初三数学选择题训练

合集下载

2021-2022学年九年级数学下册3.9《弧长及扇形面积》选择题专题训练及答案(北师大版)

2021-2022学年九年级数学下册3.9《弧长及扇形面积》选择题专题训练及答案(北师大版)

2021-2022学年北师大版九年级数学下册《3-9弧长及扇形面积》选择题专题训练(附答案)1.一个扇形的弧长是10π(cm),面积是60π(cm2),则此扇形的半径是()A.3B.6C.12D.302.已知圆心角度数为60°,半径为30,则这个圆心角所对的弧长为()A.20πB.15πC.10πD.5π3.如图,四边形ABCD是半径为2的⊙O的内接四边形,连接OA,OC.若∠ADC=72°,则的长为()A.πB.C.D.4.如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C,若OA=2,则阴影部分的面积为()A.B.C.D.5.如图,在△ABC中,AB=2,现将△ABC绕点A逆时针旋转60°得到△AB1C1,则阴影部分的面积为()A.B.C.D.6.如图,△ABC中,∠ABC=90°,AB=2,AC=4,点O为BC的中点,以O为圆心,OB长为半径作半圆,交AC于点D,则图中阴影部分的面积是()A.B.C.D.7.如图,在△AOC中,OA=3,OC=1,将△AOC绕点O顺时旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()A.B.2πC.D.8.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=55°,AB=6,则的长为()A.πB.πC.πD.11π9.如图,在半径为的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为()A.πB.C.2πD.10.已知扇形半径是9cm,弧长为4πcm,则扇形的圆心角为()A.20°B.40°C.60°D.80°11.如图,正方形ABCD中,分别以B,D为圆心,以正方形的边长a为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的面积为()A.πa2﹣a2B.πa2﹣a2C.πa2﹣a2D.πa2﹣a212.如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为()A.B.C.D.13.如图,在矩形ABCD中,AB=2,BC=4,以点A为圆心,AD长为半径画弧交BC 于点E,连接AE,则阴影部分的面积为()A.6﹣B.4﹣C.6﹣D.6﹣14.如图在半径为6的⊙O中,点A,B,C在⊙O上且∠ACB=60°,则的长度为()A.6πB.4πC.2πD.π15.一条弧所对的圆心角为135°,弧长等于半径为3cm的圆的周长的5倍,则这条弧的半径为()A.45cm B.40cm C.35cm D.30cm16.如图,在扇形AOB中,∠AOB=90°,OA=2,点D在OA上,连接BD,点C在AB 上,且点C,O关于直线BD对称,连接CD,则图中阴影部分的面积是()A.﹣B.π﹣C.﹣D.﹣17.已知扇形的半径为6,圆心角为150°,则它的面积是()A.πB.3πC.5πD.15π18.一个扇形的半径为3cm,面积为πcm2,则此扇形的圆心角为()A.30°B.40°C.80°D.120°19.某扇形的圆心角为150°,其弧长为20πcm,则此扇形的面积是()A.120πcm B.480πcm2C.240πcm2D.240cm220.如图,点C在以AB为直径的半圆上,O为圆心.若∠BAC=30°,AB=12,则阴影部分的面积为()A.6πB.12πC.18πD.9+参考答案1.解:设扇形所在圆的半径为rcm,弧长为lcm,∵S扇形=lr,∴60π=•10π•r,∴r=12;故选:C.2.解:圆心角是60°,半径为30的扇形的弧长是=10π,故选:C.3.解:∵四边形内接于⊙O,∠ADC=72°,∴∠AOC=144°.∵⊙O的半径为2,∴劣弧AC的长为=π.故选:D.4.解:连接OC、AC,∵OA=OC=AC,∴△AOC为等边三角形,∴∠OAC=60°,S△OAC=2×2×=,∴∠BOC=30°,S扇形OAC==π,则阴影部分的面积=﹣(π﹣)=﹣π,故选:B.5.解:∵△ABC绕点A逆时针旋转60°得到△AB1C1,则∴∠BAB1=60°,S△ABC=,∴S阴影部分=S扇形BAB′==π.故选:D.6.解:连接OD.∵AC=4,AB=2,∴AC=2AB,∵∠ABC=90°,∴∠C=30°,∴∠DOB=2∠C=60°,∵BC=AB=2,∴OC=OD=OB=,∴S阴=S△ACB﹣S△COD﹣S扇形ODB=×2×2﹣××﹣=2﹣﹣=﹣.故选:A.7.解:∵△AOC≌△BOD,∴在旋转过程中所扫过的图形的面积=扇形OAB的面积﹣扇形OCD的面积﹣=2π,故选:B.8.解:∵∠OCA=55°,OA=OC,∴∠A=55°,∴∠BOC=2∠A=110°,∵AB=6,∴BO=3,∴的长为:=π.故选:B.9.解:连接BC,由∠BAC=90°得BC为⊙O的直径,∴BC=2,在Rt△ABC中,由勾股定理可得:AB=AC=2,∴S扇形ABC==π,故选:A.10.解:根据弧长公式==4π,解得:n=80,故选:D.11.解:由题意可得出:S阴影=2S扇形﹣S正方形=2×﹣a2=πa2﹣a2,故选:B.12.解:连接OB,交AC于D,∵四边形OABC是平行四边形,OC=OA,∴四边形OABC是菱形,OB⊥AC,∵OA=OB=BC,∴△OAB是等边三角形,∠AOB=60°,在Rt△OAD中,AD=AC=,∴OA==2,∴的长是=.故选:C.13.解:∵四边形ABCD是矩形,AD=BC=4,∴∠B=∠DAB=90°,AD=AE=4,∵AB=2,∴cos∠BAE==,∴∠BAE=30°,∠EAD=60°,∴BE=AE=2,∴阴影部分的面积S=S矩形ABCD﹣S△ABE﹣S扇形EAD =2×4﹣××2﹣=6﹣.故选:A.14.解:连接OA、OB,则∠AOB=2∠ACB=120°,∴OA=OB=6,∴的长度为=4π,故选:B.15.解:设弧所在圆的半径为rcm,由题意得,=2π×3×5,解得,r=40.故选:B.16.解:连接OC交BD于点E.∴扇形的面积=×22π=π,∵点O与点C关于BC对称,∴OE=EC=1,OC⊥BD.在Rt△OBE中,sin∠OBE==,∴∠OBD=30°.∴BD===,∴阴影部分的面积=扇形面积﹣四边形OBCD的面积=π﹣•BD•OC=π﹣.故选:B.17.解:扇形面积=,故选:D.18.解:设扇形的圆心角是n°,根据题意可知:S==π,解得n=40°,故选:B.19.解:设扇形的半径为rcm,∵扇形的圆心角为150°,它所对应的弧长为20πcm,∴=20π,解得r=24 cm,∴S扇形=×20π×24=240πcm2.故选:C.20.解:∵直径AB=12,点C在半圆上,∠BAC=30°,∴OA=OB=6,∠ACB=90°,∠COB=60°,∴S△AOC=S△BOC,∴阴影部分的面积=S扇形BCO==6π,故选:A.。

