =x 2-3ln x 的一条切线,则m 的值为( )A .0B .2C .1D .3解析:选B 因为直线y =-x +m 是曲线y =x 2-3ln x 的切线,所以令y ′=2x -3x =-1,得x =1或x =-32(舍),即切点为(1,1),又切点(1,1)在直线y =-x +m 上,所以m =2.5.(2016·南昌二中模拟)下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为:“若x 2=1,则x ≠1”B .已知y =f (x )是R 上的可导函数,则“f ′(x 0)=0”中“x 0是函数y =f (x )的极值点”的必要不充分条件C .命题“存在x 0∈R ,使得x 20+x 0+1<0”的否定是:“对任意x ∈R ,均有x 2+x +1<0”D .命题“角α的终边在第一象限,则α是锐角”的逆否命题为真命题解析:选B 选项A 不正确,∵不符合否命题的定义;选项B 显然正确;选项C 不正确,命题“存在x 0∈R ,使得x 20+x 0+1<0”的否定是:“对任意x ∈R ,均有x 2+x +1≥0”;对于选项D ,原命题是假命题,故逆否命题也为假命题,故选B.6.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x +c ,x <1,则“c =-1”是“函数f (x )在R 上递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若函数f (x )在R 上递增,则需log 21≥c +1,即c ≤-1.由于c =-1⇒c ≤-1,但c ≤-1⇒/ c =-1,所以“c =-1”是“f (x )在R 上递增”的充分不必要条件.7.已知函数f (x )=⎩⎪⎨⎪⎧3x, x ≤1,log 13x , x >1,则函数y =f (1-x )的大致图象是()解析:选D 当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ;当x =-13时,y =f ⎝⎛⎭⎫43 =log 1343<0,即y =f (1-x )的图象过点⎝ ⎛⎭⎪⎫-13,log 1343 ,排除C. 8.(2016·宁夏中宁一中月考)设f (x )是定义在R 上以2为周期的偶函数,已知x ∈(0,1)时,f (x )=log 12(1-x ),则函数f (x )在(1,2)上( )A .是增函数且f (x )<0B .是增函数且f (x )>0C .是减函数且f (x )<0D .是减函数且f (x )>0解析:选D 设-1<x <0,则0<-x <1,f (-x )=log 12(1+x )=f (x )>0,故函数f (x )在(-1,0)上单调递减.又因为f (x )以2为周期,所以函数f (x )在(1,2)上也单调递减且有f (x )>0.9.(2016·湖南调研)已知函数f (x )=ln x -⎝⎛⎭⎫12x -2的零点为x 0,则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析:选C ∵f (x )=ln x -⎝⎛⎭⎫12 x -2在(0,+∞)上是增函数, 又f (1)=ln 1-⎝⎛⎭⎫12 -1=ln 1-2<0, f (2)=ln 2-⎝⎛⎭⎫12 0<0, f (3)=ln 3-⎝⎛⎭⎫12 1>0, ∴x 0∈(2,3).10.(2016·洛阳统考)设函数f (x )=x |x -a |,若对∀x 1,x 2∈[3,+∞),x 1≠x 2,不等式f (x 1)-f (x 2)x 1-x 2>0恒成立,则实数a 的取值范围是( )A .(-∞,-3]B .[-3,0)C .(-∞,3]D .(0,3]解析:选C 由题意分析可知条件等价于f (x )在[3,+∞)上单调递增,又∵f (x )=x |x -a |,∴当a ≤0时,结论显然成立,当a >0时,f (x )=⎩⎪⎨⎪⎧x 2-ax ,x ≥a ,-x 2+ax ,x <a ,∴f (x )在⎝⎛⎭⎫-∞,a 2上单调递增,在⎝⎛⎭⎫a 2,a 上单调递减,在(a ,+∞)上单调递增,∴0<a ≤3.综上,实数a 的取值范围是(-∞,3].11.(2015·全国卷Ⅰ)设函数y =f (x )的图象与y =2x+a的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则a =( )A .-1B .1C .2D .4解析:选C 设(x ,y )为函数y =f (x )的图象上任意一点,则(-y ,-x )在y =2x +a的图象上,所以有-x =2-y +a,从而有-y +a =log 2(-x )(指数式与对数式的互化), 所以y =a -log 2(-x ), 即f (x )=a -log 2(-x ),所以f (-2)+f (-4)=(a -log 22)+(a -log 24)=(a -1)+(a -2)=1,解得a =2.故选C. 12.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎡⎭⎫-32e ,1 B.⎣⎡⎭⎫-32e ,34 C.⎣⎡⎭⎫32e ,34D.⎣⎡⎭⎫32e ,1解析:选D ∵f (0)=-1+a <0,∴x 0=0. 又∵x 0=0是唯一使f (x )<0的整数,∴⎩⎪⎨⎪⎧f (-1)≥0,f (1)≥0, 即⎩⎪⎨⎪⎧e -1[2×(-1)-1]+a +a ≥0,e (2×1-1)-a +a ≥0,解得a ≥32e .又∵a <1,∴32e≤a <1.(二)填空题(本大题共4小题,每小题5分)13.(2016·江门调研)若f (x )=⎩⎪⎨⎪⎧-x ,x ≤0,x 2-2x ,x >0,则f (x )的最小值是________.解析:当x ≤0时,f (x )=-x ,此时f (x )min =0; 当x >0时,f (x )=x 2-2x =(x -1)2-1, 此时f (x )min =-1.综上,当x ∈R 时,f (x )min =-1. 答案:-114.已知函数f (x )=x -2m 2+m +3(m ∈Z)为偶函数,且f (3)<f (5),则m =________. 解析:因为f (x )是偶函数, 所以-2m 2+m +3应为偶数.又f (3)<f (5),即3-2m 2+m +3<5-2m 2+m +3, 整理得⎝⎛⎭⎫35 -2m 2+m +3<1, 所以-2m 2+m +3>0,解得-1<m <32.又m ∈Z ,所以m =0或1.当m =0时,-2m 2+m +3=3为奇数(舍去); 当m =1时,-2m 2+m +3=2为偶数. 故m 的值为1. 答案:115.里氏震级M的计算公式为M=lg A-lg A0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震的最大振幅的________倍.解析:根据题意,由lg 1 000-lg 0.001=6得此次地震的震级为6级.因为标准地震的振幅为0.001,设9级地震的最大振幅为A9,则lg A9-lg 0.001=9,解得A9=106,同理5级地震的最大振幅A5=102,所以9级地震的最大振幅是5级地震的最大振幅的10 000倍.答案:610 00016.已知函数f(x)的定义域为[-1,5],部分对应值如下表:f(x)的导函数y=f′(x)的图象如图所示.下列关于函数f(x)的命题:①函数f(x)的值域为[1,2];②函数f(x)在[0,2]上是减函数;③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)-a最多有4个零点.其中真命题的序号是________.解析:由导数图象可知,当-1<x<0或2<x<4时,f′(x)>0,函数单调递增,当0<x<2或4<x<5时,f′(x)<0,函数单调递减,当x=0和x=4时,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2)=1.5.又f(-1)=f(5)=1,所以函数的最大值为2,最小值为1,值域为[1,2],①正确.②正确.因为当x=0和x=4时,函数取得极大值f(0)=2,f(4)=2,要使当x∈[-1,t]时函数f(x)的最大值是2,则t 的最大值为5,所以③不正确. 由f (x )=a ,因为极小值f (2)=1.5,极大值为f (0)=f (4)=2, 所以当1<a <2时,y =f (x )-a 最多有4个零点, 所以④正确.故真命题的序号为①②④. 答案:①②④Ⅱ.大题规范练(限时25分钟)17.(本小题满分12分)设f (x ) =a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f (x )的单调区间与极值. 解:(1)因为f (x )=a (x -5)2+6ln x (x >0), 故f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a , 所以曲线y =f (x )在点(1,f (1))处的切线方程为 y -16a =(6-8a )·(x -1),由点(0,6)在切线上可得6-16a =8a -6, 故a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x =(x -2)(x -3)x .令f ′(x )=0,解得x =2或x =3. 当0<x <2或x >3时,f ′(x )>0, 故f (x )在(0,2),(3,+∞)上为增函数; 当2<x <3时,f ′(x )<0, 故f (x )在(2,3)上为减函数.由此可知f (x )在x =2处取得极大值f (2)=92+6ln 2,在x =3处取得极小值f (3)=2+6ln 3.18.(本小题满分12分)已知函数f (x )=k ·a -x (k ,a 为常数,a >0且a ≠1)的图象过点A (0,1),B (3,8).(1)求实数k ,a 的值;(2)若函数g (x )=f (x )-1f (x )+1,试判断函数g (x )的奇偶性,并说明理由. 解:(1)把A (0,1),B (3,8)的坐标代入f (x )=k ·a -x,得⎩⎪⎨⎪⎧k ·a 0=1,k ·a -3=8. 解得k =1,a =12.(2)g (x )是奇函数.理由如下: 由(1)知f (x )=2x , 所以g (x )=f (x )-1f (x )+1=2x -12x +1.函数g (x )的定义域为R , 又g (-x )=2-x -12-x +1=2x ·2-x -2x2x ·2-x +2x=-2x -12x +1=-g (x ),所以函数g (x )为奇函数.附加卷:集合与常用逻辑用语、函数、导数及其应用(教师备选)(时间:70分钟 满分:104分)Ⅰ.小题提速练(限时45分钟)(一)选择题(本大题共12小题,每小题5分)1.已知集合A ={}a ,0,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪y =lg x 5-2x ,x ∈Z ,如果A ∩B ≠∅,则a =( )A.52 B .1 C .2D .1或2解析:选D 由题意得B =⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <52,x ∈Z ={}1,2,则由A ∩B ≠∅,得a =1 或2.2.(2016·长沙一模)已知函数f (x )=⎩⎨⎧x 12,x >0,⎝⎛⎭⎫12 x,x ≤0,则f [f (-4)]=( )A .