2023北京海淀初三(上)期末数学试卷含答案解析

2023北京海淀初三(上)期末数学试卷含答案解析

2023北京海淀初三(上)期末数 学注意事项:1.本试卷共6页,共两部分,28道题.满分100分.考试时间120分钟.2.在试卷和答题纸上准确填写学校名称、姓名和准考证号.3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效.4.在答题纸上,选择题、作图题用2B 铅笔作答,其他题用黑色字迹签字笔作答.第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 刺绣是中国民间传统手工艺之一.下列刺绣图案中,是中心对称图形的为( )A. B.C. D.2. 点()1,2A 关于原点对称的点的坐标是( )A. 1,2B. 1,2C. ()1,2−−D. ()2,1 3. 二次函数22y x =+的图象向左平移1个单位长度,得到的二次函数解析式为( )A. 23y x =+B. ()212y x =−+ C. 21y x =+ D. ()212y x =++ 4. 如图,已知正方形ABCD ,以点A 为圆心,AB 长为半径作A ,点C 与A 的位置关系为( )A. 点C 在A 外B. 点C 在A 内C. 点C 在A 上D. 无法确定 5. 若点()0,5M ,()2,5N 在抛物线()223y x m =−+上,则m 的值为( )A. 2B. 1C. 0D. 1−6. 勒洛三角形是分别以等边三角形的顶点为圆心,以其边长为半径作圆弧,由三段圆弧组成的曲边三角形.如图,该勒洛三角形绕其中心O 旋转一定角度α后能与自身重合,则该角度α可以为( )A. 30︒B. 60︒C. 120︒D. 150︒ 7. 如图,过点A 作O 的切线AB ,AC ,切点分别是B ,C ,连接BC .过BC 上一点D 作O 的切线,交AB ,AC 于点E ,F .若90A ∠=︒,AEF △的周长为4,则BC 的长为( )A. 2B.C. 4D.8. 遥控电动跑车竞速是青少年喜欢的活动.如图是某赛道的部分通行路线示意图,某赛车从人口A 驶入,行至每个岔路口选择前方两条线路的可能性相同,则该赛车从F 口驶出的概率是( )A. 13B. 14C. 15D. 16第二部分 非选择题二、填空题(共16分,每题2分)9. 二次函数243y x x =−+的图象与y 轴的交点坐标为______.10. 半径为3且圆心角为120︒的扇形的面积为________.11. 下表记录了一名球员在罚球线上投篮的结果.______.12. 若关于x 的一元二次方程230x x m −+=有两个不相等的实数根,则m 的取值范围是______. 13. 二次函数2y ax bx =+的图象如图所示,则ab ______0(填“>”,“<”或“=”).14. 如图,ABC 是O 的内接三角形,OD AB ⊥于点E ,若O 45ACB ∠=︒,则OE =______.15. 对于二次函数2y ax bx c =++,y 与x 的部分对应值如表所示.x 在某一范围内,y 随x 的增大而减小,写出一个符合条件的x 的取值范围______.16. 如图,AB ,AC ,AD 分别是某圆内接正六边形、正方形、等边三角形的一边.若2AB =,下面四个结论中,①该圆的半径为2; ②AC ̂的长为π2;③AC 平分BAD ∠; ④连接BC ,CD ,则ABC 与ACD 的面积比为.所有正确结论的序号是______.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 解方程:226x x −=.18. 已知抛物线22y x bx c =++过点()1,3和()0,4,求该抛物线的解析式.19. 已知a 为方程22310x x −−=的一个根,求代数式()()()1132a a a a +−+−的值.20. 如图,四边形ABCD 内接于O ,AB 为直径,BC CD =.若50A ∠=︒,求B ∠的度数.21. 为了发展学生的兴趣爱好,学校利用课后服务时间开展了丰富的社团活动.小明和小天参加的篮球社共有甲、乙、丙三个训练场.活动时,每个学生用抽签的方式从三个训练场中随机抽取一个场地进行训练.(1)小明抽到甲训练场的概率为______;(2)用列表或画树状图的方法,求小明和小天在某次活动中抽到同一场地训练的概率.22. 已知:如图,PA 是O 的切线,A 为切点. 求作:O 的另一条切线PB ,B 为切点.作法:以P 为圆心,PA 长为半径画弧,交O 于点B ; 作直线PB .直线PB 即为所求.(1)根据上面的作法,补全图形(保留作图痕迹);(2)完成下面证明过程.证明:连接OA ,OB ,OP .∵PA 是O 的切线,A 为切点,∴OA PA ⊥.∴90PAO ∠=︒.在PAO 与PBO 中,,,______,PA PB OP OP =⎧⎪=⎨⎪⎩∴PAO PBO ≌.∴90∠=∠=︒PAO PBO .∴OB PB ⊥于点B .∵OB 是O 的半径,∴PB 是O 的切线(____________________)(填推理的依据).23. 紫砂壶是我国特有的手工制造陶土工艺品,其制作过程需要几十种不同的工具,其中有一种工具名为“带刻度嘴巴架”,其形状及使用方法如图1.当制显艺人把“带刻度嘴巴架”上圆弧部分恰好贴在壶口边界时,就可以保证需要粘贴的壶嘴、壶把、壶口中心在一条直线上.图2是正确使用该工具时的示意图.如图3,O 为某紫砂壶的壶口,已知A ,B 两点在O 上,直线l 过点O ,且l AB ⊥于点D ,交O 于点C .若30mm AB =,5mm CD =,求这个紫砂壶的壶口半径r 的长.24. 如图,AB 是O 的直径,点C 在O 上.过点C 作O 的切线l ,过点B 作BD l ⊥于点D .(1)求证:BC 平分ABD ∠;(2)连接OD ,若60ABD ∠=︒,3CD =,求OD 的长.25. 学校举办“科技之星”颁奖典礼,颁奖现场人口为一个拱门.小明要在拱门上顺次粘贴“科”“技”“之”“星”四个大字(如图1),其中,“科”与“星”距地面的高度相同,“技”与“之”距地面的高度相同,他发现拱门可以看作是抛物线的一部分,四个字和五角星可以看作抛物线上的点.通过测量得到拱门的最大跨度是10米,最高点的五角星距地面6.25米.(1)请在图2中建立平面直角坐标系xOy ,并求出该抛物线的解析式;(2)“技”与“之”的水平距离为2a 米.小明想同时达到如下两个设计效果:① “科”与“星”的水平距离是“技”与“之”的水平距离的2倍;②“技”与“科”距地面的高度差为1.5米.小明的设计能否实现?若能实现,直接写出a 的值;若不能实现,请说明理由.26. 在平面直角坐标系xOy 中,抛物线21y ax bx =++过点()2,1.(1)求b (用含a 的式子表示);(2)抛物线过点()2,M m −,()1,N n ,()3,P p .①判断:()()11m n −−______0(填“>”“<”或“=”);②若M ,N ,P 恰有两个点在x 轴上方,求a 的取值范围.27. 如图,在ABC 中,AB AC =,120BAC ∠=︒.D 是AB 边上一点,DEAC ⊥交CA 的延长线于点E .(1)用等式表示AD 与AE 的数量关系,并证明;(2)连接BE ,延长BE 至F ,使EF BE =.连接DC ,CF ,DF .①依题意补全图形;②判断DCF 的形状,并证明.28. 在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 有公共点,则称点P 为线段AB 的融合点.(1)已知()30A ,,()50B ,, ①在点()160P ,,()212P −,,()332P ,中,线段AB 的融合点是______; ②若直线y t =上存在线段AB 的融合点,求t 的取值范围;(2)已知O 的半径为4,(),0A a ,()1,0B a +,直线l 过点()0,1T −,记线段AB 关于l 的对称线段为A B ''.若对于实数a ,存在直线l ,使得O 上有A B ''的融合点,直接写出a 的取值范围.参考答案第一部分选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 【答案】B【解析】【分析】如果一个图形绕某一点旋转180度后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.依据中心对称图形的概念即可解答.【详解】解:A、是轴对称图形不是中心对称图形,故此选项不符合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不符合题意;D、不是中心对称图形,故此选项不符合题意;故选:B.【点睛】本题考查中心对称图形,熟练掌握中心对称图形的概念是解题的关键.2. 【答案】C【解析】【分析】根据关于原点对称点的坐标特点:横、纵坐标均取相反数可直接得到答案.【详解】解:点A(1,2)关于原点对称的点的坐标是(-1,-2),故选:C.【点睛】此题主要考查了关于原点对称点的坐标特点,关键是掌握点的坐标的变化规律.3. 【答案】D【解析】【分析】根据函数平移规律:左加右减,上加下减即可得到答案.【详解】解:由题意可得,22y x=+的图象向左平移1个单位长度可得,2y x=++,(1)2故选D.【点睛】本题考查函数图像平移规律,解题关键是熟练掌握规律:左加右减,上加下减.4. 【答案】A【解析】【分析】设正方形的边长为a,用勾股定理求得点C到A的圆心之间的距离AC,AB为A的半径,通过比较二者的大小,即可得到结论.【详解】解:设正方形的边长为a,则AB a,AC==,AB AC <,∴点C 在A 外, 故选:A .【点睛】本题考查了点与圆的位置关系,解题的关键是确定圆的半径和点到圆心之间的距离的大小关系. 5. 【答案】B【解析】 【分析】由函数的解析式可知函数对称轴为022x m +==,从而得出m 的值. 【详解】由函数()223y x m =−+可知对称轴是直线x m =,由()0,5M ,()2,5N 可知,M ,N 两点关于对称轴对称,即0212x +==, 1m ∴=,故选B .【点睛】本题考查二次函数图象上点的坐标特征,注意掌握二次函数图像上点的对称性是解题的关键. 6. 【答案】C【解析】【分析】连接,OA OB ,可得AB AC BC ==,从而得到13601203AOC ∠=⨯︒=︒,即可求解. 【详解】解:如图,连接,OA OC ,∵ABC 是等边三角形,∴AB AC BC ==,即AB AC BC ==, ∴13601203AOC ∠=⨯︒=︒. ∴该角度α可以为120︒.故选:C【点睛】本题主要考查了弧,弦,圆心角的关系,图形的旋转,等边三角形的性质,熟练掌握弧,弦,圆心角的关系是解题的关键.7. 【答案】B【解析】【分析】利用切线长定理得出AB AC =,DF FC =,DE EB =,再根据三角形周长等于4,可求得2AB AC ==,从而利用勾股定理可求解.【详解】解:∵AB ,AC 是O 的切线,切点分别是B ,C , ∴AB AC =,∵DF 、DE 是O 的切线,切点是D ,交AB ,AC 于点E ,F ,∴DF FC =,DE EB =,∵AEF △的周长为4,即4AF EF AE AF DF DE AE AC AB ++=+++=+=,∴2AB AC ==,∵90A ∠=︒,∴BC ===故选:B .【点睛】本题考查切线长定理,勾股定理,熟练掌握切线长定理是解题的关键.8. 【答案】B【解析】【分析】根据“在每个岔路口都有向左或向右两种可能,且可能性相等”可知在点H 、G 、E 、F 处都是等可能情况,从而得到在四个出口H 、G 、E 、F 也都是等可能情况,然后根据概率的意义列式即可得解.【详解】解:由图可知,在每个岔路口都有向左或向右两种可能,且可能性相等,赛车最终驶出的点共有H 、G 、E 、F 四个,所以,最终从点F 驶出的概率为14, 故选:B .【点睛】本题考查了概率,读懂题目信息,得出所给的图形的对称性以及可能性相等是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比. 第二部分 非选择题二、填空题(共16分,每题2分)9. 【答案】()0,3【解析】【分析】令0x =,求得y 的值即可.【详解】令0x =,得2433y x x =−+=,∴二次函数的图象与y 轴的交点坐标为()0,3,故答案为:()0,3.【点睛】本题考查的是二次函数与y 轴的交点,正确计算是解答此题的关键.10. 【答案】3π.【解析】【分析】直接利用扇形的面积公式S=2360n r π,进而求出即可. 【详解】解:∵半径为3,圆心角为120°的扇形,∴S 扇形=2360n r π=21203360π⨯⨯=3π. 故答案为3π.【点睛】此题主要考查了扇形面积公式应用,熟练记忆扇形面积公式是解题关键.11. 【答案】0.51(答案不唯一)【解析】【分析】根据频率估计概率的方法结合表格数据可得答案.【详解】解:由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.51附近, ∴这名球员在罚球线上投篮一次,投中的概率为0.51,故答案为:0.51(答案不唯一).【点睛】此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.12. 【答案】94m <【解析】【分析】根据一元二次方程根的判别式列出关于m 的不等式,即可解得答案.【详解】解:∵230x x m −+=的一元二次方程有两个不相等的实数根,∴0∆>,即()2340m −−>, 解得:94m <, 故答案为:94m <. 【点睛】本题考查一元二次方程根的判别式,解题的关键是掌握0∆>时,一元二次方程有两个不相等的实数根.13. 【答案】<【解析】【分析】根据抛物线的开口方向,判断a 的符号,根据对称轴的位置,判断b 的符号,进而得到ab 的符号.【详解】解:由图象,可知:抛物线的开口向上:0a >,对称轴在y 的右侧:b x 02a=−>,即:0b <, ∴0ab <;故答案为:<.【点睛】本题考查二次函数的图象与二次函数的系数之间的关系.熟练掌握二次函数的图象和性质,是解题的关键.14. 【答案】1【解析】【分析】连接OA ,OB ,由圆周角定理求得224590AOB ACB ∠=∠=⨯︒=︒,再由等腰三角形三线合一性质求得1452AOE BOE AOB ∠=∠=∠=︒,从而求得45AOE OAE ∠=∠=︒,得到OE AE =,然后在Rt AOE △中,90AEO ∠=︒,由勾股定理求解即可.【详解】解:连接OA ,OB ,∴224590AOB ACB ∠=∠=⨯︒=︒,∵OD AB ⊥于点E ,OA OB = ∴1452AOE BOE AOB ∠=∠=∠=︒, ∴45AOE OAE ∠=∠=︒,∴OE AE =,在Rt AOE △中,90AEO ∠=︒,由勾股定理,得222OE AE OA +=,∴2222OE OA ==, ∴1OE =,故答案为:1.【点睛】本题考查圆周角定理,等腰三角形的性质,勾股定理,熟练掌握圆周角定理,等腰三角形三线合一性质是解题的关键.15. 【答案】2x >(答案不唯一,满足32x ≥即可) 【解析】【分析】根据表格,用待定系数法求出二次函数解析式,再根据二次函数的性质求解即可.【详解】解:把=1x −,=3y −;0x =,1y =;1x =,3y =分别代入2y ax bx c =++,得313a b c c a b c −+=−⎧⎪=⎨⎪++=⎩,解得:131a b c =−⎧⎪=⎨⎪=⎩, ∴22373124y x x x ⎛⎫=−++=−−+ ⎪⎝⎭, ∵10a =−<, ∴当32x >时,y 随x 的增大而减小, ∴当2x >时,y 随x 的增大而减小,故答案为:2x >(答案不唯一,满足32x ≥即可). 【点睛】本题考查待定系数法求二次函数解析式,二次函数的性质,熟练掌握二次函数的性质是解题的关键.16. 【答案】①③④【解析】【分析】根据圆内接正六边形、内接正方形的性质、弧长公式,勾股定理逐一判断可选项即可.【详解】解:根据题干补全图形,连接BC CD OA OB OC OD OE ,,,,,,,根据内接正六边形的性质可知:60AOB ∠=︒,OA OB =∴AOB 是等边三角形,2OA OB AB ===,圆的半径为2,所以①正确;根据内接正方形的性质可知:=90AOC ︒∠,AC 的长为:90π2π180⨯=,所以②错误; ∵OA OD =,120AOD ∠=︒,∴30OAD ∠=︒,∵OA OC =,=90AOC ︒∠,∴45OAC ∠=︒,∵60OAB ∠=︒,∴604515BAC =︒−︒=︒∠,∴BAC DAC ∠=∠,∴AC 平分BAD ∠, 所以③正确;过点A 作AH BC ⊥交CB 延长线于点H ,AG CD ⊥交DC 延长线于点G , ∵1302ACB AOB ∠=∠=︒, ∴12AH AC =,∵AC ==∴AH =1245ADC AOC ∠=∠=︒,∴2AG AD =, 设OB 交AD 于点M ,∵60AOM ∠=︒,∴OM AD ⊥,2AD AM =,∵30OAM ∠=︒, ∴112MD OA ==,∴AM ==,∴2AD AM ==,∴AG =,∵=BAC CAD ∠∠,∴CD BC =,∴1212ABC ACD BC AH SAH S AG DC AG •====•,所以④正确; 因此正确的结论:①③④故答案为:①③④【点睛】本题考查圆内接正六边形、内接正方形的性质、弧长公式,勾股定理,得出圆形的半径是解题的关键.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17 【答案】11x =,21x =【解析】【分析】用配方法求解即可.【详解】解:22161x x −+=+,()217x −=,∴1x −=∴11x =,21x =.【点睛】本题考查解一元二次方程,熟练掌握用配方法求解一元二次方程是解题的关键.18. 【答案】2234y x x =−+【解析】【分析】把()1,3和()0,4代入22y x bx c =++,解方程组求出b 、c 的值即可得答案.【详解】解:∵抛物线22y x bx c =++过点()1,3和()0,4,∴32,4.b c c =++⎧⎨=⎩解方程组,得3,4.b c =−⎧⎨=⎩∴抛物线的解析式是2234y x x =−+.关键.19. 【答案】1【解析】【分析】将a 代入方程中得2231a a −=,将所求代数式化简整理后,把2231a a −=整体代入即可.【详解】解:∵a 为方程22310x x −−=的一个根,∴22310a a −−=.∴2231a a −=.∴原式=()222213646122312111a a a a a a a −+−=−−=−−=⨯−=. 【点睛】本题主要考查了一元二次方程的解的概念,以及用整体代入法求代数式的值.解题的关键是掌握整体代入法.20. 【答案】65B ∠=︒【解析】【分析】连接AC .利用等弧所对圆周角相等,得出DAC BAC ∠=∠,从而得出1252BAC DAB ∠=∠=︒,再利用直径所对圆周角是直角,最后由直角 三角形两锐角互余求解即可.【详解】解:如图,连接AC .∵BC CD =,∴DAC BAC ∠=∠.∵50DAB ∠=︒, ∴1252BAC DAB ∠=∠=︒. ∵AB 为直径,∴90ACB ∠=︒.∴9065B BAC ∠=︒−∠=︒.【点睛】本题考查圆周角定理的推论,直角三角形的性质,熟练掌握圆周角定理的推论是解题的关键. 21. 【答案】(1)13 (2)13【解析】【分析】(1)直接根据概率公式求解即可;(2)画树状图得出所有等可能结果,从中找到符合条件的结果,再根据概率公式求解即可.【小问1详解】 解:小明抽到甲训练场的概率为13, 故答案为:13; 【小问2详解】根据题意,可以画出如下树状图:由树状图可以看出,所有可能出现的结果有9种,并且这些结果出现的可能性相等.小明和小天抽到同一场地训练(记为事件A )的结果有3种,所以,()3193P A ==. 【点睛】此题考查了树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.22. 【答案】(1)见解析 (2)OA OB =,经过半径外端并且垂直于这条半径的直线是圆的切线【解析】【分析】(1)按照作法作出图形即可;(2)连接OA ,OB ,OP ,证明PAO PBO ≌即可证明PB 是O 的切线.【小问1详解】补全图形,如图所示: 【小问2详解】连接OA ,OB ,OP .∵PA 是O 的切线,A 为切点,∴OA PA ⊥.∴90PAO ∠=︒.在PAO 与PBO 中,,,,PA PB OP OP OA OB =⎧⎪=⎨⎪=⎩∴PAO PBO ≌.∴90∠=∠=︒PAO PBO .∴OB PB ⊥于点B .∵OB 是O 的半径, ∴PB 是O 的切线(经过半径外端并且垂直于这条半径的直线是圆的切线).故答案为:OA OB =,经过半径外端并且垂直于这条半径的直线是圆的切线.【点睛】本题考查了尺柜作图,切线的性质和判定,以及全等三角形的判定与性质,熟练掌握切线的判定与性质是解答本题的关键.23. 【答案】25mm【解析】【分析】连接OB ,根据垂径定理求得1152BD AB ==,又由5DO r =−,即可由勾股定理求解. 【详解】解:如图,连接OB .∵l 过圆心O ,l AB ⊥,30AB =, ∴1152BD AB ==. ∵5CD =,∴5DO r =−.∵222BO BD DO =+,∴()222155r r =+−. 解得25r =.∴这个紫砂壶的壶口半径r 的长为25mm .【点睛】本题考查垂径定理,勾股定理,熟练掌握垂径定理是解题的关键.24. 【答案】(1)见解析 (2)OD =【解析】【分析】(1)连接OC ,求得OC BD ∥,得到OBC CBD ∠=∠,即可求得BC 平分ABD ∠. (2)连接AC ,求得90ACB ∠=︒,在Rt BDC 中,求得6BC =;在Rt ACB △中,2AB AC =,OC =Rt OCD △中,利用勾股定理可求得OD =.【小问1详解】证明:如图,连接OC .∵直线l 与O 相切于点C ,∴OC l ⊥于点C .∴90OCD ∠=︒.∵BD l ⊥于点D ,∴=90BDC ∠︒.∴180OCD BDC ︒∠+∠=.∴OC BD ∥.∴OCB CBD ∠=∠.∵OC OB =,∴OBC OCB ∠=∠.∴OBC CBD ∠=∠.∴BC 平分ABD ∠.【小问2详解】解:连接AC .∵AB 是O 的直径,∴90ACB ∠=︒.∵60ABD ∠=︒, ∴1302OBC CBD ABD ︒∠=∠=∠=.在Rt BDC 中,∵30CBD ∠=︒,3CD =,∴26BC CD ==.在Rt ACB △中,∵30ABC ∠=︒,∴2AB AC =.∵222AC BC AB +=,∴AB =∴12OC AB ==.在Rt OCD △中,∵222OC CD OD +=,∴OD =【点睛】本题是圆与三角形综合题,考查了切线的性质、角平分线的判定和和勾股定理,作出恰当的辅助线是解决问题的关键25. 【答案】(1)20.25y x =−(答案不唯一)(2)能实现;a =【解析】【分析】(1)建立平面直角坐标系,写出点的坐标,代入求解析式即可; (2)设“技”的坐标()20.25a a −−,,表示“科”()22a a −−,,列出方程解方程即可. 【小问1详解】 解:如图,以抛物线顶点为原点,以抛物线对称轴为y 轴,建立平面直角坐标系.设这条抛物线表示的二次函数为2y ax .∵抛物线过点()5, 6.25−,∴25 6.25a =−∴0.25a =−∴这条抛物线表示的二次函数为20.25y x =−.【小问2详解】能实现;a =由“技”与“之”的水平距离为2a 米,设“技”()20.25a a −−,,“之”()20.25a a −,, 则 “科”()22a a −−,,“技”与“科”距地面的高度差为1.5米,()220.25 1.5a a ∴−−−=,解得:a =a =舍去) 【点睛】本题考查运用二次函数解决实际问题,建立适当的平面直角坐标系,求出函数解析式是解题的关键.26. 【答案】(1)2b a =−(2)①<②a 的取值范围是1138a −<≤−或1a ≥ 【解析】【分析】(1)把()2,1代入21y ax bx =++,计算即可;(2)①把()2,M m −代入21y ax bx =++,得18m a −=,把()1,N n 代入21y ax bx =++,得1n a −=−,当0a >时,180m a −=>,10n a −=−<,得()()110m n −−<;当a<0时,180m a −=<,10n a −=−>,得()()110m n −−<;即可得出结论; ②把()2,M m −,()1,N n ,()3,P p 代入21y ax bx =++,得81m a =+,1n a =−+,31p a =+.当0a >时,抛物线开口向上,对称轴为1x =,则抛物线在1x =时,取得最小值n .所以M ,P 在x 轴上方,N 在x 轴上或x 轴下方,则81031010a a a +>⎧⎪+>⎨⎪−+≤⎩,解得1a ≥.当0a <时,抛物线开口向下,对称轴为1x =,所以抛物线在1x =时,取得最大值n ,且<m p .所以N ,P 在x 轴上方,M 在x轴上或x 轴下方.则10310810a a a −+>⎧⎪+>⎨⎪+≤⎩,解得1138a −<≤−. 【小问1详解】解:把()2,1代入21y ax bx =++,得4211a b ++=,∴2b a =−;【小问2详解】解:①把()2,M m −代入21y ax bx =++,得421m a b =−+,由(1)知:2b a =−,∴18m a −=,把()1,N n 代入21y ax bx =++,得1n a b =++,1n a −=−,当0a >时,180m a −=>,10n a −=−<,∴()()110m n −−<,当a<0时,180m a −=<,10n a −=−>,∴()()110m n −−<,绽上,()()110m n −−<;②由(1)知2b a =−,∴221y ax ax =−+∴抛物线对称轴为1x =.∵抛物线过点()2,M m −,()1,N n ,()3,P p ,∴81m a =+,1n a =−+,31p a =+.当0a >时,抛物线开口向上,对称轴为1x =,∴抛物线在1x =时,取得最小值n .∵M ,N ,P 恰有两点在x 轴上方,∴M ,P 在x 轴上方,N 在x 轴上或x 轴下方.∴81031010a a a +>⎧⎪+>⎨⎪−+≤⎩,解得1a ≥.当0a <时,抛物线开口向下,对称轴为1x =,∴抛物线在1x =时,取得最大值n ,且<m p .∵M ,N ,P 恰有两点在x 轴上方,∴N ,P 在x 轴上方,M 在x 轴上或x 轴下方.∴10310810a a a −+>⎧⎪+>⎨⎪+≤⎩,解得1138a −<≤−. 综上,a 的取值范围是1138a −<≤−或1a ≥. 【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的图象性质是解题的关键.27. 【答案】(1)2AD AE =,理由见解析;(2)①如图;②结论:DCF 是等边三角形,理由见解析.【解析】【分析】(1)根据DE AC ⊥,120BAC ∠=︒可知90DEA ∠=︒,30ADE BAC DEA ∠=∠−∠=︒,利用含30︒角的直角三角形性质:30︒角所对直角边等于斜边的一半,可得2AD AE =.(2)①根据题意补全图形即可;②延长BA 至点H 使AH AB =,连接CH ,FH ,根据AB AC =可知AH AC =,由18060HAC BAC ∠=︒−∠=︒,得ACH 是等边三角形,HC AC =,60AHC ACH ∠=∠=︒, 根据AH AB =,EF BE =,可知2HF AE =,HF AE ∥,得60FHA HAC ∠=∠=︒,120FHC FHA AHC ∠=∠+∠=︒,FHC DAC ∠=∠,由2AD AE =,得HF AD =,由HA AC =,可证明FHC DAC ≌△△,可得FC DC =,HCF ACD ∠=∠,60FCD ACH ∠=∠=︒,从而可证明DCF 是等边三角形.【小问1详解】解:线段AD 与AE 的数量关系:2AD AE =.证明: DE AC ⊥,90DEA ∴∠=︒.120BAC ∠=︒,30ADE BAC DEA ∴∠=∠−∠=︒2AD AE ∴=;【小问2详解】解:①补全图形,如图.②结论:DCF 是等边三角形.证明:延长BA 至点H 使AH AB =,连接CH ,FH ,如图.AB AC =,∴AH AC =.18060HAC BAC ∠=︒−∠=︒,∴ACH 是等边三角形.∴HC AC =,60AHC ACH ∠=∠=︒.AH AB =,EF BE =,∴2HF AE =,HF AE ∥.∴60FHA HAC ∠=∠=︒.∴120FHC FHA AHC ∠=∠+∠=︒.∴FHC DAC ∠=∠,2AD AE =,∴HF AD =.HC AC =,∴FHC DAC ≌△△(SAS )∴FC DC =,HCF ACD ∠=∠.∴60FCD ACH ∠=∠=︒.∴DCF 是等边三角形.【点睛】此题考查了含30︒角的直角三角形性质,等边三角形的判定和性质,全等三角形的判定和性质,综合掌握相关知识点是解题关键.28. 【答案】(1)①1P ,3P;②当22t −≤≤时,直线y t =上存在线段AB 的融合点(21a ≤≤或1a −≤≤【解析】 【分析】(1)①画出对应线段的垂直平分线,再根据融合点的定义进行判断即可;②先确定线段AB 融合点的轨迹为分别以点A ,B 为圆心,AB 长为半径的圆及两圆内区域,则当直线y t =与两圆相切时是临界点,据此求解即可;(2)先推理出A B ''的融合点的轨迹即为以T 为圆心,()1TA −的长为半径的圆和以T 为圆心,以()1TB +的长为半径的圆的组成的圆环上(包括两个圆上),再求出两个圆分别与O 内切,外切时a 的值即可得到答案.【小问1详解】解:①如图所示,根据题意可知1P ,3P是线段AB 的融合点, 故答案为;1P ,3P ;②如图1所示,设PA 的垂直平分线与线段AB 的交点为Q ,∵点Q 在线段PA 的垂直平分线上,∴PQ AQ =,∴当点Q 固定时,则点P 在以Q 为圆心,AQ 的长为半径的圆上,∴当点Q 在AB 上移动时,此时点P 的轨迹即线段AB 的融合点的轨迹为分别以点A ,B 为圆心,AB 长为半径的圆及两圆内区域.当直线y t =与两圆相切时,记为1l ,2l ,如图2所示.∵()30A ,,()50B ,, ∴2AB =,∴2t =或2t =−.∴当22t −≤≤时,直线y t =上存在线段AB 的融合点.【小问2详解】解:如图3-1所示,假设线段AB 位置确定,由轴对称的性质可知TA TA TB TB ''==,,∴点A '在以T 为圆心,TA 的长为半径的圆上运动,点B '在以T 为圆心,以TB 的长为半径的圆上运动, ∴A B ''的融合点的轨迹即为以T 为圆心,()1TA −的长为半径的圆和以T 为圆心,以()1TB +的长为半径的圆的组成的圆环上(包括两个圆上);当TA TB <时,如图3-2所示,当以T 为圆心,()1TA −为半径的圆与O 外切时, ∴141TA −=+,6=, ∴2136a +=,∴a =;如图3-3所示,当以T 为圆心,()1TB +为半径的圆与O 内切时, ∴13TB +=,2=, ∴22114a a +++=, ∴31a (负值舍去);1a ≤≤时,存在直线l ,使得O 上有A B ''的融合点;同理当TA TB >时,当以T 为圆心,()1TB −为半径的圆与O 外切时,∴141TB −=+,6=, ∴221136a a +++=,∴1a =−(正值舍去);当以T 为圆心,()1TA +为半径的圆与O 内切时, ∴13TA +=,2=, ∴214a +=,∴a =;∴1a ≤≤l ,使得O 上有A B ''的融合点;1a ≤≤或1a ≤≤时存在直线l ,使得O 上有A B ''的融合点.【点睛】本题主要考查了坐标与图形,轴对称的性质,线段垂直平分线的性质,勾股定理,圆与圆的位置关系等等,正确推理出对应线段的融合点的轨迹是解题的关键.。