-4B .4C .-14D.14解析:选B 因为f (-4)=⎝⎛⎭⎫12 -4=16,所以f [f (-4)]=f (16)=(16)12=4.3.已知函数f (x )=(m 2-m -1)x -5m -3是幂函数且是(0,+∞)上的增函数,则m 的值为( )A .2B .-1C .-1或2D .0解析:选B 因为函数f (x )为幂函数,所以m 2-m -1=1,即m 2-m -2=0,解得m =2或m =-1.因为该幂函数在(0,+∞)上是增函数,所以-5m -3>0,即m <-35.所以m=-1.4.已知命题p :∃x 0∈(-∞,0),3x 0<4x 0,命题q :∀x ∈⎝⎛⎭⎫0,π2 ,tan x >x .则下列命题中为真命题的是( )A .p ∧qB .p ∨(綈q )C .p ∧(綈q )D .(綈p )∧q解析:选D 由指数函数的单调性可知命题p :∃x 0∈(-∞,0),3x 0<4x 0为假,则命题綈p 为真;易知命题q :∀x ∈⎝⎛⎭⎫0,π2 ,tan x >x 为真,则命题綈q 为假.根据复合命题的真值表可知命题p ∧q 为假,命题p ∨(綈q )为假,命题p ∧(綈q )为假 ,命题(綈p )∧q 为真.5.(2016·沧州质检)如果函数f (x )=x 2+bx +c 对任意的x 都有f (x +1)=f (-x ),那么( )A .f (-2)<f (0)<f (2)B .f (0)<f (-2)<f (2)C .f (2)<f (0)<f (-2)D .f (0)<f (2)<f (-2)解析:选D 由f (1+x )=f (-x )知f (x )的图象关于直线x =12对称,又抛物线f (x )开口向上,∴f (0)<f (2)<f (-2).6.(2015·云南二检)设a =3log 132,b =log 1213,c =23,则下列结论正确的是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a解析:选B a =3log 132<0,1<b =log 1213=log 23<2,0<c =23<1,故a <c <b . 7.已知函数f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x -1),若f (0)=2,则f (2 016)的值为( )A .2B .0C .-2D .±2解析:选A ∵g (-x )=f (-x -1),∴-g (x )=f (x +1). 又g (x )=f (x -1),∴f (x +1)=-f (x -1), ∴f (x +2)=-f (x ),f (x +4)=-f (x +2)=f (x ), 则f (x )是以4为周期的周期函数, 所以f (2 016)=f (0)=2.8.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)等于( )A .2 B.154 C.174D .a 2解析:选B ∵f (x )为奇函数,g (x )为偶函数, ∴f (-2)=-f (2),g (-2)=g (2)=a , ∵f (2)+g (2)=a 2-a -2+2,①∴f (-2)+g (-2)=g (2)-f (2)=a -2-a 2+2,②由①,②联立得g (2)=a =2,f (2)=a 2-a -2=154. 9.已知函数f (x )=x 2-bx +a 的图象如图所示,则函数g (x )=ln x +f ′(x )的零点所在的区间是( )A.⎝⎛⎭⎫14,12B.⎝⎛⎭⎫12,1 C .(1,2) D .(2,3)解析:选B 由题图可知f (x )的对称轴x =b 2∈⎝⎛⎭⎫12,1,则1<b <2,易知g (x )=ln x +2x -b ,则g ⎝⎛⎭⎫14 =-2ln 2+12-b <0,g ⎝⎛⎭⎫12 =-ln 2+1-b <0,g (1)=2-b >0,故g (x )的零点所在的区间是⎝⎛⎭⎫12,1.10.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为( )A .3 000元B .3 300元C .3 500元D .4 000元解析:选B 由题意,设利润为y 元,租金定为3 000+50x 元(0≤x ≤70,x ∈N). 则y =(3 000+50x )(70-x )-100(70-x ) =(2 900+50x )(70-x ) =50(58+x )(70-x ) ≤50⎝⎛⎭⎫58+x +70-x 22≤204 800,当且仅当58+x =70-x ,即x =6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润.11.设函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),函数g (x )是二次函数,若函数f (g (x ))的值域是[0,+∞),则函数g (x )的值域是( )A .(-∞,-1]∩[1,+∞)B .(-∞,-1]∪[0,+∞)C .[0,+∞)D .[1,+∞)解析:选C 因为函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),所以m +1=1,解得m =0,所以f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1,因为函数g (x )是二次函数,值域不会是选项A ,B ,画出函数y =f (x )的图象(如图所示),易知,当g (x )的值域是[0,+ ∞)时,f (g (x ))的值域是[0,+∞).12.已知定义在R 上的函数f (x )满足:①对任意x ∈R ,有f (x +2)=2f (x );②当x ∈[-1,1]时,f (x )=1-x 2.若函数g (x )=⎩⎪⎨⎪⎧e x (x ≤0),ln x (x >0),则函数y =f (x )-g (x )在区间(-4,5)上的零点个数是( )A .7B .8C .9D .10解析:选C 函数f (x )与g (x )在区间[-5,5]上的图象如图所示,由图可知,函数f (x )与g (x )的图象在区间(-4,5)上的交点个数为9,即函数y =f (x )-g (x )在区间(-4,5)上零点的个数是9.(二)填空题(本大题共4小题,每小题5分)13.函数y =log 13(2x +1)(1≤x ≤3)的值域为________.解析:当1≤x ≤3时,3≤2x +1≤9, 所以-2≤y ≤-1,所求的值域为[-2,-1]. 答案:[-2,-1] 14.若函数y =xx -m在区间(1,+∞)内是减函数,则实数m 的取值范围是________. 解析:y =x x -m =1+mx -m ,由函数的图象及性质可得0<m ≤1.答案:(0,1]15.(2016·台州调考)若函数f (x )=1ax 2+bx +c(a ,b ,c ∈R)的部分图象如图所示,则b=________.解析:令g (x )=ax 2+bx +c ,由图象可知,1,3是ax 2+bx +c =0的两个根,因此a +b +c =0,9a +3b +c =0,又函数f (x )的图象过点(2,-1),则f (2)=-1,即4a +2b +c =-1,因此可得a =1,c =3,b =-4.答案:-416.关于函数f (x )=lg x 2+1|x |(x ≠0,x ∈R)有下列命题:①函数y =f (x )的图象关于y 轴对称;②在区间(-∞,0)上,函数y =f (x )是减函数; ③函数f (x )的最小值为lg 2;④在区间(1,+∞)上,函数f (x )是增函数. 其中是真命题的序号为________.解析:∵函数f (x )=lg x 2+1|x |(x ≠0,x ∈R),显然f (-x )=f (x ),即函数f (x )为偶函数,图象关于y 轴对称,故①正确;当x >0时,f (x )=lg x 2+1x =lg ⎝⎛⎭⎫x +1x ,令t (x )=x +1x ,x >0,则t ′(x )=1-1x 2,可知当x ∈(0,1)时,t ′(x )<0,t (x )单调递减,当x ∈(1,+∞)时,t ′(x )>0,t (x )单调递增,即在x =1处取到最小值为2.由偶函数的图象关于y 轴对称及复合函数的单调性可知②错误,③正确,④正确,故答案为①③④.答案:①③④Ⅱ.大题规范练(限时25分钟)17.(本小题满分12分)已知集合A ={}x |x 2-2x -3≤0,B ={x |x 2-2mx +m 2-9≤0},m ∈R.(1)若m =3,求A ∩B ;(2)已知命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数m 的取值范围. 解:(1)由题意知,A ={}x |-1≤x ≤3, B ={}x |m -3≤x ≤m +3. 当m =3时,B ={}x |0≤x ≤6, ∴A ∩B =[0,3].(2)由q 是p 的必要条件知,A ⊆B ,结合(1)知⎩⎪⎨⎪⎧m -3≤-1,m +3≥3解得0≤m ≤2.故实数m 的取值范围是[0,2].18.(本小题满分12分)(2016·辽宁五校联考)已知函数f (x )=ln x +1x +ax (a 是实数),g (x )=2xx 2+1+1. (1)当a =2时,求函数f (x )在定义域上的最值;(2)若函数f (x )在[1,+∞)上是单调函数,求a 的取值范围;(3)是否存在正实数a 满足:对于任意x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2)成立?若存在,求出a 的取值范围,若不存在,说明理由.解:(1)当a =2时,f (x )=ln x +1x +2x ,x ∈(0,+∞), f ′(x )=1x -1x 2+2=2x 2+x -1x 2=(2x -1)(x +1)x 2,令f ′(x )=0,得x =-1或x =12.。
高考数学各地模拟汇编--数学选修4-5不等式选讲(有答案)