压轴题27选择压轴题(几何篇)-2023年中考数学压轴题专项训练(全国通用)(原卷版)

压轴题27选择压轴题(几何篇)-2023年中考数学压轴题专项训练(全国通用)(原卷版)

2023年中考数学压轴题专项训练压轴题27选择压轴题(几何篇)一.选择题(共40小题)1.(2023•朝阳区校级三模)如图,AB是⊙O的直径,将OB绕着点O逆时针旋转40°得到OC,P是⊙O 上一点,且与点C在AB的异侧,连结P A、PC、AC,若P A=PC,则∠P AB的大小是()A.20°B.35°C.40°D.70°2.(2023•河北区二模)如图,在平面直角坐标系中,菱形OABC的顶点A在x轴上,且∠COA=45°,OA =4,则点B的坐标为()A.(4+2√2,2√2)B.(2√2,2√2)C.(2+2√2,2)D.(√2,2)3.(2023•奉贤区二模)如图,矩形ABCD中,AB=1,∠ABD=60°,点O在对角线BD上,圆O经过点C.如果矩形ABCD有2个顶点在圆O内,那么圆O的半径长r的取值范围是()A.0<r≤1B.1<r≤√3C.1<r≤2D.√3<r≤24.(2023•广灵县模拟)如图,在Rt△ABC中,∠C=90°,BC=3,AC=6,点O,D,E是AB边上的点,以点O为圆心,DE长为直径的半圆O与AC相切于点M,与BC相切于点N,则图中阴影部分的面积为()A .5B .9﹣2πC .9﹣πD .5﹣π5.(2023•普陀区二模)如图,△ABC 中,∠BAC =60°,BO 、CO 分别平分∠ABC 、∠ACB ,AO =2,下面结论中不一定正确的是( )A .∠BOC =120°B .∠BAO =30°C .OB =3D .点O 到直线BC 的距离是16.(2023•瓯海区模拟)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH ,连结DH 并延长交AB 于点K ,若DF 平分∠CDK ,则DH HK =( )A .2√33B .65C .√5−1D .4√577.(2023•花溪区模拟)勾股定理是人类数学文化的一颗璀璨明珠,是用代数思想解决几何问题的最重要工具也是数形结合的组带之一,如图,秋千静止时,踏板离地的垂直高度BE =1m ,将它往前推6m 至C 处时(即水平距离CD =6m ),踏板离地的垂直高度CF =4m ,它的绳索始终拉直,则绳索AC 的长是( )A .152mB .92mC .6mD .212m8.(2023•承德一模)如图,在菱形ABCD 中,AC 、BD (AC >BD )相交于点O ,E 、F 分别为OA 和OC 上的点(不与点A 、O 、C 重合).其中AE =OF .过点E 作GH ⊥AC ,分别交AD 、AB 于点G 、H ;过点F 作IJ ⊥AC 分别交CD 、CB 于点J 、I ;连接GJ 、HI ,甲、乙、丙三个同学给出了三个结论:甲:随着AE 长度的变化,GH +IJ =BD 始终成立.乙:随着AE 长度的变化,四边形GHIJ 可能为正方形.丙:随着AE 长度的变化,四边形GHIJ 的面积始终不变,都是菱形ABCD 面积的一半.下列选项正确的是( )A .甲、乙、丙都对B .甲、乙对,丙不对C .甲、丙对,乙不对D .甲不对,乙、丙对 9.(2023•石家庄二模)如图,在平行四边形ABCD 中,对角线AC ,BD 交于点O ,E ,F 分别是OB 与OD 的中点,依连接点A ,E ,C ,F ,A ,当四边形AECF 是矩形时,与线段BE 相等的线段有( )A .4条B .5条C .6条D .7条10.(2023•青山区二模)如图,边长为2的正方形ABCD 的对角线AC 与BD 相交于点O ,E 是BC 边上一点,F 是BD 上一点,连接DE ,EF .若△DEF 与△DEC 关于直线DE 对称,则OF 的长为( )A .√22B .2√2−2C .2−√2D .√2−111.(2023•柳城县一模)七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.(清)陆以活《冷庐杂识》卷中写道:近又有七巧图,其式五,其数七,其变化之式多至千余,体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之.如图,是一个用七巧板拼成的装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形①的边GD 在边AD 上,则BF BE 的值为( )A .1+√22B .√22C .2+√24D .2+√2212.(2023•泉州模拟)如图,在矩形ABCD 中,AB =2,BC =4,将△ABC 沿BC 的方向平移至△A 'B 'C ',使得A ′E =A ′F ,其中E 是A ′B ′与AC 的交点,F 是A ′C ′与CD 的交点,则CC ′的长为( )A .52−√52B .112−√5C .5−√5D .92−√5 13.(2023•定远县二模)如图,在Rt △ABC 中,∠BAC =90°,AB =3,BC =5,点P 为BC 边上任意一点,连接P A ,以P A ,PC 为邻边作平行四边形P AQC ,连接PQ ,则PQ 长度的最小值为( )A .3B .2.5C .2.4D .214.(2023•烟台一模)如图,在矩形ABCD 中,AB =12,AD =10,点E 在AD 上,点F 在BC 上,且AE =CF ,连结CE ,DF ,则CE +DF 的最小值为( )A .26B .25C .24D .2215.(2023•郯城县一模)如图,在Rt △ABC 中,∠BAC =90°,AB =6,BC =10,点P 为BC 边上任意一点,连接P A ,以P A ,PC 为邻边作平行四边形P AQC ,连接PQ ,则PQ 长度的最小值为( )A .4.8B .5C .2.4D .416.(2023•白云区一模)如图,正方形ABCD 的面积为3,点E 在边CD 上,且CE =1,∠ABE 的平分线交AD 于点F ,点M ,N 分别是BE ,BF 的中点,则下列结论错误的是( )A .FD =√2MNB .△DEF 是等腰直角三角形C .BN =1D .tan ∠FBE =√317.(2023•九龙坡区校级模拟)如图,在正方形ABCD 中,O 为AC 、BD 的交点,△DCE 为直角三角形,∠CED =90°,OE =3√2,若CE •DE =6,则正方形的面积为( )A .20B .22C .24D .2618.(2023•杭州一模)如图,有两张矩形纸片ABCD 和EFGH ,AB =EF =2cm ,BC =FG =8cm .把纸片ABCD 交叉叠放在纸片EFGH 上,使重叠部分为平行四边形,且B 点D 与点G 重合,当两张纸片交叉所成的角α最小时,tan α等于( )A .14B .815C .12D .81719.(2023•高明区二模)矩形ABCD 和直角三角形EFG 的位置如图所示,点A 在EG 上,点D 在EF 上,若∠2=55°,则∠1等于( )A.155°B.135°C.125°D.105°20.(2023•余姚市一模)如图,由两个正三角形组成的菱形内放入标记为①,②,③,④的四种不同大小的小正三角形5个,其中编号①的有2个.设未被覆盖的浅色阴影部分的周长为C1,深色阴影部分的周长为C2,若要求出C1﹣C2的值,只需知道其中两个小正三角形的边长,则这两个小三角形的编号为()A.①②B.②③C.①③D.②④21.(2023•衡水二模)如图,点P是正方形ABCD的边BC上一点,点M是对角线BD上一点,连接PM 并延长交BA的延长线于点Q,交AD于点G,取PQ的中点N.连接AN.若AQ=PC,有下面两个结论:①DM=DG,②AN⊥BD,则这两个结论中,正确的是()A.①对B.②对C.①②都对D.①②都不对22.(2023•新乡二模)如图,在矩形ABCD中,点B(0,4),点C(2,0),BC=2CD,先将矩形ABCD 沿y轴向下平移至点B与点O重合,再将平移后的矩形ABCD绕点O逆时针旋转90°得到矩形EOMN,则点D的对应点N的坐标为()A.(3,3)B.(4,4)C.(3,4)D.(4,3)23.(2023•荆门一模)如图,菱形ABCD各边的中点分别是E、F、G、H,若EH=2EF,则下列结论错误的是()A.EH⊥EF B.EH=AC C.∠B=60°D.AB=√5EF24.(2023•中原区校级二模)如图,在Rt△ABO中,AB=OB,顶点A的坐标为(2,0),以AB为边向△ABO的外侧作正方形ABCD,将组成的图形绕点O逆时针旋转,每次旋转45°,则第98次旋转结束时,点D的坐标为()A.(1,﹣3)B.(﹣1,3)C.(﹣1,2+√2)D.(1,3)25.(2023•中原区模拟)如图,▱ABCD的边BC在x轴的负半轴上,点B与原点O重合,DE⊥AB,交BA 的延长线于点E,已知∠ABC=60°,AB=4,BC=6,则点E的坐标为()A.(﹣2,﹣,2√3)B.(﹣3,3√3)C.(−72,72√3)D.(−52√3,52)26.(2023•武邑县二模)如图,N是正六边形ABCDEF对角线CF上一点,延长FE,CD相交于点M,若S△ABN=2,则S五边形ABCMF=()A.10B.12C.14D.1627.(2023•承德一模)如图,正六边形的两条对角线AE、BE把它分成Ⅰ、Ⅱ、Ⅲ三部分,则该三部分的面积比为()A.1:2:3B.2:2:4C.1:2:4D.2:3:528.(2023•罗湖区二模)如图,AB为圆O的直径,C为圆O上一点,过点C作圆O的切线交AB的延长线于点D,DB=13AD,连接AC,若AB=8,则AC的长度为()A.2√3B.2√5C.4√3D.4√529.(2023•杭州一模)如图,过⊙O外一点A作⊙O的切线AD,点D是切点,连结OA交⊙O于点B,点C是⊙O上不与点B,D重合的点.若∠A=α°,则∠C的度数为()A.(45−12α)°B.12α°C.2α°D.(45+12α)°30.(2023•西宁一模)如图,扇形纸片AOB的半径为3,沿AB所在直线折叠扇形纸片,圆心D恰好落在AB̂上的点C处,则阴影部分的面积是()A.3π−9√32B.3π−3√32C.2π−3√32D.2π−9√3231.(2023•太原一模)如图,在扇形纸片OAB 中,∠AOB =105°,OA =6、点C 是半径OA 上的点、沿直线BC 折叠△OBC 得到△DBC ,点O 的对应点D 落在AB̂上,图中阴影部分的面积为( )A .9π−92B .9π−182C .9π﹣18D .12π﹣1832.(2023•西山区校级模拟)如图,分别以等边△ABC 的三个顶点为圆心,边长为半径画弧,得到的封闭图形是莱洛三角形,若AB 为6,则图中阴影部分的面积为( )A .18π−27√3B .6π−9√3C .12π−9√3D .18π−18√333.(2023•莆田模拟)如图,在⊙O 中,∠AOB =120°,点C 在AB̂上,连接AC ,BC ,过点B 作BD ⊥AC 的延长线于点D ,当点C 从点A 运动到点B 的过程中,∠CBD 的度数( )A .先增大后减小B .先减小后增大C .保持不变D .一直减小 34.(2023•蚌埠二模)如图是某芯片公司的图标示意图,其设计灵感源于传统照相机快门的机械结构,圆O 中的阴影部分是一个正六边形,其中心与圆心O 重合,且AB =BC ,则阴影部分面积与圆的面积之比为( )A .3√38πB .√32πC .√3πD .2√39π35.(2023•鄞州区校级模拟)如图,AB 为⊙O 的直径,将弧BC 沿BC 翻折,翻折后的弧交AB 于D .若BC =4√5,sin ∠ABC =√55,则图中阴影部分的面积为( )A .256πB .253πC .8D .1036.(2023•九龙坡区模拟)如图,在⊙O 中,AB 是圆的直径,过点B 作⊙O 的切线BC ,连接AC 交⊙O 于点D ,点E 为弧AD 中点,连接AE ,若AE =AO ,AB =6,则CD 的长为( )A .2B .3√32C .√3D .3√337.(2023•宁德模拟)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”.若等边三角形ABC 的边长为2,则该“莱洛三角形”的周长等于( )A .2πB .2π−√3C .23πD .2π+√338.(2023•虹口区二模)如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,AB =5,BC =12.分别以点O 、D 为圆心画圆,如果⊙O 与直线AD 相交、与直线CD 相离,且⊙D 与⊙O 内切,那么⊙D 的半径长r 的取值范围是( )A .12<r <4B .52<r <6C .9<r <252D .9<r <1339.(2023•苏州一模)东南环立交是苏州中心城区城市快速内环道路系统的重要节点,也是江苏省最大规模的城市立交.左图是该立交桥的部分道路示意图(道路宽度忽略不计),A 为立交桥入口,D 、G 为出口,其中直行道为AB 、CD 、FG ,且AB =CD =FG ;弯道是以点O 为圆心的一段弧,且BC 、CE 、EF 所在的圆心角均为90°.甲、乙两车由A 口同时驶入立交桥,均以16m /s 的速度行驶,从不同出口驶出,其间两车到点O 的距离y (m )与时间x (s )的对应关系如右图所示.结合题目信息,下列说法错误的是( )A .该段立交桥总长为672mB .从G 口出比从D 口出多行驶192mC .甲车在立交桥上共行驶22sD .甲车从G 口出,乙车从D 口出40.(2023•滨城区一模)如图,点A ,B 是半径为2的⊙O 上的两点,且AB =2√3,则下列说法正确的是( )A .圆心O 到AB 的距离为√3B .在圆上取异于A ,B 的一点C ,则△ABC 面积的最大值为3√3C .以AB 为边向上作正方形,与⊙O 的公共部分的面积为3+√34πD .取AB 的中点C ,当AB 绕点O 旋转一周时,点C 运动的路线长为3π。

2024年北京石景山初三上学期期末数学试题和答案

2024年北京石景山初三上学期期末数学试题和答案

石景山区2023-2024学年第一学期初三期末试卷数 学第一部分 选择题一、选择题(共16分,每题2分)第1- 8题均有四个选项,符合题意的选项只有一个. 1.若34(0)x y y ,则xy的值是(A)34 (B)43(C)74(D)732.如图,在Rt ACB △中,90C °,3AC BC ,则sin A 为(A) 13 (B)4 (C)10(D) 103.如图,四边形ABCD 内接于⊙O ,AB 是直径,D 是 AC的 中点.若40B °,则A 的大小为 (A) 50° (B) 60° (C) 70°(D) 80°4.将抛物线23y x 向左平移1个单位长度,平移后抛物线 的解析式为 (A) 23(1)y x(B) 23(1)y x(C) 231y x(D) 231y x5.若抛物线229y xmx 与x 轴只有一个交点,则m 的值为(A) 3(B) 3(C)(D) 3AB C6.如图1,“矩”在古代指两条边成直角的曲尺,它的两边长分别为a ,b .中国古老的天文和数学著作《周髀算经》中简明扼要地阐述了“矩”的功能:“平距以正绳,偃矩以望高,覆矩以测深,卧矩以知远,环矩以为圆,合矩以为方”.其中“偃矩以望高”的意思就是把“矩”仰立放可测物体的高度.如图2,从“矩”AFE 的一端A 望向树顶端的点C ,使视线通过“矩”的另一端E ,测得8m BD , 1.6m AB . 若“矩”的边30cm EF a ,边60cm AF b ,则树高CD 为 (A) 4m (B) 5.3m (C) 5.6m (D) 16m7.在平面直角坐标系xOy 中,若点1(4)y ,,2(6)y ,在抛物线2(3)1(0)y a x a 上,则下列结论正确的是 (A) 121y y(B) 211y y(C) 211y y(D) 121y y8.如图,在ABC △中,CD AB 于点D ,给出下面三个条件: ①A BCD ; ②A BCD ADC ; ③AD CD CD BD. 添加上述条件中的一个,即可证明ABC △是直角三角形的条件序号是 (A) ①②(B) ①③(C) ②③(D) ①②③第二部分 非选择题二、填空题(共16分,每题2分)9.如图,在矩形ABCD 中,E 是边AD 的中点,连接BE 交 对角线AC 于点F .若6AC ,则AF 的长为 . 10.在平面直角坐标系xOy 中,若点1(3)y ,,2(7)y ,在反比例函数(0)ky k x的图象上,则1y 2y (填“>”“=”或“<”). DABCE F DCBA第6题 图1 第6题 图2DCH11.如图,正六边形ABCDEF 内接于⊙O ,12AB ,则 AB 的长为 .12.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,60P °,6PA ,则⊙O 的半径为 .13.如图,线段AB ,CD 分别表示甲、乙建筑物的高,两座建筑物间的距离BD 为30m .若在点A 处测得点D 的俯角 为30°,点C 的仰角 为45°,则乙建筑物的高CD 约为 m (结果精确到0.1m1.4141.732 ).14.如图,点A ,B 在⊙O 上,140AOB °.若C 为⊙O 上任一点(不与点A ,B 重合),则ACB 的大小为 .15.如图,E 是正方形ABCD 内一点,满足90AEB °,连接CE .若2AB ,则CE 长的最小值为 .16.在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a的顶点为(1)P k ,,且经过点(30)A ,,其部分图象如图 所示,下面四个结论中, ①0a ; ②2b a ;③若点(2)M m ,在此抛物线上,则0m ; ④若点()N t n ,在此抛物线上且n c ,则0t . 所有正确结论的序号是 .A BCDENBDM第11题 第12题 第13题三、解答题(共68分,第17-21题,每题5分,第22题6分,第23题5分,第24-26题,每题6分,第27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程. 17.计算:20248sin 60(1)tan 45 °°.18.如图,在四边形ABCD 中,AC 平分BAD ,90ACD B °.(1)求证:ACD △∽ABC △; (2)若3AB ,4AD ,求AC 的长.19.已知二次函数223y x x .(1)将223y x x 化成2()(0)y a x h k a 的形式,并写出其图象的顶点坐标;(2)求此函数图象与x 轴交点的坐标;(3)在平面直角坐标系xOy 中,画出此函数的图象.20.如图,AB 是⊙O 的直径,弦CD AB 于点E ,6CD ,1BE .求⊙O 的半径.21.已知二次函数2y x bx c 的图象过点(10)A ,和(03)B ,. (1)求这个二次函数的解析式;(2)当14x 时,结合图象,直接写出函数值y 的取值范围.DABC22.如图,在四边形ABCD 中,AD ∥BC ,90B °,3cos 5C,10CD . 求AB 的长.23.已知某蓄电池的电压为定值,使用此电源时,用电器的电流I (单位:A )与电阻R (单位: )成反比例函数关系,即(0)kI k R ,其图象如图所示.(1)求k 的值;(2)若用电器的电阻R 为6 ,则电流I为 A ;(3)如果以此蓄电池为电源的用电器的电流I 不得超过10A ,那么用电器的电阻R应控制的范围是 .24.如图,在ABC △中,AB AC ,以AB 为直径的O 交BC 于点D ,交AC 于点E ,点F 在AC 的延长线上,12CBF BAC . (1)求证:BF 是O 的切线; (2)若5AB ,1tan 2CBF ,求CE 的长.I /AB CD25.投掷实心球是北京市初中学业水平考试体育现场考试的选考项目之一.实心球被投掷后的运动路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系, 实心球从出手(点A 处)到落地的过程中,其竖直高度y (单位:m )与水平距离x (单位:m )近似满足二次函数关系.小石进行了三次训练,每次实心球的出手点A 的竖直高度为2m .记实心球运动路线的最高点为P ,训练成绩(实心球落地点的水平距离)为d (单位:m ).训练情况如下:根据以上信息,(1)求第二次训练时满足的函数关系式; (2)小石第二次训练的成绩2d 为 m ; (3)直接写出训练成绩1d ,2d ,3d 的大小关系.2OA26.在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a 经过点(33)A a c ,. (1)求该抛物线的对称轴;(2)点1(12)M a y ,,2(2)N a y ,在抛物线上.若12c y y ,求a 的取值范围.27.如图,在Rt ACB △中,90ACB °,60BAC °.D 是边BA 上一点(不与点B重合且12BD BA),将线段CD 绕点C 逆时针旋转60°得到线段CE ,连接DE ,AE . (1)求CAE 的度数;(2)F 是DE 的中点,连接AF 并延长,交CD 的延长线于点G ,依题意补全图形.若G ACE ,用等式表示线段FG ,AF ,AE 之间的数量关系,并证明.DABCE28.在平面直角坐标系xOy 中,⊙O 的半径为1.对于⊙O 的弦AB 和点C 给出如下定义:若点C 在弦AB 的垂直平分线上,且点C 关于直线AB 的对称点在⊙O 上,则称点C 是弦AB 的“关联点”. (1)如图,点1(22A ,,1(22B ,. 在点1(00)C ,,2(10)C ,,3(11)C ,,4(20)C ,中,弦AB 的“关联点”是 ;(2)若点1(0)2C ,是弦AB 的“关联点”,直接写出AB 的长; (3)已知点(02)M ,,(0)15N ,.对于线段MN 上一点S ,存在⊙O 的弦PQ ,使得点S 是弦PQ 的“关联点”.记PQ 的长为t ,当点S 在线段MN 上运动时,直接写出t 的取值范围.石景山区2023-2024学年第一学期初三期末数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。

人教版初三数学上册第21章《一元二次方程》单元测试题含答案解析

人教版初三数学上册第21章《一元二次方程》单元测试题含答案解析

7.输入一组数据,按下列程序进行计算,输出结果如表:
6
人教版初三数学上册第 21 章《一元二次方程》单元测试题含答案解析
x 输出
20.5 -13.75
20.6 -8.04
20.7 -2.31
20.8 3.44
20.9 9.21
分析表格中的数据,估计方程(x+8)2-826=0 的一个正数解 x 的大致范围为(C) A.20.5<x<20.6 B.20.6<x<20.7 C.20.7<x<20.8 D.20.8<x<20.9
17.(本题 8 分)小明用下面的方法求出方程 2 x-3=0 的解,请你仿照他的方法求出下面另 外两个方程的解,并把你的解答过程写在下面的表格中. 方程 换元法得新方程 令 x=t 则 2t-3=0 解新方程 3 2 检验 3 t= >0 2 求原方程的解 3 x= , 2 9 所以 x= . 4
(2)如果该养殖户第 3 年的养殖成本为 7.146 万元,求可变成本平均每年增长的百分率 x.
21.(本题 8 分)一张长为 30 cm,宽 20 cm 的矩形纸片,如图 1 所示,将这张纸片的四个角 各剪去一个边长相同的正方形后,把剩余部分折成一个无盖的长方体纸盒,如图 2 所示,如 果折成的长方体纸盒的底面积为 264 cm2,求剪掉的正方形纸片的边长.
人教版初三数学上册第 21 章《一元二次方程》单元测试题含答案解析
初三数学上册第 21 章《一元二次方程》单元测试题
(满分:120 分 考试时间:120 分钟)
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分.) 1.下列方程是关于 x 的一元二次方程的是( A.ax2+bx+c=0 1 1 B. 2+ =2 x x ) C.x2+2x=y2-1 ) D.3(x+1)2=2(x+1)

人教版 九年级数学上册 第24--25章 同步课时训练 (含答案)

人教版 九年级数学上册 第24--25章  同步课时训练 (含答案)