高中数学选修4-5不等式选讲一.解答题(共30小题)1.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.2.(2014•安徽)设实数c>0,整数p>1,n∈N*.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{a n}满足a1>,a n+1=a n+a n1﹣p.证明:a n>a n+1>.3.(2014•阜阳一模)已知α,β是方程4x2﹣4tx﹣1=0(t∈R)的两个不等实根,函数的定义域为[α,β].(Ⅰ)求g(t)=maxf(x)﹣minf(x);(Ⅱ)证明:对于,若sinu1+sinu2+sinu3=1,则++<.4.(2014•苏州一模)已知x,y,z均为正数.求证:.5.(2014•长春一模)(选做题)已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集为M.(1)求M;(2)当a,b∈M时,证明:2|a+b|<|4+ab|.6.(2014•长安区三模)设函数f(x)=x﹣a(x+1)ln(x+1),(x>﹣1,a≥0)(Ⅰ)求f(x)的单调区间;(Ⅱ)当a=1时,若方程f(x)=t在上有两个实数解,求实数t的取值范围;(Ⅲ)证明:当m>n>0时,(1+m)n<(1+n)m.7.(2014•赤峰模拟)已知函数f(x)=m﹣|x﹣1|﹣|x﹣2|,m∈R,且f(x+1)≥0的解集为[0,1].(1)求m的值;(2)若a,b,c,x,y,z∈R,且x2+y2+z2=a2+b2+c2=m,求证:ax+by+cz≤1.8.(2014•濮阳二模)已知函数f(x)=|x﹣1|.(Ⅰ)解不等式f(x﹣1)+f(x+3)≥6;(Ⅱ)若|a|<1,|b|<1,且a≠0,求证:.9.(2014•宁城县模拟)已知a,b,c均为正实数,且ab+bc+ca=1.求证:(Ⅰ)a+b+c≥;(Ⅱ)++≥(++).10.(2014•沈阳一模)已知函数f(x)=lnx,.(Ⅰ)若f(x)与g(x)在x=1处相切,试求g(x)的表达式;(Ⅱ)若在[1,+∞)上是减函数,求实数m的取值范围;(Ⅲ)证明不等式:.11.(2014•梅州一模)已知函数f(x)=ax2+ln(x+1).(Ⅰ)当时,求函数f(x)的单调区间;(Ⅱ)当x∈[0,+∞)时,函数y=f(x)图象上的点都在所表示的平面区域内,求实数a的取值范围.(Ⅲ)求证:(其中n∈N*,e是自然对数的底数).12.(2014•遵义二模)(1)已知x、y都是正实数,求证:x3+y3≥x2y+xy2;(2)若不等式|a﹣1|≥++对满足x+y+z=1的一切正实数x,y,z恒成立,求实数a的取值范围.13.(2014•红河州模拟)函数f(x)=.(Ⅰ)若a=5,求函数f(x)的定义域A;(Ⅱ)设B={x|﹣1<x<2},当实数a,b∈B∩(∁R A)时,求证:<|1+|.14.(2014•河北模拟)设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,(1)证明:|a+b|<;(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.15.(2014•河北模拟)已知a,b>0,且a+b=1,求证:(Ⅰ)+≥8;(Ⅱ)++≥8.16.(2014•海南模拟)已知a,b均为正数,且a+b=1,证明:(1)(ax+by)2≤ax2+by2(2)(a+)2+(b+)2≥.17.(2013•临汾模拟)已知a2+b2=1,c2+d2=1.(Ⅰ)求证:ab+cd≤1.(Ⅱ)求a+b的取值范围.18.(2014•乌鲁木齐三模)已知a,b,c∈R*,证明:(1)(a+b+c)(a2+b2+c2)≤3(a3+b3+c3);(2)++≥.19.(2014•淮安模拟)已知a,b,c均为正数,证明:.20.(2014•南通一模)已知实数x,y满足:,求证:.21.(2014•南通三模)已知x>0,y>0,a∈R,b∈R.求证()2≤.22.(2014•南通模拟)设a,b,c,d∈R,求证:+≥,等号当且仅当ad=bc 时成立.23.(2014•昆明一模)已知a,b,c均为正数.(Ⅰ)求证:a2+b2+()2≥4;(Ⅱ)若a+4b+9c=1,求证:≥100.24.(2014•贵州二模)设不等式|x﹣2|<m(m∈N+)的解集为A,且∈A,∉A.(Ⅰ)求m的值;(Ⅱ)若a,b,c∈R+,且a+b+c=,求证:++≥9.25.(2014•盐城二模)已知x,y∈R,且|x+y|≤,|x﹣y|≤,求证:|x+5y|≤1.26.(2014•盐城一模)已知x1,x2,x3为正实数,若x1+x2+x3=1,求证:.27.(2014•福建模拟)已知f(x)=aln(x+1)++3x﹣1.(1)若x≥0时,f(x)≥0恒成立,求实数a的取值范围;(2)求证:ln(2n+1)对一切正整数n均成立.28.(2014•静安区一模)(理)(1)设x、y是不全为零的实数,试比较2x2+y2与x2+xy的大小;(2)设a,b,c为正数,且a2+b2+c2=1,求证:++﹣≥3.29.(2013•泰州三模)选修4﹣5:不等式选讲已知a>0,b>0,n∈N*.求证:.30.(2013•盐城二模)(选修4﹣5:不等式选讲)若,证明.参考答案与试题解析一.解答题(共30小题)1.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论.解答:证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy.点评:本题考查不等式的证明,正确运用均值不等式是关键.2.(2014•安徽)设实数c>0,整数p>1,n∈N*.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{a n}满足a1>,a n+1=a n+a n1﹣p.证明:a n>a n+1>.考点:不等式的证明;数列与不等式的综合;分析法和综合法.专题:函数思想;点列、递归数列与数学归纳法.分析:第(Ⅰ)问中,可构造函数f(x)=(1+x)p﹣(1+px),求导数后利用函数的单调性求解;对第(Ⅱ)问,从a n+1着手,由a n+1=a n+a n1﹣p,将求证式进行等价转化后即可解决,用相同的方式将a n>a n+1进行转换,设法利用已证结论证明.解答:证明:(Ⅰ)令f(x)=(1+x)p﹣(1+px),则f′(x)=p(1+x)p﹣1﹣p=p[(1+x)p﹣1﹣1].①当﹣1<x<0时,0<1+x<1,由p>1知p﹣1>0,∴(1+x)p﹣1<(1+x)0=1,∴(1+x)p﹣1﹣1<0,即f′(x)<0,∴f(x)在(﹣1,0]上为减函数,∴f(x)>f(0)=(1+0)p﹣(1+p×0)=0,即(1+x)p﹣(1+px)>0,∴(1+x)p>1+px.②当x>0时,有1+x>1,得(1+x)p﹣1>(1+x)0=1,∴f′(x)>0,∴f(x)在[0,+∞)上为增函数,∴f(x)>f(0)=0,∴(1+x)p>1+px.综合①、②知,当x>﹣1且x≠0时,都有(1+x)p>1+px,得证.(Ⅱ)先证a n+1>.∵a n+1=a n+a n1﹣p,∴只需证a n+a n1﹣p>,将写成p﹣1个相加,上式左边=,当且仅当,即时,上式取“=”号,当n=1时,由题设知,∴上式“=”号不成立,∴a n +a n 1﹣p >,即a n+1>.再证a n >a n+1. 只需证a n >a n +a n 1﹣p ,化简、整理得a n p >c ,只需证a n >c.由前知a n+1>成立,即从数列{a n }的第2项开始成立,又n=1时,由题设知成立,∴对n ∈N *成立,∴a n >a n+1.综上知,a n >a n+1>,原不等式得证.点评: 本题是一道压轴题,考查的知识众多,涉及到函数、数列、不等式,利用的方法有分析法与综合法等,综合性很强,难度较大.3.(2014•阜阳一模)已知α,β是方程4x 2﹣4tx ﹣1=0(t ∈R )的两个不等实根,函数的定义域为[α,β].(Ⅰ)求g (t )=maxf (x )﹣minf (x ); (Ⅱ)证明:对于,若sinu 1+sinu 2+sinu 3=1,则++<.考点:不等式的证明;函数的最值及其几何意义. 专题:计算题;证明题. 分析: (Ⅰ)先设α≤x 1<x 2≤β,则4x 12﹣4tx 1﹣1≤0,4x 22﹣4tx 2﹣1≤0,利用单调函数的定义证明f (x )在区间[α,β]上是增函数.从而求得函数f (x )的最大值与最小值,最后写出g (t ) (Ⅱ)先证:从而利用均值不等式与柯西不等式即得:++<.解答: 解:(Ⅰ)设α≤x 1<x 2≤β,则4x 12﹣4tx 1﹣1≤0,4x 22﹣4tx 2﹣1≤0,∴则又故f (x )在区间[α,β]上是增函数.(3分) ∵,∴=(6分)(Ⅱ)证:(9分)∴(15分)∵,而均值不等式与柯西不等式中,等号不能同时成立,∴++<.(14分)点评: 本题主要考查了不等式的证明、函数的最值及其几何意义,解答关键是利用函数单调性求最值及均值不等式与柯西不等式的灵活运用.4.(2014•苏州一模)已知x ,y ,z 均为正数.求证:.考点: 不等式的证明.专题:常规题型;压轴题;综合法.分析:分别对,,进行化简分析,得出与的关系,然后三个式子左右分别相加除以2即可得到结论.解答:证明:因为x,y,z都是为正数,所以①同理可得②③当且仅当x=y=z时,以上三式等号都成立.将上述三个不等式两边分别相加,并除以2,得:点评:本题考查不等式的证明,涉及基本不等式的应用,属于中档题.5.(2014•长春一模)(选做题)已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集为M.(1)求M;(2)当a,b∈M时,证明:2|a+b|<|4+ab|.考点:不等式的证明;带绝对值的函数.专题:综合题;压轴题.分析:(Ⅰ)将函数写成分段函数,再利用f(x)<4,即可求得M;(Ⅱ)利用作差法,证明4(a+b)2﹣(4+ab)2<0,即可得到结论.解答:(Ⅰ)解:f(x)=|x+1|+|x﹣1|=当x<﹣1时,由﹣2x<4,得﹣2<x<﹣1;当﹣1≤x≤1时,f(x)=2<4;当x>1时,由2x<4,得1<x<2.所以M=(﹣2,2).…(5分)(Ⅱ)证明:当a,b∈M,即﹣2<a,b<2,∵4(a+b)2﹣(4+ab)2=4(a2+2ab+b2)﹣(16+8ab+a2b2)=(a2﹣4)(4﹣b2)<0,∴4(a+b)2<(4+ab)2,∴2|a+b|<|4+ab|.…(10分)点评:本题考查绝对值函数,考查解不等式,考查不等式的证明,解题的关键是将不等式写成分段函数,利用作差法证明不等式.6.(2014•长安区三模)设函数f(x)=x﹣a(x+1)ln(x+1),(x>﹣1,a≥0)(Ⅰ)求f(x)的单调区间;(Ⅱ)当a=1时,若方程f(x)=t在上有两个实数解,求实数t的取值范围;(Ⅲ)证明:当m>n>0时,(1+m)n<(1+n)m.考点:不等式的证明;利用导数研究函数的单调性.专题:综合题;压轴题.分析:(Ⅰ)求导数,再利用导数大于0,求函数的单调区间;(Ⅱ)由(Ⅰ)知,f(x)在上单调递增,在[0,1]上单调递减可得解(Ⅲ)根据要证明的结论,利用分析法来证明本题,从结论入手,要证结论只要证明后面这个式子成立,两边取对数,构造函数,问题转化为只要证明函数在一个范围上成立,利用导数证明函数的性质.解答:解:(Ⅰ)f′(x)=1﹣aln(x+1)﹣a①a=0时,f′(x)>0∴f(x)在(﹣1,+∞)上是增函数…(1分)②当a>0时,f(x)在上递增,在单调递减.…(4分)(Ⅱ)由(Ⅰ)知,f(x)在上单调递增,在[0,1]上单调递减又∴∴当时,方程f(x)=t有两解…(8分)(Ⅲ)要证:(1+m)n<(1+n)m只需证nln(1+m)<mln(1+n),只需证:设,则…(10分)由(Ⅰ)知x﹣(1+x)ln(1+x),在(0,+∞)单调递减…(12分)∴x﹣(1+x)ln(1+x)<0,即g(x)是减函数,而m>n∴g(m)<g(n),故原不等式成立.…(14分)点评:考查不等式的证明,考查化归思想,考查构造函数,是一个综合题,题目难度中等,在证明不等式时,注意采用什么形式,选择一种合适的写法7.(2014•赤峰模拟)已知函数f(x)=m﹣|x﹣1|﹣|x﹣2|,m∈R,且f(x+1)≥0的解集为[0,1].(1)求m的值;(2)若a,b,c,x,y,z∈R,且x2+y2+z2=a2+b2+c2=m,求证:ax+by+cz≤1.考点:不等式的证明.专题:高考数学专题.分析:第(1)问中,分离m,由|x|+|x﹣1|≥1确定将m分“m<1”与“m≥1”进行讨论;(2)中,可利用重要不等式将x2+a2与ax联系,y2+b2与by联系,z2+c2与cz联系.解答:解:(1)由f(x+1)≥0得|x|+|x﹣1|≤m.若m<1,∵|x|+|x﹣1|≥1恒成立,∴不等式|x|+|x﹣1|≤m的解集为∅,不合题意.若m≥1,①当x<0时,得,∴;②当0≤x≤1时,得x+1﹣x≤m,即m≥1恒成立;③当x>1时,得,∴1,综上可知,不等式|x|+|x﹣1|≤m的解集为[,].由题意知,原不等式的解集为[0,1],∴解得m=1.(2)证明:∵x2+a2≥2xa,y2+b2≥2yb,z2+c2≥2zc,以上三式相加,得x2+y2+z2+a2+b2+c2≥2xa+2yb+2zc.由题设及(1),知x2+y2+z2=a2+b2+c2=m=1,∴2≥2(xa+yb+zc),即ax+by+cz≤1,得证.点评:本题难度与高考相当,第(1)问考查了分段讨论法解绝对值不等式,对参数的讨论是前提;第(2)问要求学生掌握不等式的基本性质,关键是联系第一问求解.8.(2014•濮阳二模)已知函数f(x)=|x﹣1|.(Ⅰ)解不等式f(x﹣1)+f(x+3)≥6;(Ⅱ)若|a|<1,|b|<1,且a≠0,求证:.考点:不等式的证明;绝对值不等式;绝对值不等式的解法.专题:不等式选讲.分析:(Ⅰ)根据绝对值不等式的解法解不等式f(x﹣1)+f(x+3)≥6即可;(Ⅱ)利用分析法进行证明不等式.解答:解:(I)∵f(x)=|x﹣1|.∴不等式f(x﹣1)+f(x+3)≥6等价|x﹣2|+|x+2|≥6,若当x≥2时,不等式等价为x﹣2+x+2≥6,即2x≥6,解得x≥3.当﹣2<x<2时,不等式等价为2﹣x+x+2≥6,即4≥6,此时不成立.当x≤﹣2时,不等式等价为2﹣x﹣x﹣2≥6,即2x≤﹣6,即x≤﹣3.综上不等式的解集为(﹣∞,﹣3]∪[3,+∞).(II)要证,只需证|ab﹣1|>|b﹣a|,只需证(ab﹣1)2>(b﹣a)2而(ab﹣1)2﹣(b﹣a)2=a2b2﹣a2﹣b2+1=(a2﹣1)(b2﹣1)>0,∵|a|<1,|b|<1,∴a2<1,b2<1,即a2﹣1<0,b2﹣1<0,即(a2﹣1)(b2﹣1)>0,成立,从而原不等式成立.点评:本题主要考查绝对值不等式的解法,要注意进行分段讨论.9.(2014•宁城县模拟)已知a,b,c均为正实数,且ab+bc+ca=1.求证:(Ⅰ)a+b+c≥;(Ⅱ)++≥(++).考点:不等式的证明.专题:选作题;不等式选讲.分析:(Ⅰ)由题意可得,只需证(a+b+c)2≥3,只需证a2+b2+c2≥1,只需证a2+b2+c2﹣(ab+bc+ca)≥0,只需证(a﹣b)2+(b﹣c)2+(c﹣a)2≥0;(Ⅱ)由(Ⅰ)知,a+b+c≥,证明++≥(++),只需证明≥++,结合基本不等式,即可得证.解答:证明:(Ⅰ)要证原不等式成立,只需证(a+b+c)2≥3,即证a2+b2+c2+2(ab+bc+ca)≥3,又ab+bc+ca=1.所以,只需证:a2+b2+c2≥1,即a2+b2+c2﹣1≥0,因为ab+bc+ca=1.所以,只需证:a2+b2+c2﹣(ab+bc+ca)≥0,只需证:2a2+2b2+2c2﹣2(ab+bc+ca)≥0,即(a﹣b)2+(b﹣c)2+(c﹣a)2≥0,而(a﹣b)2+(b﹣c)2+(c﹣a)2≥0显然成立,故原不等式成立;(Ⅱ)∵++=,由(Ⅰ)知,a+b+c≥,∴证明++≥(++),只需证明≥++,即证明:+b+c≤ab+bc+ca,∵≤,b≤,c≤,∴+b+c≤ab+bc+ca,∴++≥(++).点评:本题考查用分析法证明不等式,寻找使不等式成立的充分条件,是解题的关键.10.(2014•沈阳一模)已知函数f(x)=lnx,.(Ⅰ)若f(x)与g(x)在x=1处相切,试求g(x)的表达式;(Ⅱ)若在[1,+∞)上是减函数,求实数m的取值范围;(Ⅲ)证明不等式:.考点:不等式的证明;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:不等式的解法及应用.分析:(Ⅰ)求导数,利用f(x)与g(x)在x=1处相切,可求g(x)的表达式;(Ⅱ)在[1,+∞)上是减函数,可得导函数小于等于0在[1,+∞)上恒成立,分离参数,利用基本不等式,可求实数m的取值范围;(Ⅲ)当x≥2时,证明,当x>1时,证明,利用叠加法,即可得到结论.解答:(Ⅰ)解:∵f(x)=lnx,∴,∴,得:a=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)又∵,∴b=﹣1,∴g(x)=x﹣1;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)(Ⅱ)解:∵=在[1,+∞)上是减函数,∴在[1,+∞)上恒成立.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)即x2﹣(2m﹣2)x+1≥0在[1,+∞)上恒成立,由,x∈[1,+∞),∵,∴2m﹣2≤2得m≤2;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(Ⅲ)证明:由(Ⅰ)可得:当x≥2时,,∴得:,∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)∴当x=2时,;当x=3时,;当x=4时,,…,当x=n+1时,,n∈N+,n≥2上述不等式相加得:即:①﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)由(Ⅱ)可得:当m=2时,ϕ(x)=在[1,+∞)上是减函数,∴当x>1时,ϕ(x)<ϕ(1)=0,即<0,所以,从而得到.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)当x=2时,;当x=3时,;当x=4时,,…,当x=n+1时,,n∈N+,n≥2上述不等式相加得:==即②综上:(n∈N+,n≥2)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)点评:本题考查不等式的证明,考查导数知识的运用,考查基本不等式的运用,考查叠加法,考查学生分析解决问题的能力,难度较大.11.(2014•梅州一模)已知函数f(x)=ax2+ln(x+1).(Ⅰ)当时,求函数f(x)的单调区间;(Ⅱ)当x∈[0,+∞)时,函数y=f(x)图象上的点都在所表示的平面区域内,求实数a的取值范围.(Ⅲ)求证:(其中n∈N*,e是自然对数的底数).不等式的证明;利用导数研究函数的单调性.考点:专综合题.题:分(Ⅰ)把a=﹣代入函数f(x),再对其进行求导利用导数研究函数f(x)的单调区间;析:(Ⅱ)已知当x∈[0,+∞)时,函数y=f(x)图象上的点都在所表示的平面区域内,将问题转化为当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)﹣x≤0恒成立,只要求出ax2+ln(x+1)﹣x的最小值即可,令新的函数,利用导数研究其最值问题;(Ⅲ)由题设(Ⅱ)可知当a=0时,ln(x+1)≤x在[0,+∞)上恒成立,利用此不等式对所要证明的不等式进行放缩,从而进行证明;解解:(Ⅰ)当时,(x>﹣1),答:(x>﹣1),由f'(x)>0解得﹣1<x<1,由f'(x)<0,解得x>1.故函数f(x)的单调递增区间为(﹣1,1),单调递减区间为(1,+∞).(4分)(Ⅱ)因函数f(x)图象上的点都在所表示的平面区域内,则当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)﹣x≤0恒成立,设g(x)=ax2+ln(x+1)﹣x(x≥0),只需g(x)max≤0即可.(5分)由=,(ⅰ)当a=0时,,当x>0时,g'(x)<0,函数g(x)在(0,+∞)上单调递减,故g(x)≤g(0)=0成立.(6分)(ⅱ)当a>0时,由,因x∈[0,+∞),所以,①若,即时,在区间(0,+∞)上,g'(x)>0,则函数g(x)在(0,+∞)上单调递增,g(x)在[0,+∞)上无最大值(或:当x→+∞时,g(x)→+∞),此时不满足条件;②若,即时,函数g(x)在上单调递减,在区间上单调递增,同样g(x)在[0,+∞)上无最大值,不满足条件.(8分)(ⅲ)当a<0时,由,∵x∈[0,+∞),∴2ax+(2a ﹣1)<0,∴g'(x )<0,故函数g (x )在[0,+∞)上单调递减, 故g (x )≤g (0)=0成立.综上所述,实数a 的取值范围是(﹣∞,0].(10分)(Ⅲ)据(Ⅱ)知当a=0时,ln (x+1)≤x 在[0,+∞)上恒成立 (或另证ln (x+1)≤x 在区间(﹣1,+∞)上恒成立),(11分) 又,∵===,∴.(14分)点评: 此题主要考查利用导数研究函数的单调区间和最值问题,解题过程中多次用到了转化的思想,第二题实质还是函数的恒成立问题,第三问不等式的证明仍然离不开前面两问所证明的不等式,利用它们进行放缩证明,本题难度比较大,是一道综合题; 12.(2014•遵义二模)(1)已知x 、y 都是正实数,求证:x 3+y 3≥x 2y+xy 2; (2)若不等式|a ﹣1|≥++对满足x+y+z=1的一切正实数x ,y ,z 恒成立,求实数a 的取值范围.考点: 不等式的证明.专题: 不等式的解法及应用.分析: (1)利用作差法,因式分解,即可得到结论;(2)根据柯西不等式证明++≤3,利用|a ﹣1|≥++对满足x+y+z=1的一切正实数x ,y ,z 恒成立,可得|a ﹣1|,从而可求实数a 的取值范围.解答: (1)证明:由x 3+y 3﹣x 2y ﹣xy 2=x 2(x ﹣y )+y 2(y ﹣x )=(x ﹣y )(x 2﹣y 2)=(x ﹣y )2(x+y )…(3分)又x 、y 都是正实数,∴(x ﹣y )2≥0,x+y >0, ∴x 3+y 3﹣x 2y ﹣xy 2>0, ∴x 3+y 3≥x 2y+xy 2;…(5分)(2)解:由题意,根据柯西不等式有(++)2≤(12+12+12)[()2+()2+()2]=3[3(x+y+z )+3]=3×6=18, ∴++≤3…(3分)又|a ﹣1|≥++对满足x+y+z=1的一切正实数x ,y ,z 恒成立, ∴|a ﹣1|,∴a +1或a ,∴a 的取值范围是(﹣]∪[1+3,+∞).…(5分)点评:本题考查不等式的证明,考查柯西不等式的运用,考查恒成立问题,考查学生分析解决问题的能力,正确运用柯西不等式是关键.13.(2014•红河州模拟)函数f(x)=.(Ⅰ)若a=5,求函数f(x)的定义域A;(Ⅱ)设B={x|﹣1<x<2},当实数a,b∈B∩(∁R A)时,求证:<|1+|.考点:不等式的证明;集合的包含关系判断及应用;函数的定义域及其求法.专题:函数的性质及应用;不等式的解法及应用;集合.分析:(Ⅰ)根据题意,得|x+1|+|x+2|﹣5≥0;求出x的取值范围,即是f(x)的定义域A;(Ⅱ)由A、B求出B∩C R A,即得a、b的取值范围,由此证明成立即可.解答:解:(Ⅰ)a=5时,函数f(x)=,∴|x+1|+|x+2|﹣5≥0;即|x+1|+|x+2|≥5,当x≥﹣1时,x+1+x+2≥5,∴x≥1;当﹣1>x>﹣2时,﹣x﹣1+x+2≥5,∴x∈∅;当x≤﹣2时,﹣x﹣1﹣x﹣2≥5,∴x≤﹣4;综上,f(x)的定义域是A={x|x≤﹣4或x≥1}.(Ⅱ)∵A={x|x≤﹣4或x≥1},B={x|﹣1<x<2},∴∁R A=(﹣4,1),∴B∩C R A=(﹣1,1);又∵,而;当a,b∈(﹣1,1)时,(b2﹣4)(4﹣a2)<0;∴4(a+b)2<(4+ab)2,即.点评:本题考查了求函数的定义域以及集合的运算和不等式的解法与证明问题,是综合题,解题时应把含绝对值的不等式分类讨论,不等式证明时常用作差法,是中档题.14.(2014•河北模拟)设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,(1)证明:|a+b|<;(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.