人教版九年级数学第24章圆一、选择题1. 如图半径为1的⊙O与正五边形ABCDE相切于点A,C,则劣弧AC的长度为()图A.35π B.45π C.34π D.23π2. 如图所示,AB是⊙O的直径,C,D是⊙O上的两点,CD⊥AB.若∠DAB=65°,则∠BOC等于()A.25°B.50°C.130°D.155°3. 如图某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以点A为圆心,AB长为半径的扇形(忽略铁丝的粗细),则所得扇形ADB的面积为()A.6 B.7 C.8 D.94. 如图,已知⊙O1,⊙O2,⊙O3,⊙O4是四个半径为3的等圆,在这四个圆中,若某圆的圆心到直线l的距离为6,则这个圆可能是()A.⊙O1B.⊙O2C.⊙O3D.⊙O45.如图,AP为⊙O的切线,P为切点,若∠A=20°,C、D为圆周上两点,且∠PDC=60°,则∠OBC等于( )A. 55°B. 65°C. 70°D. 75°6. 如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为P,则OP的长为()A.3 B.2.5 C.4 D.3.57.如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠A OD的度数为( )A. 70°B. 35°C.20°D. 40°8. 一条排水管的截面如图所示,已知排水管的半径OA=1 m,水面宽AB=1.2 m,某天下雨后,排水管水面上升了0.2 m,则此时排水管水面宽为()A.1.4 m B.1.6 mC.1.8 m D.2 m二、填空题9. 如图所示,AB是☉O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则☉O 的半径是.10. 如图是一个圆锥形冰激凌外壳(不计厚度),已知其母线长为12 cm ,底面圆的半径为3 cm ,则这个冰激凌外壳的侧面积等于________ cm2(结果精确到个位).11. 2018·孝感已知⊙O 的半径为10 cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB =16 cm ,CD =12 cm ,则弦AB 和CD 之间的距离是________cm.12. 如图,点A ,B ,C 都在⊙O 上,OC ⊥OB ,点A 在BC ︵上,且OA =AB ,则∠ABC =________°.13. 已知一个圆心角为270°,半径为3 m 的扇形工件未搬动前如图示,A ,B 两点触地放置,搬动时,先将扇形以点B 为圆心,做如图示的无滑动翻转,再使它紧贴地面滚动,当A ,B 两点再次触地时停止,则圆心O 所经过的路线长为________m .(结果用含π的式子表示)14. 如图,在扇形ABC 中,CD ⊥AB ,垂足为D ,⊙E 是△ACD 的内切圆,连接AE ,BE ,则∠AEB 的度数为________.15. 如图,⊙O与正五边形ABCDE 的边AB ,DE 分别相切于点B ,D ,则BD ︵所对的圆心角∠BOD 的大小为________度.16. 如图中的小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”(阴影部分)图案的面积为________.三、解答题17. 已知:如图5,在⊙O 中,M ,N 分别为弦AB ,CD 的中点,AB =CD ,AB不平行于CD.求证:∠AMN =∠CNM.18. 如图,在正六边形ABCDEF 中,点O 是中心,AB =10,求这个正六边形的半径、边心距、周长、面积.19. 在平面直角坐标系中,圆心P 的坐标为(-3,4),以r 为半径在坐标平面内作圆:(1)当r 为何值时,⊙P 与坐标轴有1个公共点? (2)当r 为何值时,⊙P 与坐标轴有2个公共点? (3)当r 为何值时,⊙P 与坐标轴有3个公共点? (4)当r 为何值时,⊙P 与坐标轴有4个公共点?20.(2020·临沂)已知1O 的半径为1r ,2O 的半径为2r .以1O 为圆心,以12r r +的长为半径画弧,再以线段12O O 的中点P 为圆心,以1212O O 的长为半径画弧,两弧交于点A ,连接1O A ,2O A ,1O A 交1O 于点B ,过点B 作2O A 的平行线BC 交12O O 于点C .(1)求证:BC 是2O 的切线;(2)若12r =,21r =,126O O =,求阴影部分的面积.人教版 九年级数学 第24章 圆 同步课时训练-答案一、选择题1. 【答案】B [解析] 连接OA ,OC ,则∠OAE =∠OCD =90°.∵五边形ABCDE 为正五边形,∴∠E =∠D =108°,∴∠AOC =540°-∠OAE -∠OCD -∠E -∠D =144°, ∴劣弧AC 的长度为144180×π×1=45π.2. 【答案】C3. 【答案】D[解析] ∵正方形的边长为3,∴BD ︵的长度为6,∴S 扇形ADB =12lR =12×6×3=9.4. 【答案】B5.【答案】B【解析】连接OP ,如解图,则OP ⊥AP .∵∠D =60°,∴∠COP =120°,∵∠A =20°,∠APO =90°,∴∠AOP =70°,∴∠AOC =50°,∵OB =OC ,∴∠OBC =180°-50°2=65°.解图6. 【答案】C7.【答案】D【解析】∵AB 是⊙O 的直径,AC 切⊙O 于点A ,∴∠BAC =90°,∵∠C =70°,∴∠B =20°,∴∠AOD =∠B +∠BDO =2∠B =2×20°=40°.8. 【答案】B[解析] 如图,过点O 作OE ⊥AB 于点E ,交CD 于点F ,连接OC.∵AB=1.2 m,OE⊥AB,OA=1 m,∴AE=0.6 m,∴OE=0.8 m. ∵排水管水面上升了0.2 m,∴OF=0.8-0.2=0.6(m).由题意可知CD∥AB.∵OE⊥AB,∴OE⊥CD,∴CF=OC2-OF2=0.8 m,CD=2CF,∴CD=1.6 m.故选B.二、填空题9. 【答案】2[解析]连接OC,则OA=OC,∴∠A=∠ACO=30°,∴∠COH=60°.∵OB⊥CD,CD=2,∴CH=,∴OH=1,∴OC=2.10. 【答案】113[解析] 这个冰激凌外壳的侧面积=12×2π×3×12=36π≈113(cm2).故答案为113.11. 【答案】2或14[解析] ①当弦AB和CD在圆心同侧时,连接OA,OC,过点O作OE⊥CD于点F,交AB于点E,如图①,∵AB=16 cm,CD=12 cm,∴AE=8 cm,CF=6 cm.∵OA=OC=10 cm,∴EO=6 cm,OF=8 cm,∴EF=OF-OE=2 cm;②当弦AB 和CD 在圆心异侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点E 并反向延长交AB 于点F ,如图②,∵AB =16 cm ,CD =12 cm , ∴AF =8 cm ,CE =6 cm. ∵OA =OC =10 cm , ∴OF =6 cm ,OE =8 cm , ∴EF =OF +OE =14 cm.∴AB 与CD 之间的距离为2 cm 或14 cm.12. 【答案】15[解析] ∵OC ⊥OB ,∴∠COB =90°.又∵OC =OB ,∴△COB 是等腰直角三角形, ∴∠OBC =45°.∵OA =AB ,OA =OB ,∴OA =AB =OB , ∴△AOB 是等边三角形,∴∠OBA =60°, ∴∠ABC =∠OBA -∠OBC =15°.13. 【答案】6π[解析] 由题意易知∠AOB =90°,OA =OB ,∴∠ABO =45°,圆心O 旋转的长度为2×45π×3180=3π2(m),圆心O 平移的距离为270π×3180=9π2(m),则圆心O 经过的路线长为3π2+9π2=6π(m).14. 【答案】135°[解析] 连接CE.∵∠ADC =90°,∴∠DAC +∠DCA =90°.∵⊙E 内切于△ADC ,∴∠EAC +∠ECA =45°,∴∠AEC =135°.由“边角边”可知△AEC ≌△AEB ,∴∠AEB =∠AEC =135°.15. 【答案】144[解析] ∵⊙O 与正五边形ABCDE 的边AB ,DE 分别相切于点B ,D ,∴OB ⊥AB ,OD ⊥DE.∵正五边形每个内角均为108°, ∴∠BOD =∠C +∠OBC +∠ODC =108°×3-90°×2=144°.16. 【答案】2π-4[解析] 如图所示,由题意,得阴影部分的面积=2(S 扇形OAB-S △OAB)=2(90π×22360-12×2×2)=2π-4. 故答案为2π-4.三、解答题17. 【答案】证明:连接OM ,ON ,OA ,OC ,如图所示.∵M ,N 分别为AB ,CD 的中点,∴OM ⊥AB ,ON ⊥CD ,AM =12AB ,CN =12CD. 又∵AB =CD ,∴AM =CN. 在Rt △AOM 和Rt △CON 中, ⎩⎨⎧OA =OC ,AM =CN , ∴Rt △AOM ≌Rt △CON(HL), ∴OM =ON ,∴∠OMN =∠ONM , ∴∠AMO +∠OMN =∠CNO +∠ONM , 即∠AMN =∠CNM.18. 【答案】解:连接OB ,OC ,过点O 作OH ⊥BC 于点H.∵正六边形的中心角为360°6=60°,OB =OC ,∴△OBC 是等边三角形,∴半径R =OB =BC =AB =10.∵OH ⊥BC ,∴∠BOH =30°,∴BH =12OB =5.在Rt △OBH 中,边心距r =OH =102-52=5 3,周长l =6AB =6×10=60. ∵S △OBC =12BC·OH =12×10×5 3=25 3, ∴正六边形的面积S =6S △OBC =6×25 3=150 3.19. 【答案】解:(1)根据题意,知⊙P 和y 轴相切,则r =3.(2)根据题意,知⊙P 和y 轴相交,和x 轴相离,则3<r <4. (3)根据题意,知⊙P 和x 轴相切或经过坐标原点,则r =4或r =5. (4)根据题意,知⊙P 和x 轴相交且不经过坐标原点,则r >4且r≠5.20. 【答案】证明:(1)连接AP ,过点2O 作直线BC 的垂线,垂足为点M ,如下图:∵线段12O O 的中点是点P ,以1212O O 的长为半径画弧∴121212O P O P AP O O ===∴∠PAO1=∠PO1A ,∠PAO2=∠PO2A ,∴∠O1A O2=∠PAO1+∠PAO2=90°∴△O1A O2是直角三角形∵2O A BC ∴∠O1A O2=∠ABC =90°又∵∠O2MB=90°∴四边形ABM O2是平行四边形∴O2M =AB= O1A -O1B=2r ∴BC 是2O 的切线;M(2)∵12r =,21r =,126O O =, ∴O1A =123r r +=又∵∠O1A O2=90°∴cos ∠A O1 O2=1123162O A O O ==∴∠A O1 O2=60° 在Rt △B O1 C中:1tan602BC BO =⨯==设O1 O2与1O 的交点为点N ,则阴影部分的面积为:11216022==223603BO CBO N S SS ππ⨯-⨯⨯=阴影扇形.NM【解析】(1)证切线常用的方法有“作垂线证半径”和“作半径证垂直” ,考虑到题目中的已知条件,用“作垂线证半径”更简便一些,为此我们可以过点2O 作直线BC 的垂线,垂足为点M ;同时考虑到∠O1A O2可能是直角,可以连接AP 用等腰三角形的等角对等边和三角形内角和定理进行证明;条件中还给出了平行线,因此可以证明∠ABC =90°,则四边形ABM O2是平行四边形,最后证明O2M =AB= O1A -O1B=2r ,问题得以解决.(2)求阴影部分的面积,可以根据割补法来求.解决问题的关键是分别求出△BO1C 和扇形BO1N 的面积,根据已知条件,可以先求出O1A =123r r +=,然后根据三角函数求出∠A O1 O2的度数,需要的数据再通过三角函数求出,问题得解.人教版 九年级数学 第25章 概率初步一、选择题1. 下列事件中,是必然事件的为()A .三点确定一个圆B .抛掷一枚骰子,朝上的一面点数恰好是5C .四边形有一个外接圆D .圆的切线垂直于过切点的半径2. 从-2,-1,2这三个数中任取两个不同的数相乘,积为正数的概率是( )A.23B.12C.13D.143. 有人预测2024年巴黎奥运会上中国女排夺冠的概率是80%,对这个说法正确的理解应该是( ) A .中国女排一定会夺冠 B .中国女排一定不会夺冠 C .中国女排夺冠的可能性比较大 D .中国女排夺冠的可能性比较小4. 甲、乙、丙、丁、戊五名同学参加一次节日活动,很幸运的是他们都得到了一件精美的礼物(如图),他们每人只能从其中一串的最下端取一件礼物,直到礼物取完为止,甲第一个取得礼物,然后乙、丙、丁、戊依次取得第2件到第5件礼物,他们的取法各种各样,事后他们打开这些礼物仔细比较发现礼物D 最精美,那么取得礼物D 可能性最大的同学是( )A .乙B .丙C .丁D .戊5. 小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中的一项,那么两人同时选择“参加社会调查”的概率为( ) A.14B.13C.12D.346. 2018·柳州如图25-1-5,现有四张扑克牌:红桃A 、黑桃A 、梅花A 和方块A.将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A 的概率为( )图25-1-5 A .1B.14C.12D.347. 一个盒子中装有四张完全相同的卡片,上面分别写着2 cm ,3 cm ,4 cm 和5 cm ,盒子外有两张卡片,上面分别写着3 cm 和5 cm ,现随机从盒中取出一张卡片,与盒子外的两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,那么这三条线段能构成三角形的概率是( ) A.14B.13C.12D.348. 把十位上的数字比个位、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两数,与7组成“中高数”的概率是( ) A.12B.23C.25D.35二、填空题9. 学校组织团员参加实践活动,共安排2辆车,小王和小李随机上了1辆车,结果他们同车的概率是________.10.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为________.11. 2018·湘西州农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了1个,则吃到腊肉棕的概率为________.12. 有五张卡片(形状、大小、质地等均相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.13. 从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球10个和白球若干个,这些球除颜色不同外,其他都一样,由此估计口袋中有________个白球.14. 一个盒中装着质地、大小、外形一模一样的x颗白色弹珠和y颗黑色弹珠,从盒中随机取出1颗弹珠,取得白色弹珠的概率是13.若再往盒中放12颗同样的白色弹珠,取得白色弹珠的概率是23,则原来盒中有白色弹珠________颗.15. 为调查某批乒乓球的质量,根据所做试验,绘制了这批乒乓球中“优等品”频率的折线统计图(如图25-3-2),则这批乒乓球中“优等品”的概率的估计值为________.(精确到0.01)16. 某校欲从初三年级3名女生、2名男生中任取两名学生代表学校参加全市举办的“中国梦·青春梦”演讲比赛,则恰好选中一男一女的概率是________.三、解答题17. 现有四张完全相同的不透明卡片,其正面分别写有数字-2,-1,0,2,把这四张卡片背面朝上洗匀后放在桌面上.(1)随机抽取一张卡片,求抽取的卡片上的数字为负数的概率;(2)先随机抽取一张卡片,其上的数字作为点A的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A的纵坐标,试用画树状图或列表的方法求出点A在直线y=2x上的概率.18. “共和国勋章”是中华人民共和国的最高荣誉勋章,在2019年获得“共和国勋章”的八位杰出人物中,有于敏、孙家栋、袁隆平、黄旭华四位院士,如图41-K-2是四位院士(依次记为A,B,C,D),为了让同学们了解四位院士的贡献,老师设计如下活动:取四张完全相同的卡片,分别写上A,B,C,D四个标号,然后背面朝上放置,搅匀后每个同学可以从中随机抽取一张,记下标号后放回,老师要求每位同学依据抽到的卡片上的标号查找相应院士的资料制作小报.求小明和小华查找同一位院士资料的概率.19. 一只不透明的袋子中装有4个小球,分别标有数字2,3,4,x,这些小球除所标数字不同外其余都相同.甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上的数字之和.记录后再将小球都放回袋中搅匀,进行重复试验.试验数据如下表:解答下列问题:(1)如果试验继续进行下去,根据上表数据,试估计出现“和为7”的概率;(2)根据(1),若x是不等于2,3,4的自然数,试求x的值.20. 如图①,在Rt△ABC中,∠C=90°,两条直角边长分别为a,b,斜边长为c.如图②,现将与Rt△ABC全等的四个直角三角形拼成一个正方形EFMN.(1)若Rt△ABC的两直角边长之比为2∶3,现随机向图②掷一枚小针,则针尖落在四个直角三角形区域的概率是多少?(2)若正方形EFMN的边长为8,Rt△ABC的周长为18,求Rt△ABC的面积.人教版九年级数学第25章概率初步同步课时训练-答案一、选择题1. 【答案】D2. 【答案】C[解析] 列表如下:由表可知,共有6种等可能的结果,其中积为正数的有(-1,-2)和(-2,-1)这2种,所以P(积为正数)=26=13.3. 【答案】C4. 【答案】B[解析] 甲、乙、丙、丁、戊取礼物的顺序有10种, 如下:①A ,B ,C ,D ,E ;②A ,C ,D ,E ,B ; ③A ,C ,D ,B ,E ;④A ,C ,B ,D ,E ; ⑤C ,D ,E ,A ,B ;⑥C ,D ,A ,B ,E ; ⑦C ,D ,A ,E ,B ;⑧C ,A ,B ,D ,E ; ⑨C ,A ,D ,B ,E ;⑩C ,A ,D ,E ,B. 可见,取得礼物D 可能性最大的同学是丙.5. 【答案】A6. 【答案】B7. 【答案】D[解析] 共有四种等可能的结果,它们为2,3,5;3,3,5;4,3,5;5,3,5,其中三条线段能构成三角形的结果有3种,所以这三条线段能构成三角形的概率=34.8. 【答案】C[解析] 列表如下:个位结果百位 3456893 374 375 376 378 379 4 473 475 476 478 479 5 573 574 576 578 579 6 673 674 675 678 679 8 873 874 875 876 879 9973974975976978由表格可知,所有等可能的结果有30种,其中组成“中高数”的结果有12种,因此组成“中高数”的概率为1230=25.二、填空题9. 【答案】1210.【答案】13【解析】根据题意画树状图如解图,每个运动员抽签的可能性相等,∵每个运动员的出场顺序都发生变化的有下列两种情况:乙、丙、甲;丙、甲、乙,∴每个运动员的出场顺序都发生变化的概率=26=13.11. 【答案】12 [解析] 一共有10种等可能的结果,其中吃到腊肉粽的结果有5种,所以吃到腊肉粽的概率为12.12. 【答案】25 [解析] 五种图形中,既是中心对称图形,又是轴对称图形的有线段、圆2种,所以所求概率为25.13. 【答案】20[解析] 摸了150次,其中有50次摸到黑球,则摸到黑球的频率是50150=13.设口袋中有x 个白球,则10x +10=13, 解得x =20.经检验,x =20是原方程的解, 故答案为20.14. 【答案】4[解析] ∵第一次取得白色弹珠的概率是13,∴x x +y =13, 解得y =2x .∵再往盒中放12颗同样的白色弹珠,取得白色弹珠的概率是23, ∴x +12x +y +12=23, 将y =2x 代入, 解得x =4,y =8.15. 【答案】0.9516. 【答案】35 [解析] 解法1:列表如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种,所以恰好选中一男一女的概率P=1220=35.解法2:画树状图如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种,所以恰好选中一男一女的概率P=1220=35.三、解答题17. 【答案】解:(1)随机抽取一张卡片,抽取的卡片上的数字为负数的概率为24=12.(2)画树状图如图所示:由树状图知,共有16种等可能的结果,其中点A在直线y=2x上的结果有2种,所以点A在直线y=2x上的概率为216=18.18. 【答案】解:根据题意画树状图如下:共有16种等可能的结果,其中小明和小华查找同一位院士资料的结果有4种,所以小明和小华查找同一位院士资料的概率为416=14.19. 【答案】解:(1)估计出现“和为7”的概率是0.33.(2)列表如下:由表可知一共有12种等可能的结果. 由(1)可知,出现“和为7”的概率为0.33, 所以“和为7”出现的次数为0.33×12=3.96≈4.若2+x =7,则x =5,此时P(“和为7”)=13≈0.33,符合题意;若3+x =7,则x =4,不符合题意;若4+x =7,则x =3,不符合题意.综上所述,x =5.20. 【答案】(1)因为Rt △ABC 的两直角边长之比为2∶3, 所以设b =2k ,a =3k ,由勾股定理,得c =a2+b2=13k ,所以针尖落在四个直角三角形区域的概率为4×12×2k×3k 13k2=1213. (2)因为正方形EFMN 的边长为8,所以c =8,所以a2+b2=c2=64. 因为Rt △ABC 的周长为18, 即a +b +c =18, 所以a +b =10,所以Rt △ABC 的面积=12ab =14[(a +b)2-(a2+b2)] =9.。