考点:不等式的证明;绝对值不等式的解法.专题:不等式的解法及应用.分析:(1)利用绝对值不等式的解法求出集合M,利用绝对值三角不等式直接证明:|a+b|<;(2)利用(1)的结果,说明ab的范围,比较|1﹣4ab|与2|a﹣b|两个数的平方差的大小,即可得到结果.解答:解:(1)记f(x)=|x﹣1|﹣|x+2|=由﹣2<﹣2x﹣1<0解得﹣<x<,则M=(﹣,).…(3分)∵a、b∈M,∴,所以|a+b|≤|a|+|b|<×+×=.…(6分)(2)由(1)得a2<,b2<.因为|1﹣4ab|2﹣4|a﹣b|2=(1﹣8ab+16a2b2)﹣4(a2﹣2ab+b2)=(4a2﹣1)(4b2﹣1)>0,…(9分)所以|1﹣4ab|2>4|a﹣b|2,故|1﹣4ab|>2|a﹣b|.…(10分)点评:本题考查不等式的证明,绝对值不等式的解法,考查计算能力.15.(2014•河北模拟)已知a,b>0,且a+b=1,求证:(Ⅰ)+≥8;(Ⅱ)++≥8.考点:不等式的证明.专题:证明题;不等式选讲.分析:(Ⅰ)利用a+b=1,通过重要不等式以及基本不等式,推出,然后证明+≥8;(Ⅱ)利用a+b=1,利用1的代换,转化++为+,利用基本不等式即可求证结果.解答:证明:(Ⅰ)∵ab≤()2=,当且仅当a=b时等号成立,∵a+b=1,a=b=,∴.∵+≥≥8,当且仅当a=b=时等号成立,∴+≥8.(5分)(Ⅱ)∵++=++=+++=2(a+b)(+)=4+2()≥4+4=8,当且仅当a=b=时等号成立,∴++≥8.(10分)点评:利用基本不等式以及重要不等式以及“1”的代换,注意“正、定、等”的应用.16.(2014•海南模拟)已知a,b均为正数,且a+b=1,证明:(1)(ax+by)2≤ax2+by2(2)(a+)2+(b+)2≥.考点:不等式的证明.专题:证明题.分析:(1)将所证的关系式作差(ax+by)2﹣(ax2+by2)=a(a﹣1)x2+b(b﹣1)y2+2abxy利用a+b=1,整理,可得a(a﹣1)x2+b(b﹣1)y2+2abxy=﹣ab(x﹣y)2≤0,当且仅当x=y时等号成立;(2)将所证的不等式左端展开,转化为,进一步整理后,利用基本不等式即可证得结论成立.解答:证明:(1))(ax+by)2﹣(ax2+by2)=a(a﹣1)x2+b(b﹣1)y2+2abxy,因为a+b=1,所以a﹣1=﹣b,b﹣1=﹣a,又a,b均为正数,所以a(a﹣1)x2+b(b﹣1)y2+2abxy=﹣ab(x2+y2﹣2xy)=﹣ab(x﹣y)2≤0,当且仅当x=y时等号成立;(2)==.当且仅当a=b时等号成立.点评:本题考查不等式的证明,着重考查作差法的应用,突出考查等价转化思想与逻辑推理能力,属于难题.17.(2013•临汾模拟)已知a2+b2=1,c2+d2=1.(Ⅰ)求证:ab+cd≤1.(Ⅱ)求a+b的取值范围.考点:不等式的证明.专题:综合题;不等式的解法及应用.分析:(Ⅰ)利用综合法,结合基本不等式,即可得出结论;(Ⅱ)设=(a,b),=(1,),利用|⋅|≤||⋅||,可求a+b的取值范围.解答:(I)证明:∵a2+b2≥2ab,c2+d2≥2cd,∴a2+b2+c2+d2≥2(ab+cd),当且仅当a=b=c=d=时取“=”…(2分)又∵a2+b2=1,c2+d2=1∴2(ab+cd)≤2 …(4分)∴ab+cd≤1 …(5分)(Ⅱ)解:设=(a,b),=(1,),∵|⋅|≤||⋅||,…(8分)∴|a+b|≤2=2,∴﹣2≤a+b≤2∴a+b的取值范围为[﹣2,2].…(10分)点评:本题考查不等式的证明,考查求a+b的取值范围,正确运用基本不等式,合理构造向量是关键.18.(2014•乌鲁木齐三模)已知a,b,c∈R*,证明:(1)(a+b+c)(a2+b2+c2)≤3(a3+b3+c3);(2)++≥.考点:不等式的证明.专题:高考数学专题.分析:第(1)问考虑左边展开与右边可抵消一个a2+b2+c2,想到作差比较,项较多,可重新分组进行因式分解;第(2)可通过构造柯西不等式放缩,获取定值.解答:证明:(Ⅰ)右边﹣左边,得3(a3+b3+c3)﹣(a+b+c)(a2+b2+c2)=2(a3+b3+c3)﹣a(b2+c2)﹣b(a2+c2)﹣c(a2+b2).∵a,b∈R*,∴a3+b3﹣a2b﹣ab2=a2(a﹣b)+b2(b﹣a)=(a﹣b)2(a+b)≥0.∴a3+b3≥a2b+ab2,同理,b3+c3≥b2c+bc2,a3+c3≥a2c+ac2,以上三式相加得=2(a3+b3+c3)≥a2b+ab2+b2c+bc2+a2c+ac,∴2(a3+b3+c3)﹣a(b2+c2)﹣b(a2+c2)﹣c(a2+b2)≥0,∴(a+b+c)(a2+b2+c2)≤3(a3+b3+c3).(Ⅱ)∵a,b,c∈R*,∴a+b>0,b+c>0,c+a>0,由柯西不等式得)[(a+b)+(b+c)+(c+a)]≥2=9,即2(a+b+c)(++)≥9,∴2(++)≥3,故++≥,当且仅当a=b=c时,不等式取等号.点评:本题的两小问设置合理,主要考查了不等式的基本性质及变形技巧,作差比较法,柯西不等式等.19.(2014•淮安模拟)已知a,b,c均为正数,证明:.考点:不等式的证明.专题:不等式的解法及应用.分析:两次运用基本不等式即可证明结论.解答:证明:∵a,b,c均为正数,∴左边≥≥2=2=6,当且仅当a=b=c时取等号,∴.点评:本题考查基本不等式的运用,考查学生分析解决问题的能力,正确运用基本不等式是关键.20.(2014•南通一模)已知实数x,y满足:,求证:.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:首先由3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|,再结合已知的不等式,即可证得结论.解答:证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|,由题设,∴.∴.点评:本题考查不等式的证明,考查学生分析转化问题的能力,属于中档题.21.(2014•南通三模)已知x>0,y>0,a∈R,b∈R.求证()2≤.考点:不等式的证明.专题:不等式的解法及应用.分析:利用“分析法”和不等式的性质即可证明.解答:证明:∵x>0,y>0,∴x+y>0,∴要证,即证(ax+by)2≤(x+y)(a2x+b2y).即证xy(a2﹣2ab+b2)≥0,即证(a﹣b)2≥0,而(a﹣b)2≥0显然成立,故.点评:本题考查了“分析法”和不等式的性质证明不等式,属于基础题.22.(2014•南通模拟)设a,b,c,d∈R,求证:+≥,等号当且仅当ad=bc 时成立.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:运用分析法证明,要证原不等式成立,可考虑两边平方,化简整理,再由柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2,即可得证.解答:证明:要证+≥,即证(+)2≥()2,即为a2+b2+c2+d2+2≥(a+c)2+(b+d)2,化简后,即证≥ac+bd,由柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2,得|ac+bd|≥ac+bd.则原不等式得证.且有原不等式中等号当且仅当ad=bc时成立.点评:本题考查不等式的证明,考查柯西不等式的运用,以及不等式的性质的运用,考查推理能力,属于中档题.23.(2014•昆明一模)已知a,b,c均为正数.(Ⅰ)求证:a2+b2+()2≥4;(Ⅱ)若a+4b+9c=1,求证:≥100.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:利用基本不等式,即可证明结论.解答:证明:(Ⅰ)∵a,b均为正数,∴a2+b2≥2ab,≥,∴a2+b2+≥2ab+,∴a2+b2+()2≥2ab+≥4,当且仅当a=b=时,等号成立.(Ⅱ)∵a+4b+9c=1,∴=(a+4b+9c)()=9+16+9+++≥34+24+18+24=100,当且仅当a=3b=9c时等号成立.点评:本题考查不等式的证明,考查基本不等式的运用,掌握基本不等式的使用条件是关键.24.(2014•贵州二模)设不等式|x﹣2|<m(m∈N+)的解集为A,且∈A,∉A.(Ⅰ)求m的值;(Ⅱ)若a,b,c∈R+,且a+b+c=,求证:++≥9.考点:不等式的证明.专题:选作题;不等式的解法及应用.分析:(Ⅰ)根据∈A,∉A,求出m的范围,结合m∈N+,即可求m的值;(Ⅱ)利用“1”的代换,结合基本不等式,即可得出结论.解答:(Ⅰ)解:由.﹣﹣(4分)∵m∈N+,∴m=1.﹣﹣(5分)(Ⅱ)证明:由(Ⅰ)有:(a,b,c∈R+)又===≥9,∴++≥9﹣﹣(10分)点评:本题考查绝对值不等式的解法,考查不等式的证明,正确运用“1”的代换,基本不等式,是解题的关键.25.(2014•盐城二模)已知x,y∈R,且|x+y|≤,|x﹣y|≤,求证:|x+5y|≤1.考点:不等式的证明;绝对值不等式.专题:证明题.分析:利用x+5y=3(x+y)﹣2(x﹣y),利用绝对值不等式的性质即可证得结论.解答:证明:∵|x+y|≤,|x﹣y|≤,∴|x+5y|=|3(x+y)﹣2(x﹣y)|≤|3(x+y)|+|2(x﹣y)|=3|x+y|+2|x﹣y|≤3×+2×=1.即|x+5y|≤1.点评:本题考查绝对值不等式的性质,分析得到x+5y=3(x+y)﹣2(x﹣y)是应用绝对值不等式性质的关键,考查转化思想与推理论证能力,属于中档题.26.(2014•盐城一模)已知x1,x2,x3为正实数,若x1+x2+x3=1,求证:.考点:不等式的证明.专题:不等式的解法及应用.分析:由基本不等式,可得,,,三式相加,利用x1+x2+x3=1,可得结论.解答:证明:∵x1,x2,x3为正实数,∴,,,∴三式相加,可得+x 3≥2(x 1+x 2+x 3),∵若x 1+x 2+x 3=1,∴.点评: 本题考查基本不等式的运用,考查学生分析解决问题的能力,正确运用基本不等式是关键.27.(2014•福建模拟)已知f (x )=aln (x+1)++3x ﹣1.(1)若x ≥0时,f (x )≥0恒成立,求实数a 的取值范围; (2)求证:ln (2n+1)对一切正整数n 均成立.考点:不等式的证明. 专题:选作题;不等式选讲. 分析:(1)求导数,分类讨论,确定函数的单调性,即可求实数a 的取值范围; (2)由(1)知,x >0时,不等式恒成立,则x >0时,恒成立.令(k ∈N *),.令k=1,2,3,…,n ,叠加,即可证明结论.解答:(1)解:.若a ≥﹣2,则a+6>0,x >0时,f'(x )>0.此时,f (x )在区间[0,+∞)上为增函数. ∴x ≥0时,f (x )≥f (0)=0.a ≥﹣2符合要求.若a <﹣2,则方程3x 2+(a+6)x+a+2=0有两个异号的实根,设这两个实根为x 1,x 2,且x 1<0<x 2. ∴0<x <x 2时,f'(x )<0.f (x )在区间[0,x 2]上为减函数,f (x 2)<f (0)=0. ∴a <﹣2不符合要求.∴a 的取值范围为[﹣2,+∞). (2)证明:由(1)知,x >0时,不等式恒成立.∴x >0时,恒成立.令(k ∈N *),得, 整理得 .∴.令k=1,2,3,…,n ,得,,,…,.将上述n 个不等式的左右两边分别相加,得. ∴对一切正整数n 均成立.点评: 本题考查导数知识的运用,考查函数的单调性,考查不等式的证明,巧妙利用两小题之间的关系,是解题的关键. 28.(2014•静安区一模)(理)(1)设x 、y 是不全为零的实数,试比较2x 2+y 2与x 2+xy 的大小; (2)设a ,b ,c 为正数,且a 2+b 2+c 2=1,求证:++﹣≥3.考点: 不等式的证明;比较法.专题: 证明题;不等式的解法及应用.分析: (1)解法1:利用作差法;解法2:利用分类讨论思想,分xy <0与xy >0讨论即可证得结论;(2)利用作差法,通过通分、分组、配方等一系列转化,即可证得结论.解答: 证明:(1)证法1:∵x 、y 是不全为零的实数,∴2x 2+y 2﹣(x 2+xy ) =x 2+y 2﹣xy=+y 2>0,∴2x 2+y 2>x 2+xy .证法2:当xy <0时,x 2+xy <2x 2+y 2;当xy >0时,作差:x 2+y 2﹣xy ≥2xy ﹣xy=xy >0; 又因为x 、y 是不全为零的实数, ∴当xy=0时,2x 2+y 2>x 2+xy . 综上,2x 2+y 2>x 2+xy . (2)证明:∵++﹣﹣3=++﹣﹣3=a 2(+)+b 2(+)+c 2(+)﹣2(++)=a 2+b 2+c 2≥0(当且仅当a=b=c 时,取得等号),∴++﹣≥3.点评: 本题考查不等式的证明,着重考查作差法,考查通分、配方、分类讨论等方法,运用转化思想,推理证明,属于难题.29.(2013•泰州三模)选修4﹣5:不等式选讲已知a>0,b>0,n∈N*.求证:.考点:综合法与分析法(选修).专题:不等式的解法及应用.分析:先用分析法证明,再利用基本不等式,即可证得成立.解答:证明:先证,只要证2(a n+1+b n+1)≥(a+b)(a n+b n),即要证a n+1+b n+1﹣a n b﹣ab n≥0,即要证(a﹣b)(a n﹣b n)≥0,…(5分)若a≥b,则a﹣b≥0,a n﹣b n≥0,所以,(a﹣b)(a n﹣b n)≥0.若a<b,则a﹣b<0,a n﹣b n<0,所以(a﹣b)(a n﹣b n)>0,综上,可得(a﹣b)(a n﹣b n)≥0,从而.…(8分)因为,所以.…(10分)点评:本题主要考查用分析法证明不等式,基本不等式的应用,属于中档题.30.(2013•盐城二模)(选修4﹣5:不等式选讲)若,证明.考点:不等式的证明;柯西不等式的几何意义.专题:证明题.分析:直接构造18=6×3=[(1+2x)+(3+x)+(2﹣3x)](1+1+1),利用柯西不等式证明即可.解答:证明:因为18=6×3=[(1+2x)+(3+x)+(2﹣3x)](1+1+1),由柯西不等式可得:…(7分)又,所以.…(10分)点评:本题考查柯西不等式的证明方法的应用,构造柯西不等式是解题的关键.。
人教版高中数学选修4-5 1.1《不等式》习题课(含答案)

习题课 不 等 式1.若a ,b , c ,d ∈R ,且a >b ,c >d ,那么( )A .a -c >b -dB .ac >bdC .-a d >-b cD .a -d >b -c 答案: D2.若1a <1b<0,则下列等式: ①1a +b <1ab;②|a |+b >0; ③a -1a >b -1b ;④ln a 2>ln b 2. 其中,正确的不等式是( )A .①④B .②③C .①③D .②④答案: C3.若a ,b ∈R ,则不等式:①a 2+3>2a ;②a 2+b 2≥2(a -b -1);③a 5+b 5>a 3b 2+a 2b 3;④a +1a≥2中一定成立的是( )A .①②③B .①②④C .①②D .②④答案: C4.若x >54,则f (x )=4x +14x -5的最小值为( ) A .-3 B .2 C .5 D .7答案: D5.若a >0,b >0,且ln(a +b )=0,则1a +1b的最小值是( ) A.14B .1C .4D .8 答案: C6.当点(x ,y )在直线x +3y =2上移动时,表达式3x +27y +1的最小值为( )A .3B .5C .1D .7答案: D7.设正数x ,y 满足log 2(x +y +3)=log 2x +log 2y ,则x +y 的最小值为________. 答案: 68.若正实数x ,y ,满足2x +y +6=xy ,则xy 的最小值是________.解析:由x >0,y >0,2x +y +6=xy 得xy ≥22xy +6(当且仅当2x =y 时,取“=”),即(xy )2-22(xy )-6≥0.∴(xy -32)(xy +2)≥0. 又∵xy >0, ∴xy ≥32,即xy ≥18.∴xy 的最小值为18.答案:189.(2014·上海高考文科)设f (x )=⎩⎪⎨⎪⎧-x +a ,x ≤0,x +1x,x >0.若f (0)是f (x )的最小值,则a 的取值范围为______. 解析:当时x >0,f (x )=x +1x≥2,若f (0)是f (x )的最小值,则f (0)=a ≤2. 答案:(-∞,2].10.(2014·辽宁卷)对于c <0,当非零实数a ,b 满足4a 2-2ab +b 2-c =0且使|2a +b |最大时,1a +2b +4c的最小值为______. 解析:因为4a 2-2ab +b 2-c =0,所以(2a +b )2-c =6ab =3×2ab ≤3×(2a +b )24, 所以(2a +b )2≤4c ,当且仅当b =2a ,c =4a 2时,|2a +b |取得最大值.故1a +2b +4c =2a +1a 2=⎝⎛⎭⎫1a +12-1, 其最小值为-1答案:-111.(2014·湖北卷)某项研究表明:在考虑行车安全的情况下,某段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流量速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F =76 000v v 2+18v +20l .(1)如果不限定车型,l =6.05,则最大流量为______辆/时;(2)如果限定车型,l =5,则最大流量比(l )中的作答车流量增加______辆/时.解析:(1)依题意知,l >0,v >0,所以当l =6.05时,F =76 000v v 2+18v +12l=76 000v +121v +18≤76 0002v ·121v+18=1 900,当且仅当v =11时,取等号. (2)当l =5时,F =76 000v v +18v +100≤76 000v +100v +18≤2 000, 当且仅当v =10时,取等号,此时比(l )中的最大车流量增加100辆/时.答案:(1)1 900 (2)10012.已知x ,y ,z 都为正数,且xyz (x +y +z )=1.求证:(x +y )(y +z )≥2.证明:由已知得xz >0,y (x +y +z )>0.又xyz (x +y +z )=1,所以(x +y )(y +z )=xy +xz +y 2+yz =xz +y (x +y +z )≥2xz ·y (x +y +z )=2,即(x +y )(y +z )≥2.当且仅当⎩⎪⎨⎪⎧xz =y (x +y +z ),xyz (x +y +z )=1时取等号.13.(1)已知x >1,求函数y =x 2x -1的最小值; (2)若x <12,求函数y =2x +2+12x -1的最大值. 解析:(1)y =x 2x -1=(x +1)(x -1)+1x -1=x +1+1x -1=x -1+1x -1+2. ∵x >1,∴x -1>0.∴y =x -1+1x -1+2≥2(x -1)·1x -1+2=4. 当且仅当x -1=1x -1,即x =2时等号成立. ∴y min =4.(2)y =2x +2+12x -1=(2x -1)+12x -1+3. ∵x <12,∴2x -1<0.即1-2x >0. ∴y =2x +2+12x -1=-⎣⎡⎦⎤(1-2x )+11-2x +3≤-2(1-2x )·1(1-2x )+3=1. 当且仅当1-2x =11-2x, 即x =0时,等号成立.∴y max =1.14.如下图所示,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?解析:(1)设每间虎笼长为x m ,宽为y m ,则由条件得4x +6y =36,即2x +3y =18,设每间虎笼面积为S ,则S =xy .解法一 由于2x +3y ≥22x ·3y =26xy ,∴26xy ≤18,得xy ≤272, 即S ≤272,当且仅当2x =3y 时,等号成立. 由⎩⎪⎨⎪⎧2x +3y =18,2x =3y ,解得⎩⎪⎨⎪⎧x =4.5,y =3, 故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大.解法二 由2x +3y =18,得x =9-32y , ∵x >0,∴0<y <6,S =xy =⎝⎛⎭⎫9-32y y =32(6-y )·y , ∵0<y <6,∴6-y >0,∴S ≤32·⎣⎡⎦⎤(6-y )+y 22=272,当且仅当6-y =y ,即y =3时,等号成立,此时x =4.5,故每间虎笼长4.5 m ,宽3 m 时,可使面积最大.(2)由条件知S =xy =24,设钢筋网总长为l ,则l =4x +6y .∵2x +3y ≥22x ·3y =26xy =24,∴l =4x +6y =2(2x +3y )≥48,当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧2x =3y ,xy =24, 解得⎩⎪⎨⎪⎧x =6,y =4,故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小.。
选修4-5 不等式选讲 (3)
1.在△ABC中,设其各边长边a,b,c,外接圆半径为R, 求证: 证明:由柯西不等式知:
2.若x,y,z∈R,a>0,b>0,c>0,求证: 证明:
点击此处进入 作业手册
反序 时最小,即
a1bn+a2bn-1+„+anb1 ,等号当
(3)平均不等式 定理:若a1,a2,…,an为正数,则 ,等号
当且仅当a1=a2=„=an时成立.这个不等式通常称为算术—几何平均不 等式. 思考:在应用算术—几何平均不等式时要注意什么问题? 提示:一是要注意定理成立的条件是各项必须全是正数;二是要注意等 号成立的条件. 2.利用不等式求最大(小)值 (1)利用平均不等式求最大(小)值.(2)利用柯西不等式求最大(小)值.
【答题模板】
解法一:用均值不等式
解法二:用柯西不等式
即所求的最大值为
【状元笔记】
重要不等式,均值不等式: (a1>0,a2>0,…,an>0),当
且仅当a1=a2=…=an时等号成立;柯西不等式:(a1b1+a2b2+…+anbn)≤(a+a+… +a)(b+b+…+b)(aibi∈R,i=1,2,…,n),当且仅当a1=a2=…=an=0或bi=kai 时(k为常数,i=1,2,…,n)等号成立.这两个不等式是证明其他不等式和求多元函 数最值的有力工具,使用时要注意等号成立的条件.使用柯西不等式的重要技巧就 是通过常数构造使用柯西不等式成立的条件.
变式2:设a1,a2,…,an为正数,求证: 证明:不妨设0<a1≤a2≤…≤an,则 由排序不等式知 即
利用不等式求最值时,应观察条件能否满足不等式的条件,如要条件满足还要看等
号能否成立,能满足等号成立说明能取得最值,否则没有取得最值.