2023北京房山区初三二模数学试题及参考答案

2023北京房山初三二模数 学本试卷共8页,共100分,考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将答题卡交回,试卷自行保存。

一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个。

1.下列几何体的主视图和俯视图完全相同的是A .B .C .D .2.2022年我国的进出口总额超过了6万亿美元,实际使用外资1891.3亿美元,规模再创历史新高。

将189 130 000 000用科学记数法表示应为A .1.8913×107 B .18913×107 C .0.18913×1012D .1.8913×10113.如图,用量角器测量∠A O B ,可读出∠A O B 的度数为A .65°B .110°C .115°D .120°4.实数a ,b 在数轴上的对应点的位置如图所示,表示实数c 的点在原点右侧,且| c | < | a |,下列结论中正确的是A .0a b +<B .0a c +<C .0a c ->D .0ab>5.下列图形中,点O是该图形的对称中心的是A .B .C .D .6.不透明的盒子中有三张卡片,上面分别写有数字“1,2,3”,除数字外三张卡片无其他差别。

从中随机取出一张卡片,记录其数字,放回并摇匀,再从中随机取出一张卡片,记录其数字,两次取出卡片上的数字的乘积是偶数的概率是A .12B .23C .49D .597.已知262 = 676,272 = 729,282 = 784,292 = 841. 若n为整数,且1n n -<<,则n 的值是A .26B .27C .28D .298.如图8-1,在△ABC 中,AB = BC ,∠ABC = 120°,D ,E 分别是边AB ,BC 的中点,点F 为线段AC 上的一个动点,连接F D ,F B ,F E 。

压轴题26选择压轴题(函数篇)-2023年中考数学压轴题专项训练(全国通用)(解析版)