高中数学选修4-5不等式选讲 不等式选讲(A)同步练习
1吉林省松原市宁江区实验高级中学2021学年度高中数学选修4-5不等式选讲双基训练金卷不等式选讲(A )注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下面对命题“函数是奇函数”的证明不是综合法的是( )A .且有,则是奇函数 B .且有,所以,则是奇函数C .且,∵,∴,∴,则是奇函数D .取,,又,,则是奇函数2.,,下列命题正确的是( ) A .若,则 B .若,则 C .若,则D .若,则3.已知,,若,则下列结论中,不可能成立的是( ) A . B .C .D .4.若不等式的解集为,则实数a 等于( ) A . B .C .D .5.设,与的大小关系是( )A .B .C .D .不能确定 6.已知,则,,的值( )A .都大于1B .都小于1C .至多有一个不小于1D .至少有一个不小于17.设,,且,则( )A .B .此卷只装订不密封姓名 准考证号 考场号 座位号C.D.8.已知关于的不等式的解集不是空集,则的最小值是()A.B.C.D.9.不等式的解集为,且,则的取值范围是()A.B.C.D.10.已知,,,则与的大小关系为()A.B.C.D.与的大小不确定11.函数的最大值为()A.5B.8C.10D.1212.已知,且,则的最小值为()A.5B.6C.8D.9二、填空题:本大题共4小题,每小题5分.13.已知,有下列不等式:①;②,③;④.其中一定成立的不等式的序号是_______.14.已知,则,,从大到小的顺序为___________.25.若不等式对恒成立,则的取值范围是________.16.已知实数,,,,满足,,则实数的取值范围为_____________.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)(1)已知,证明:;(2)已知,证明:.218.(12分)已知实数满足.(1)求的最小值;(2)若,求的最大值.19.(12分)用数学归纳法证明不等式:.20.(12分)已知函数.(1)求不等式的解集;(2)若不等式的解集为,求的取值范围.321.(12分)已知关于x的不等式有解,记实数m的最大值为M.(1)求M的值;(2)正数a,b,c满足,求证:.22.(12分)已知,为实数,且,.(1)求证:;(2)求的最小值.4不等式选讲(A)答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】D项中,选取特殊值进行证明,不是综合法,故选D.2.【答案】B【解析】选项A,取,,显然满足,但不满足,故错误;选项B,由和不等式的性质,平方可得,故正确;选项C,取,,显然满足,但不满足,故错误;选项D,取,,显然满足,但不满足,故错误,故选B.3.【答案】B【解析】,,所以,因此,即或或,因此选B.4.【答案】C【解析】因为的解集为,所以和是方程的根,所以解得,故选C.5.【答案】B【解析】;,,,,根据不等式的开方性质可以得出,,再根据不等式相加性质可以得出,显然可以得到,即成立,因此本题选B.6.【答案】D【解析】令,则,排除A,B;令,,,则,,排除C,对于D,假设,,,则,,,相加得,矛盾,故选D.7.【答案】A【解析】因为,所以,所以,所以,因为,,所以,故答案为A.8.【答案】A【解析】,由关于的不等式的解集不是空集,故,解得,即的最小值是,本题选择A选项.9.【答案】B【解析】因为,所以,所以,即,解得.故选B.10.【答案】A【解析】取两组数:与,显然是顺序和,是乱序和,所以,即,故选A.11.【答案】C【解析】由已知得,函数的定义域为,设向量,,则,,,当且仅当时,即时,等号成立,解得,属于定义域范围,所以,该函数可以取得最大值为10,答案选C.12.【答案】D【解析】,当且仅当,,时等号成立,即的最小值为9,本题选择D选项.二、填空题:本大题共4小题,每小题5分.13.【答案】①③④【解析】逐一考查所给的四个说法:,则,说法①正确;当时,不成立,说法②错误;由绝对值三角不等式的性质可得,说法③正确;,则,说法④正确,综上可得,一定成立的不等式的序号是①③④.14.【答案】【解析】因为,所以,所以成立,故答案为.25.【答案】【解析】∵,∴对恒成立,∴或对恒成立,即或对恒成立,∴,解得,故答案为.16.【答案】【解析】由柯西不等式得,当且仅当取等号,即,解得,所以,e的取值范围是,故答案为.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)因为,因为,故,即,故成立.(2)由基本不等式可得,故,同理有,,相加可得,当且仅当时取等号,即得证.18.【答案】(1);(2).【解析】(1)因为,当且仅当时等号成立,即,当且仅当时等号成立,又因为,所以,当且仅当,,时等号成立,即的最小值为.(2)因为,,所以,所以,又因为,所以,即,当且仅当时,等号成立.19.【答案】证明见解析.【解析】证明:(1)当时,左边,∴时成立.(2)假设当时成立,即,那么当时,左边,∴时也成立.20.【答案】(1);(2).【解析】(1)由已知得,①;②;③,∵,∴不等式的解集为.(2)不等式解集为恒成立,设,则,①当时,;②当时,;③当时,,∴.∵恒成立,由,得,∴的取值范围是.21.【答案】(1);(2)证明见解析.【解析】(1)由绝对值不等式得,若不等式有解,则满足,解得,∴.(2)由(1)知正数a,b,c满足,即,∴,当且仅当,即时,取等号,∴成立.22.【答案】(1)证明见解析;(2).【解析】(1)证明:因为,,所以.(2),所以,当且仅当时取等号,解得,,所以当,时取最小值.。
选修4-5 不等式经典练习(含解析)
选修4-5 不等式经典练习(含解析)知识点一:不等式的解法 知识点二:绝对值三角不等式例1 已知函数()()6f x x m x m R =+--∈. (1)当3m =时,求不等式()5f x ≥的解集;(2)若不等式()7f x ≤对任意实数x 恒成立,求m 的取值范围. 【答案】(1){}|1x x ≥;(2)[]13,1-. 【解析】 试题解析:(1)当3m =时,()5f x ≥即635x x +--≥, ①当6x <-时,得95-≥,所以x φ∈;②当63x -≤≤时,得635x x ++-≥,即1x ≥,所以13x ≤≤; ③当3x >时,得95≥,成立,所以3x >. 故不等式()5f x ≥的解集为{}|1x x ≥.(2)因为666x m x x m x m +--≤++-=+, 由题意得67m +≤,则767m -≤+≤, 解得131m -≤≤,故m 的取值范围是[]13,1-.课堂练习:已知函数()13f x x x =-++.(1)解不等式()8f x ≥; (2)若不等式()23f x a a <-的解集不是空集,求实数a 的取值范围.【答案】(1){}|5,3x x x ≤≥或(2)()(),14,-∞-+∞【解析】试题解析:(1)()22,3134,3122,1x x f x x x x x x --<-⎧⎪=-++=-≤≤⎨⎪+>⎩,当3x <-时,由228x --≥,解得5x ≤-; 当31x -≤≤时,()8f x ≥,不成立;当1x >时,由228x +≥,解得3x ≥. 所以不等式()8f x ≥的解集为{}|5,3x x x ≤≥或(2)∵()134f x x x =-++≥,∴()min 4f x =,又不等式()23f x a a<-的解集不是空集,所以,234a a ->,所以41a a ><-或,即实数a 的取值范围是()(),14,-∞-+∞例2.设函数()212f x x x =+--.(1)求不等式()2f x >的解集; (2)若()211,2x R f x t t ∀∈≥-恒成立,求实数t 的取值范围. 【答案】(1){}|15x x x ><-或;(2)1,52⎡⎤⎢⎥⎣⎦【解析】试题解析:(1)由题意得()13,2131,223,2x x f x x x x x ⎧--<-⎪⎪⎪=--≤<⎨⎪+≥⎪⎪⎩,当12x <-时,不等式化为32x -->,解得5x <-,5x ∴<-,当122x -≤<时,不等式化为312x ->,解得1,12x x >∴<<,当2x ≥时,不等式化为32x +>,解得1,2x x >-∴≥,综上,不等式的解集为{}|15x x x ><-或. (2)由(1)得()2min 51122f x t t =-≥-,解得152t ≤≤,综上,t 的取值范围为1,52⎡⎤⎢⎥⎣⎦. 考点:解绝对值不等式,不等式恒成立. 课堂练习:2.设函数()235f x x x =-+-. (1)求不等式()4f x ≥的解集;(2)若()f x a <的解集不是空集,求实数a 的取值范围. 【答案】(1)4|53x x x ⎧⎫≥≤⎨⎬⎩⎭或;(2)72a >. 【解析】试题分析:(1)运用分类整合的方法去掉绝对值求解;(2)借助题设条件和不等式恒成立的等价条件求解.试题解析:(1)由题意:()38,532,52383,2x x f x x x x x ⎧⎪-≥⎪⎪=+<<⎨⎪⎪-≤⎪⎩.①∴()4f x ≥解得:5x ≥或43x ≤, 所以不等式的解集为:4|53x x x ⎧⎫≥≤⎨⎬⎩⎭或. (2)由题意:()min a f x >,由(1)式可知:5x ≥时,()37,52f x x ≥<<时()72f x >,32x ≤时,()72f x ≥, ∴()min 72f x =∴a 的范围为:72a >. 考点:绝对值不等式及有关知识的运用. 例3.已知函数()2f x x a x =++-. (1)当3a =-时,求不等式()3f x ≥的解集;(2)若|4|)(-≤x x f 的解集包含[]1,2,求a 的取值范围. 【答案】(1){x|x≤1,或x≥4};(2)[-3,0].【解析】试题分析:(1)当3a =-时,用分段函数的形式表示出函数)(x f 的解析式,并分三种情况对其进行讨论,得出相应的不等式的解集,最后可得出该不等式的解集即可;(2)首先将问题()4f x x ≥-的解集包含[]1,2转化为.当x∈[1,2]时,|x -4|-|x -2|≥|x+a|,进而转化为-2-a≤x≤2-a ,由集合间的包含关系可得出证明.试题解析:(1)当a =-3时,25,2,()1,2325,3x x f x x x x -+≤⎧⎪=<<⎨⎪-≥⎩当x≤2时,由f (x )≥3得-2x +5≥3,解得x≤1;当2<x<3时,f (x )≥3无解;当x≥3时,由f (x )≥3得2x -5≥3,解得x≥4.所以f (x )≥3的解集为{x|x≤1,或x≥4}.(2)f (x )≤|x-4|⇔|x -4|-|x -2|≥|x+a|.当x∈[1,2]时,|x -4|-|x -2|≥|x+a|⇔4-x -(2-x )≥|x+a|⇔-2-a≤x≤2-a.由条件得-2-a≤1且2-a≥2,即-3≤a≤0.故满足条件的a 的取值范围是[-3,0].考点:1.含绝对值的不等式的解法;2.集合的包含关系. 课堂练习:3.设()13f x x x =--+.(1)解不等式()2f x >;(2)若不等式()1f x kx ≤+在[]3,1x ∈--上恒成立, 求实数k 的取值范围. 【答案】(1){}|2x x <-(2)1k ≤-【解析】 试题解析:(1)()13f x x x =--+,所以当3x ≤-时,()1342,3f x x x x =-+++=>∴≤-, 满足原不等式;当31x -<<时,()1322f x x x x =-+--=--, 原不等式即为222x -->,解得2,32x x <-∴-<<-满足原不等式;当1x ≥时,()1342,1f x x x x =---=-<∴≥ 不满足原不等式综上原不等式的解集为{}|2x x <-.(2)当[]3,1x ∈--时,()1322f x x x x =-+--=--, 由于原不等式()1f x kx ≤+在[]3,1x ∈--上恒成立,221x kx ∴--≤+, 在[]3,1x ∈--上恒成立,[]()323,1k x x∴≤--∈--, 设()32g x x=--,易知()g x 在[]3,1x ∈--上为增函数,()[]()113,1,1g x x k ∴-≤≤∈--∴≤-.例4已知函数()|2||1|f x x x =+--. (Ⅰ)若()f x b ≥恒成立,求b 的取值范围;(Ⅱ)设()233()0ax x g x a x -+=>,若对()0,s ∀∈+∞, (),t ∈-∞+∞,恒有()()g s f t ≥成立,试求实数a 的取值范围.【答案】(I )3b <-;(II )[3,)+∞. 【解析】试题解析:(I )∵||2||1|||(2)(1)|3x x x x +--≤+--=,∴3|2||1|3x x -≤+--≤, ∴()f x 的值域为[]3,3-,故3b <-.(II )若0,x>()3g x ≥,当且仅当23ax =时取得等号.又由(I )知()f x 的最大值为3,若对(0,),(,)s t ∀∈+∞∀-∞+∞,恒有()()g s f t ≥成立,即33≥,解得3a ≥,故实数a 的取值范围是[3,)+∞.考点:1、绝对值不等式的性质;2、恒成立问题.∴949m -≤+≤,∴135m -≤≤课堂练习4.已知函数()2f x x =-. (1)解不等式:()(21)6f x f x ++≥;(2)已知1(,0)a b a b +=>,且对于41,()()x R f x m f x a b∀∈---≤+恒成立,求实数m 的取值范围. 【答案】(1)[)(,1]3,-∞-+∞;(2)135m -≤≤.【解析】试题分析:(1)借助题设条件运用绝对值的定义分类求解;(2)借助题设条件运用绝对值的几何意义与基本不等式求解. 试题解析:(1)133,21()(21)|2||21|1,2233,2x x f x f x x x x x x x ⎧-<⎪⎪⎪++=-+-=+≤≤⎨⎪->⎪⎪⎩,当12x <时,由336x -≥,解得1x ≤-; 当122x ≤≤时,16x +≥不成立; 当2x >时,由336x -≥,解得3x ≥.所以不等式()6f x ≥的解集为[)(,1]3,-∞-+∞.(2)∵1,0)a b a b +=>(,∴41414)()559b a a b a b a b a b +=++=++≥+=( ∴对于x R ∀∈,41()()f x m f x a b---≤+恒成立等价于:对x R ∀∈,229x m x -----≤,即max 229x m x ⎡-----⎤≤⎣⎦∵()222(2)=4x m x x m x m -----≤---+--课后作业:1.已知函数()|21||2|f x x x =+--. (1)求不等式()0f x >的解集;(2)若不等式|1|()3|2|m f x x +≥+-有解,求实数m 的取值范围.【答案】(1)133x x x ⎧⎫<->⎨⎬⎩⎭或;(2)(][),64,-∞-+∞【解析】试题解析:(Ⅰ)不等式()0f x >,即2+120x x -->, 由不等式2+12x x >-两边平方化简得:()()3130x x -+> 解得:3x <-或13x >, 所以不等式()0f x >的解集为133x x x ⎧⎫<->⎨⎬⎩⎭或.(Ⅱ)由条件知,不等式()1+32m f x x +≥-有解,即121+24m x x +≥+-有解.设()21+24g x x x =+-,则问题可转化为()min 1m g x +≥, 而()21+2421245g x x x x x =+-≥+-+=,由15m +≥解得:6m ≤-或4m ≥ ,所以a 的取值范围是(][),64,-∞-+∞.考点:绝对值不等式的解法2.设函数|2||12|)(+--=x x x f(Ⅰ)解不等式0)(>x f ;(Ⅱ)若0x R ∃∈,使得m m x f 42)(20<+,求实数m 的取值范围。
高中数学选修4-5柯西不等式习题
高中数学选修4-5柯西不等式习题(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高中数学·选修4-5·柯西不等式(1)一.选择题(共10小题)1.(2012•九江一模)设变量x,y满足|x﹣2|+|y﹣2|≤1,则的最大值为()A.B.C.﹣D.2.(2014•孝感二模)已知x,y,z均为正数,且x+y+z=2,则++的最大值是()A.2 B.2C.2D.33.(2014•湖北模拟)设x、y、z是正数,且x2+4y2+9z2=4,2x+4y+3z=6,则x+y+z等于()A.B.C.D.4.(2014秋•秦安县校级期中)已知a2+b2+c2=1,若|对任意实数a,b,c,x恒成立,则实数m的取值范围是()A.[8,+∞)B.(﹣∞,﹣4]∪[2,+∞)C.(﹣∞,﹣1]∪[8,+∞)D.[2,+∞)5.(2014春•和平区期中)已知a,b,c∈R,且a+b+c=0,abc>0,则++的值()A.小于0 B.大于0 C.可能是0 D.正负不能确定6.(2015•安徽模拟)若实数a,b,c满足a2+b2+c2=1,则3ab﹣3bc+2c2的最大值为()A.1 B.2 C.3 D.47.(2012•湖北)设a,b,c,x,y,z是正数,且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,则=()A.B.C.D.8.(2013春•永定区校级月考)函数()A.6B.2C.5D.29.(2013•湖北一模)已知a,b,c∈R,则2a2+3b2+6c2=1是a+b+c∈[﹣1,1]的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件10.(2014•湖北模拟)实数a i(i=1,2,3,4,5,6)满足(a2﹣a1)2+(a3﹣a2)2+(a4﹣a3)2+(a5﹣a4)2+(a6﹣a5)2=1则(a5+a6)﹣(a1+a4)的最大值为()A.3 B.2C. D.1二.填空题(共10小题)11.(2013秋•福建月考)选修4﹣5:不等式选讲已知实数a,b,c,d,e满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,试确定e的最大值.12.(2014•黄冈校级模拟)设,若x2+y2+z2=16,则的最大值为.13.(2014•荆门模拟)已知实数a,b,c,d,e满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,则e的取值范围是.14.(2015•抚顺模拟)已知正数x,y,z满足x+2y+3z=1,则++的最小值为.15.(2015•郴州模拟)己知x,y∈(0,+∞),若+3<k恒成立,利用柯西不等式可求得实数k的取值范围是.16.(2015春•齐齐哈尔校级期末)若存在实数x使+>a成立,求常数a的取值范围.17.(2013•惠州模拟)(不等式选讲选做题)已知实数a、b、x、y满足a2+b2=1,x2+y2=3,则ax+by的最大值为.18.(2014•宝鸡二模)已知实数x、y、z满足x+2y+3z=1,则x2+y2+z2的最小值为.19.(2014•天门模拟)(选修4﹣5:不等式选讲)已知实数a,b,c,d满足a+b+c+d=3,a2+2b2+3c2+6d2=5,试求a的最值.20.(2015•龙泉驿区校级模拟)已知a1,a2,a3不全为零,设正数x,y满足x2+y2=2,令≤M,则M的最小值为.三.解答题(共10小题)21.(2014•泰州模拟)若不等式|a﹣1|≥x+2y+2z对满足x2+y2+z2=1的一切实数x、y、z恒成立,求a的取值范围.22.(2015•福建)已知a>0,b>0,c>0,函数f(x)=|x+a|+|x﹣b|+c的最小值为4.(1)求a+b+c的值;(2)求a2+b2+c2的最小值为.23.(2015•福州校级模拟)已知正数a,b,c满足a2+b2+c2=6.(Ⅰ)求a+2b+c的最大值M;(Ⅱ)在(Ⅰ)的条件下,若不等式|x+1|+|x+m|≥M恒成立,求实数m的取值范围.24.(2014•江苏模拟)选修4﹣5:不等式选讲若正数a,b,c满足a+b+c=1,求的最小值.25.(2015•上饶二模)(1)设函数,求f(x)的最小值,(2)当a+2b+3c=m(a,b,c∈R)时,求a2+b2+c2的最小值.26.(2015•咸阳三模)已知x,y∈R+,且x+y=2(Ⅰ)要使不等式+≥|a+2|﹣|a﹣1|恒成立,求实数a的取值范围(Ⅱ)求证:x2+2y2.27.(2015•南昌三模)已知关于x的不等式m﹣|x﹣2|≥1,其解集为[0,4].(Ⅰ)求m的值;(Ⅱ)若a,b均为正实数,且满足a+b=m,求a2+b2的最小值.28.(2015•兴庆区校级一模)(1)设函数f(x)=|x﹣|+|x﹣a|,x∈R,若关于x的不等式f(x)≥a在R上恒成立,求实数a的最大值;(2)已知正数x,y,z满足x+2y+3z=1,求++的最小值.29.(2015春•重庆校级期中)已知函数f(x)=|x+1|,g(x)=m﹣2|x﹣4|,若2f(x)≥g(x)恒成立,实数m 的最大值为a.(Ⅰ)求实数a的值;(Ⅱ)已知实数x,y,z满足x+y+z=a,求2x2+3y2+6z2的最小值.30.(2015•江西模拟)(1)已知函数f(x)=|x﹣1|+|x+3|,求x的取值范围,使f(x)为常函数;(2)若x,y,z∈R,x2+y2+z2=1,求m=x+y+z的最大值.1.B 2.C 3.A 4.B 5.A 6.C 7.C 8.D 9.A 10.B11.12.13.14.18 15.k>16.(-∞,8)17.18.19.20.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 数学选修4-5 第Ⅰ卷
一、单项选择题:(共31题,每小题5分,共155分) 1、下列各式中,最小值等于2的是( )
A xyyx B 4522xx C 1tantan D 22xx 答案:D 20,20,222222xxxxxx
2、若,xyR且满足32xy,则3271xy的最小值是( ) A 339 B 122 C 6 D 7 答案:D 33333123312317xyxyxy
3、设0,0,1xyxyAxy, 11xyBxy,则,AB的大小关系是( ) A AB B AB C AB D AB
答案:B 11111xyxyxyBAxyxyyxxy,即AB 4、若,,xyaR,且yxayx恒成立,则a的最小值是( ) A 22 B 2 C 1 D 12 答案:B 22222,()222xyxyxyxy即, 2()2xyxy
,而yxayx 2
即1()xyxya恒成立,得12,22aa即 5、函数46yxx的最小值为( ) A 2 B 2 C 4 D 6 答案:A 46462yxxxx
6、不等式3529x的解集为( ) A [2,1)[4,7 B (2,1](4,7 C (2,1][4,7 D (2,1][4,7
答案:D 259925927253,2534,1253xxxxxxxx或或,得(2,1][4,7)
7、设,abcnN,且cancbba11恒成立,则n的最大值是( ) A 2 B 3 C 4 D 6
答案:C 24acacabbcabbcbcababbcabbcabbc 114abbcac,而cancbba11恒成立,得4n
8、若(,1)x,则函数22222xxyx有( ) A 最小值1 B 最大值1 C 最大值1 D 最小值1
答案: C 2(1)1111121222222(1)22(1)xxxyxxxx 3
9、设2P,73Q,62R,则,,PQR的大小顺序是( ) A PQR B PRQ C QPR D QRP 答案:B 22226,262,即PR; 又6372,6273,即RQ,所以PRQ
10、设不等的两个正数,ab满足3322abab,则ab的取值范围是( ) A (1,) B 4(1,)3 C 4[1,]3 D (0,1) 答案:B 222,()()aabbabababab,而2()04abab 所以22()0()()4ababab,得413ab
11、设,,abcR,且1abc,若111(1)(1)(1)Mabc,则必有( ) A 108M B 118M C 18M D 8M 答案:D ()()()(1)(1)(1)abcabcabcbcacabMabcabc 88abbcacabc
12、若,abR,且,ababMba, Nab,则M与N的大小关系是 A MN B MN C MN D MN
答案:A ,2,2ababbaabba 22abbababa,即abbaba 4
13、 若log2xy,则xy的最小值是( ) A 2233 B 3323 C 233 D 322 答案:A 由log2xy得21yx, 而33322211113332222242xxxxxyxxxx
14、,,abcR,设abcdSabcbcdcdadab,
则下列判断中正确的是( ) A 01S B 12S C 23S D 34S
答案: B abcdabcbcdcdadab 1abcdabcdabcdbcdacdabdabcabcd
即1S,aaabcac,cccdaac,bbbcdbd,dddabdb 得1accaabccdaacac,1bddbbcddabdbbd 即2abcdabcbcdcdadab,得2S,所以12S
15、若1x,则函数21161xyxxx的最小值为( ) A 16 B 8 C 4 D 非上述情况
答案:B 2116116216811xyxxxxxxx 5
16、设0ba,且22211Pab,211Qab, Mab, 2abN,222abR,则它们的大小关系是( )
A PQMNR B QPMNR C PMNQR D PQMRN 答案:A R为平方平均数,它最大
17、已知集合}21|{},0|{xxBxxA,则BA( ) A.}1|{xx B.}2|{xx C.}20|{xx D.}21|{xx 答案:C
18、欲证7632,只需证( ) A.226372 B.227362 C.227632 D.227632 答案:A
19、设0x,0y,yxyxA1,yyxxB11,则A.B的大小关系是( ) A.BA B.BA C.BA D.不能确定 答案:B
20、若0n,则232nn的最小值为( ) A.2 B.4 C.6 D.8答案:C
21、如果命题)(np对kn成立,则它对2kn也成立,又命题)(np对2n成立,则下列结论正确的是( )
A.命题)(np对所有正整数n成立 B.命题)(np对所有大于2的正整数n成立 6
C.命题)(np对所有奇正整数n成立 D.命题)(np对所有偶正整数n成立 答案:D
22、已知1,0ba,用反证法证明)1(),1(abba不能都大于41时,反设正确的是( )
A.)1(),1(abba都大于41 , B.)1(),1(abba都小于41 C.)1(),1(abba都大于或等于41 D.)1(),1(abba都小于或等于41 答案:A 23、已知ba,都是实数,那么“22ba
”是“ba”的( )
A.充分而不必要条件 B.必要而不充分条件 C.充分且必要条件 D.既不充分也不必要条件 答案:D
24、已知不等式ayxyx11对任意正实数x,y恒成立,则实数a的最大值为( )
A.2 B.4 C.2 D.16 答案:B 25、已知Rba,,且0ab,则( )
A.baba B.baba C.baba D.baba 答案:B 26、已知0a,0b满足2ba,则( ) A.21ab B.21ab C.222ba D.422ba 7
答案:C 27、若log2xy,则xy的最小值是( ) A 2233 B 3323 C 233 D 322
答案:A 由log2xy得21yx, 而33322211113332222242xxxxxyxxxx
28、,,abcR,设abcdSabcbcdcdadab,则下列判断中正确
的是( ) A 01S B 12S C 23S D 34S
答案:B abcdabcbcdcdadab 1abcdabcdabcdbcdacdabdabcabcd
即1S,aaabcac,cccdaac,bbbcdbd,dddabdb 得1accaabccdaacac,1bddbbcddabdbbd 即2abcdabcbcdcdadab,得2S,所以12S
29、若1x,则函数21161xyxxx的最小值为( ) A 16 B 8 C 4 D 非上述情况