选择压轴题(函数篇)1压轴题速练1一.选择题(共40小题)1(2023•方城县一模)如图,点A(0,3)、B(1,0),将线段AB平移得到线段DC,若∠ABC=90°,BC=2AB,则点D的坐标是()A.(7,2)B.(7,5)C.(5,6)D.(6,5)【答案】D【分析】过点D作DE⊥y轴于点E,利用点A,B的坐标表示出线段OA,OB的长,利用平移的性质和矩形的判定定理得到四边形ABCD是矩形;利用相似三角形的判定与性质求得线段DE,AE的长,进而得到OE的长,则结论可得.【详解】解:过点D作DE⊥y轴于点E,如图,∵点A(0,3)、B(1,0),∴OA=3,OB=1.∵线段AB平移得到线段DC,∴AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵∠ABC=90°,∴四边形ABCD是矩形.∴∠BAD=90°,BC=AD.∵BC=2AB,∴AD=2AB.∵∠BAO+∠DAE=90°,∠BAO+∠ABO=90°,∴∠ABO=∠EAD.∵∠AOB=∠AED=90°,∴△ABO∽△DAE.∴AO DE=OBAE=ABAD=12.∴DE=2OA=6,AE=2OB=2,∴OE=OA+AE=5,∴D(6,5).故选:D.【点睛】本题主要考查了图形的变化与坐标的关系,平移的性质,矩形的判定与性质,相似三角形的判定与性质,利用点的坐标表示出相应线段的长度是解题的关键.2(2023•东莞市校级二模)如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2),把一条长为2023个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A-B-C -D-A⋯⋯的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(-1,0)B.(0,2)C.(-1,-2)D.(0,1)【答案】A【分析】由点A、B、C的坐标可得出AB、BC的长度,从而可得四边形ABCD的周长,再根据12=1×10+2即可得出细线另一端所在位置的点的坐标.【详解】解:∵A点坐标为(1,1),B点坐标为(-1,1),C点坐标为(-1,-2),∴AB=1-(-1)=2,BC=2-(-1)=3,∴从A→B→C→D→A一圈的长度为2(AB+BC)=10.2023÷10=202⋯3,∴细线另一端在绕四边形第202圈的第3个单位长度的位置,即细线另一端所在位置的点的坐标是(-1,0).故选:A.【点睛】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2023个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.3(2023•越秀区二模)抛物线G:y=-13x2+3与x轴负半轴交于点A,与y轴交于点B,将抛物线G沿直线AB平移得到抛物线H,若抛物线H与y轴交于点D,则点D的纵坐标的最大值是()A.415B.154C.32D.23【答案】B【分析】先求出A(-3,0),B(0,3),进而求出直线AB的解析式为y=x+3,再推出抛物线G沿直线AB平移得到抛物线H,则抛物线H的顶点坐标一定在直线AB上,设抛物线H的顶点坐标为(m,m +3),则抛物线H的解析式为y=-13(x-m)2+m+3,进而求出y D=-13m-322+154,则y D的最大值为15 4.【详解】解:在y=-13x2+3中,当x=0时,y=3;当y=0时,y=-13x2+3=0,解得x=±3,A(-3,0),B(0,3),设直线AB的解析式为y=kx+b,则-3k+b=0 b=3,解得k=1 b=3 .∴直线AB的解析式为y=x+3,∵抛物线y=-13x2+3的顶点坐标为(0,3),即抛物线y=-13x2+3的顶点在直线AB上,∴抛物线G沿直线AB平移得到抛物线H,则抛物线H的顶点坐标一定在直线AB上,设抛物线H的顶点坐标为(m,m+3),∴抛物线H的解析式为y=-13(x-m)2+m+3,在y=-13(x-m)2+m+3中,令x=0,则yD=-13m2+m+3=-13m-322+154,∵-13<0,∴y D的最大值为154,故选:B.【点睛】本题主要考查了一次函数与二次函数综合,二次函数图象的平移,推出抛物线H的顶点坐标一定在直线AB上是解题的关键.4(2023•上城区一模)二次函数y=ax2+bx+c与自变量x的部分对应值表如下,已知有且仅有一组值错误(其中a,b,c,m均为常数).x⋯-2023⋯y⋯-m22-m2-m2⋯甲同学发现当a>0时,x=5是方程ax2+bx+c=2的一个根;乙同学发现当a<0时,则a+b=0.下列说法正确的是()A.甲对乙错B.甲错乙对C.甲乙都错D.甲乙都对【答案】A【分析】由已知二次函数y=ax2+bx+c与自变量x的部分对应值表和抛物线的对称性可得:m≠0、函数图象的对称轴是直线x=52即有-b2a=52,又因为-m2<0<2,可知自变量x<52,y随x的增大而减小,由函数图象对称性可知x>52时,y随x的增大而增大,故函数图象开口向上,进而得到a>0,a+b≠0,由抛物线的对称性可知x=5是方程ax2+bx+c=2的一个根,从而得出结论.【详解】解:由二次函数y=ax2+bx+c与自变量x的部分对应值表可知:当x=2与3时,都是y=-m2,当x=-2时,y=-m,当x=0时,y=2,∴m≠0,由抛物线的对称性可知:函数图象的对称轴是直线x=52,即--b2a=52.由于-m2<0<2,故自变量x<52时,y随x的增大而减小,由抛物线的对称性可知x>52时,y随x的增大而增大,故函数图象开口向上.∴a>0,a=-15b,a+b=45b≠0;由抛物线的对称性可知:当x=5时,y=2,即方程ax2+bx+c=2的一个根是x=5.∴甲对乙错.故选A.【点睛】本题重点考查二次函数的图象和性质,能数形结合从而推出结论是解决此类题型的关键.5(2023•温州二模)已知函数y=-x2+mx+n(-1≤x≤1),且x=-1时,y取到最大值1,则m的值可能为()A.3B.1C.-1D.-3【答案】D【分析】根据二次函的性质分析求解即可.【详解】解:因二次函数y=-x2+mx+n中a=-1,所以开口向下.由二次函数的性质得当a<0时,当x<m2时,y随x增大而增大;当x>m2时,y随x增大而减小;若当x=-1时,y取到最大值1,必有m2≤-1.即m≤-2.故答案为:D.【点睛】本题考查二次函数的基本性质.6(2023•越秀区一模)抛物线G:y=-13x2+3与x轴负半轴交于点A,与y轴交于点B,将抛物线G沿直线AB平移得到抛物线H,若抛物线H与y轴交于点D,则点D的纵坐标的最大值是()A.415B.154C.32D.23【答案】B【分析】先求出A(-3.0),B(0.3),进而求出直线AB的解析式为y=x+3,再推出抛物线G沿直线AB 平移得到抛物线H,则抛物线H的顶点坐标一定在直线AB上,设抛物线H的顶点坐标为(m,m+ 3),则抛物线H的解析式为y=-13(x-m)2+m+3,进而求出y D=-13m-322+154,则y D的最大值为15 4.【详解】解:在y=-13x2+3中,当x=0时,y=3;当y=0时,y=-13x2+3=0,解得x=±3,A(-3.0),B(0,3),设直线AB的解析式为y=kx+b,则-3k+b=0 b=3,解得k=1 b=3∴直线AB的解析式为y=x+3,∵抛物线y=-13x2+3的顶点坐标为(03),即抛物线y=-13x2+3的顶点在直线AB上,∴抛物线G沿直线AB平移得到抛物线H,则抛物线H的顶点坐标一定在直线AB上,设抛物线H的顶点坐标为(m,m+3),∴抛物线H的解析式为y=-13(x-m)2+m+3,在y=-13(x-m)2+m+3中,令x=0,则yD=-13m2+m+3=-13m-322+154,∵-13<0,∴y D的最大值为154,故选:B.【点睛】本题主要考查了一次函数与二次函数综合,二次函数图象的平移,推出抛物线H的顶点坐标一定在直线AB上是解题的关键.7(2023•定海区模拟)如图,C是线段AB上一动点,分别以AC、BC为边向上作正方形ACDE、BCFG,连结EG交DC于K.已知AB=10,设AC=x(5<x<10),记△EDK的面积为S1,记△EAC的面积为S2.则S1S2与x的函数关系为()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系【答案】B【分析】根据四边形ABCD,BCFG为正方形,得出AC=AE=ED=CD=x,BC=CF=FG=10-x,再根据△EDK∽△GFK求出KF和DF,再根据直角三角形的面积公式求出S1和S2,再作比值即可.【详解】解:∵四边形ABCD,BCFG为正方形,∴AC=AE=ED=CD=x,BC=CF=FG=10-x,S1=S△EDK=12DE•DK,S2=S△EAC=12AC•AK,∵∠EDC=∠DFG=90°,∴ED∥FG,∴△EDK∽△GFK,∴KF KD=FGED=10-xx,∴KD=x10-x•KF,∵DK+KF+CF=CD,∴KF+x10-x•KF+10-x=x,∴KF=(2x-10)(10-x)10,∴DK=x(2x-10)10,∴S1=12x•x(2x-10)10=12x2•2x-1010,S2=12x2,∴S1S2=2x-110=15x-1,∴S1S2与x的函数关系为一次函数,故选:B.【点睛】本题考查二次函数的应用,关键是写出S1,S2的与x的关系式.8(2023•雁塔区模拟)抛物线y=ax2+bx+c(a,b,c为常数)开口向上,且过点A(1,0),B(m,0)(-1 <m<0),下列结论:①abc>0;②若点P1(-1,y1),P2(1,y2)都在抛物线上,则y1<y2;③2a+c<0;④若方程a(x-m)(x-1)+2=0没有实数根,则b2-4ac<8a,其中正确结论的序号为()A.①③B.②③④C.①④D.①③④【答案】C【分析】根据题意得出x=-1时函数值的符号和x=1时函数的值,以及顶点的纵坐标即可得出答案.【详解】解:∵抛物线开口向上,∴a>0,∵过点A(1,0),B(m,0)(-1<m<0),∴-b2a>0,c<0,∴b<0,∴abc>0,故①正确;∵抛物线过点A(1,0),B(m,0)(-1<m<0),∴y1>0,y2=0,∴y1>y2,故②错误•;根据题意得a+b+c=0,∴b=-a-c,当x=-2时,有4a-2b+c>0,∴4a-2(-a-c)+c>0,∴2a+c>0,故③错误;若方程a(x-m)(x-1)+2=0没有实数根,即抛物线与直线y=-2没有交点,∴顶点的纵坐标4ac-b24a>-2,∵a>0,∴4ac-b2>-8a,∴b2-4ac<8a,故④正确,故选:C.【点睛】本题主要考查二次函数的图象与性质,关键在理解系数对图象的影响,a决定抛物线的开口方向和大小,b联同a决定对称轴的位置,c决定图象与y轴的交点位置,还有x轴上方的点对应的y> 0,下方的点对应的y<0.9(2023•碑林区校级模拟)已知二次函数y=a(x-1)2-a(a≠0),当-1≤x≤4时,y的最小值为-4,则a的值为()A.12或4B.4或-12C.-43或4D.-12或43【答案】B【分析】分两种情况讨论:当a>0时,-a=-4,解得a=4;当a<0时,在-1≤x≤4,9a-a=-4,解得a=-1 2.【详解】解:y=a(x-1)2-a的对称轴为直线x=1,顶点坐标为(1,-a),当a>0时,在-1≤x≤4,函数有最小值-a,∵y的最小值为-4,∴-a=-4,∴a=4;当a<0时,在-1≤x≤4,当x=4时,函数有最小值,∴9a-a=-4,解得a=-1 2;综上所述:a的值为4或-1 2,故选:B.【点睛】本题考查二次函数的性质、二次函数的最值,熟练掌握二次函数的图象及性质,根据二次函数的性质,在指定的范围内准确求出函数的最小值是解题的关键.10(2023•海安市一模)二次函数y=ax2+bx+c(a>0)的图象与x轴相交于A,B两点,点C在二次函数图象上,且到x轴距离为4,∠ACB=90°,则a的值为()A.4B.2C.12D.14【答案】D【分析】设出抛物线与x轴交点及点C坐标,利用勾股定理整理出相关等式,利用韦达定理解答即可.【详解】解:如图,作CD⊥x轴,设A、B两点横坐标为x1和x2,设点C(m,-4),∵CD⊥x轴,∵∠ACB=90°,∴AC2+BC2=AB2,∴AD2+CD2+BD2+CD2=AB2,∴(m-x1)2+42+(x2-m)2+42=(x1-x2)2,整理得,m2-m(x1+x2)+16+x1x2=0,∴m2+b a m+16+c a=0,∴am2+bm+c=-16a,∵点C(m,-4)在抛物线上,∴-16a=-4,∴a=14.故选:D.【点睛】本题考查了二次函数的关系式与系数的关系,结合题意绘图解答是解题关键.11(2023•和平区二模)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0),9a-3b+c=m,有下列结论:①若m=0,则抛物线经过点(-3,0);②若4a-2b+c=n且m>n,当-3<x<-2,y随x的增大而减小;③若m>0,抛物线经过点A(-1,0),B(5,m)和P(t,k),且点P到y轴的距离小于2时,则k的取值范围为-3a<k<5a.其中,正确结论的个数是()A.0B.1C.2D.3【答案】B【分析】由题意可得抛物线过点(-3,m),以此可判断①;由4a-2b+c=n可知抛物线过点(-2,n),m>n,因无法判断a的大小,则不能判断该区间函数的增减性,以此判断②;抛物线经过点B(5,m),9a-3b+c=m可求出抛物线的对称轴x=1,再根据抛物线经过点A(-1,0),可得出抛物线经过点(3,0),从而得出c=-3a,且a>0,再根据P到y轴的距离小于2,则-2<t<2,由函数的图象和性质判断③.【详解】解:抛物线y=ax2+bx+c(a,b,c是常数),9a-3b+c=m,当x=-3时,y=9a-3b+c,∵9a-3b+c=m,m=0,∴抛物线经过点(-3,0),故①正确;当x=-3时,y=9a-3b+c,9a-3b+c=m,当x=-2时,y=4a-2b+c,4a-2b+c=n,当m>n时,因无法判断a的大小,则不能判断该区间函数的增减性,故②错误;∵抛物线过点(-3,m),(5,m),∴-b2a=-3+52=1,∴b=-2a,又∵抛物线过点A(-1,0),∴a-b+c=0,∴c=-3a,∴y=ax2-2ax-3a,∵对称轴为x=1,∴抛物线也过点(3,0),∵抛物线过点(-3,m),(5,m),m>0,∴抛物线开口向上,即a>0,P到y轴的距离小于2,则-2<t<2,此时,x=-2y=5a,x=1,y=-4a,∴-4a≤k<5a,故③错误,故选:B.【点睛】本题主要考查二次函数图象上点的坐标特征、二次函数的性质,熟练掌握二次函数的性质是解题关键.12(2023•杭州一模)设二次函数y=ax2+c(a,c是常数,a<0),已知函数的图象经过点(-2,p),(10,0),(4,q),设方程ax2+c+2=0的正实数根为m,()A.若p>1,q<-1,则2<m<10B.若p>1,q<-1,则10<m<4C.若p>3,q<-3,则2<m<10D.若p>3,q<-3,则10<m<4【答案】D【分析】根据二次函数的性质可得点(10,0)关于对称轴的对称点为(-10,0),点(-2,p)关于对称轴的对称点为(2,p),再由二次函数图象与方程的关系可得二次函数y=ax2+c的图象与直线y=-2的右侧的交点的横坐标为m,再结合图象即可求解.【详解】解:∵二次函数y=ax2+c关于y轴对称,∴点(10,0)关于对称轴的对称点为(-10,0),点(-2,p)关于对称轴的对称点为(2,p),∵方程ax2+c+2=0的正实数根为m,∴二次函数y=ax2+c的图象与直线y=-2的右侧的交点的横坐标为m,如图,当-2<q<-1时,m>4,故A、B选项错误,不符合题意;当p>3,q<-3时,10<m<4,故C选项错误,不符合题意;D选项正确,符合题意;故选:D.【点睛】本题主要考查了抛物线与x轴的交点、二次函数的性质以及二次函数图象上点的坐标特征,熟练掌握二次函数的图象和性质是解题的关键.13(2023•衡水模拟)某水利工程公司开挖的沟渠,蓄水之后截面呈抛物线形,在图中建立平面直角坐标系,并标出相关数据(单位:m ).某学习小组探究之后得出如下结论,其中正确的为()A.AB =24mB.池底所在抛物线的解析式为y =125x 2-5C.池塘最深处到水面CD 的距离为3.2m D.若池塘中水面的宽度减少为原来的一半,则最深处到水面的距离减少为原来的13【答案】C【分析】利用建立的坐标系得到抛物线上点的坐标,然后通过待定系数法求出抛物线解析式,对照选项即可.【详解】解:设解析式为y =ax 2+bx +c ,抛物线上点A (-15,0),B (15,0),P (0,-5),代入抛物线解析式中得:0=(-15)2a +(-15)b +c 0=152a +15b +c-5=c,解得:a =145b =0c =-5,解析式为y =145x 2-5.选项A 中,AB =15-(-15)=30,故选项A 错误,该选项不符合题意;选项B 中,解析式为y =145x 2-5,故选项B 错误,该选项不符合题意;选项C 中,池塘水深最深处为点P (0,-5),水面CD :y C =145×122-5=-1.8,-1.8-(-5)=3.2(米),所以水深最深处为点P 到水面CD 的距离为3.2米,故选项C 正确,该选项符合题意;选项D 中,若池塘中水面的宽度减少为原来的一半,由抛物线关于y 轴对称可知,抛物线上点横坐标±6,代入解析式算得y =145×(6)2-5=45-5=-215,即到水面CD 距离为-1.8--215=2.4米,而最深处到水面的距离为3.2米,减少为原来的34.故选项D 错误,该选项不符合题意.故选:C .【点睛】本题考查二次函数的实际应用问题,计算较为复杂,在计算时需要理清楚实际数据在坐标系中对应的位置.能够正确计算和分析实际情况是解题的关键.14(2023•宝安区二模)已知点(x 1,y 1),(x 2,y 2)(x 1<x 2)在y =-x 2+2x +m 的图象上,下列说法错误的是()A.当m >0时,二次函数y =-x 2+2x +m 与x 轴总有两个交点B.若x2=2,且y1>y2,则0<x1<2C.若x1+x2>2,则y1>y2D.当-1≤x≤2时,y的取值范围为m-3≤y≤m【答案】D【分析】当m>0时,判别式Δ>0,从而判断A;由抛物线对称轴为直线x=1,根据抛物线的对称性可判断B;由x1+x2>2,可得x1+x22>1,从而得出点(x1,y1)离对称轴的距离小于点(x2,y2)离对称轴的距离,可判断C;根据函数的性质求出当-1≤x≤2时,y的最大值和最小值可判断D.【详解】解:令y=0,则-x2+2x+m=0,Δ=b2-4ac=22-4×(-1)•m=4+4m,当m>0时,4+4m>0,∴二次函数y=-x2+2x+m与x轴总有两个交点,故A正确,不合题意;若x2=2,且y1>y2,∵对称轴为直线x=1,∴0<x1<2,故B正确,不符合题意;∵x1+x2>2,∴x1+x22>1,∵二次函数y=-x2+2x+m的对称轴为直线x=1,∴点(x1,y1)离对称轴的距离小于点(x2,y2)离对称轴的距离,∵x1<x2,∴y1>y2,故C正确,不符合题意;∵对称轴为直线x=1,抛物线开口向下,∴当x=1时y有最大值,最大值为1+m,当x=-1时,y有最小值,最小值为-3+m,∴当-1≤x≤2时,y的取值范围为-3+m≤x≤1+m,故D错误,符合题意.故选:D.【点睛】本题主要考查了抛物线与x轴的交点,二次函数图象和性质,是一道综合性比较强的题目,需要利用数形结合思想解决本题.15(2023•四川模拟)已知二次函数y=ax2+bx+c(a<0),跟x轴正半轴交于A、B两点,直线y=kx +b与y轴正半轴交于点D,交x轴于点C(C在A的右侧不与B重合),抛物线的对称轴为x=2,连接AD,则△AOD是等腰直角三角形,有以下四个命题:①-4ac<0;②4a+b+c>0;③k≠-1;④b=-4a.以上命题正确的是()A.①②③④B.②③C.①③④D.①②④【答案】C【分析】由抛物线的开口方向,并且根据与x轴正半轴交于A、B两点,判断出c的大小,据此判断①;再根据抛物线的对称轴判断出②④;最后根据△AOD是等腰直角三角形确定k的值.【详解】解:①∵a<0,抛物线的开口向下,跟x轴正半轴交于A、B两点,∴跟y轴交点在x轴的下方,∴c<0,∴-4ac<0,该命题正确;②∵抛物线的对称轴为x=-b2a=2,b=-4a,∴4a+b+c=c,∴4a+b+c<0,故该命题错误;③∵直线y=kx+b与y轴正半轴交于点D,△AOD是等腰直角三角形,∴D点的坐标为(0,b),A点坐标为(b,0),∴过AD的直线为y=-x+b,k=-1,又∵C在A的右侧不与B重合,所以与y轴正半轴交于点D,交x轴于点C的直线y=kx+b中,k≠-1,该命题正确;④由②可知,b=-4a,该命题正确.综上,命题正确的是①③④.故选:C.【点睛】本题主要考查了一次函数图象上点的坐标特征、二次函数图象与系数的关系、抛物线与x轴的交点以及等腰直角三角形,解答本题的关键是掌握二次函数图象与系数的关系.16(2023•东莞市校级模拟)已知抛物线y=ax2+bx+c(a>0)经过两点(m,n),(4-m,n),则关于函数y=ax2+bx+c(a>0),下列说法“①4a-b=0;②当x>2时,y随着x的增大而增大;③若b2-4ac =0,则ax2+bx+c=a(x-2)2;④若实数t<2,则(t+2)a+b<0”中正确的个数有()A.1个B.2个C.3个D.4个【答案】C【分析】根据题意可判断抛物线的对称轴为直线x=-b2a=m+4-m2=2,以此得到b=-4a,即可判断①;根据抛物线的开口方向和二次函数的性质即可判断②;由b2-4ac=0得抛物线与x轴只有一个交点,且该交点为抛物线的顶点,其坐标为(2,0),根据抛物线的顶点式即可判断③;由t<2得(t+2) a<4a,则(t+2)a+b<4a+b=0,以此可判断④.【详解】解:∵抛物线y=ax2+bx+c(a>0)经过两点(m,n),(4-m,n),∴抛物线的对称轴为直线x=-b2a=m+4-m2=2,∴b=-4a,即4a+b=0,故①错误;∵a>0,∴抛物线开口朝上,∵抛物线的对称轴为直线x=2,∴当x>2时,y随着x的增大而增大,故②正确;∵b2-4ac=0,∴抛物线与x轴只有一个交点,且交点坐标为(2,0),∴抛物线的顶点式为y=a(x-2)2,∴ax2+bx+c=a(x-2)2,故③正确;由上述可知,4a+b=0,a>0,∵t<2,∴(t+2)a<4a,∴(t+2)a+b<4a+b=0,即(t+2)a+b<0,故④正确.综上,正确的有②③④,共3个.故选:C.【点睛】本题主要考查二次函数图象与系数之间的关系、二次函数的性质、二次函数与抛物线的交点坐标,熟知二次函数图象与系数之间的关系是解题关键.17(2023•商河县一模)已知二次函数的表达式为y=-x2-2x+3,将其图象向右平移k(k>0)个单位,得到二次函数y1=mx2+nx+q的图象,使得当-1<x<3时,y1随x增大而增大;当4<x<5时,y1随x增大而减小.则实数k的取值范围是()A.1≤k≤3B.2≤k≤3C.3≤k≤4D.4≤k≤5【答案】D【分析】将二次函数y=-x2-2x+3的图象向右平移k(k>0)个单位得y=-(x-k+1)2+4的图象,新图象的对称轴为直线x=k-1,根据当-1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小,且抛物线开口向下,知3≤k-1≤4,得4≤k≤5,即可得到答案.【详解】解:∵y=-x2-2x+3=-(x+1)2+4,∴将二次函数y=-x2-2x+3的图象向右平移k(k>0)个单位得y=-(x-k+1)2+4的图象,∴新图象的对称轴为直线x=k-1,∵当-1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小,且抛物线开口向下,∴3≤k-1≤4,解得4≤k≤5,∴符合条件的二次函数y=mx2+nx+q的表达式可以是y=-(x-3)2+4=-x2+6x-5,故答案可以为:y=-x2+6x-5(答案不唯一),4≤k≤5;故选:D.【点睛】此题主要考查了二次函数综合应用,涉及待定系数法,抛物线的平移变换,等腰直角三角形的判定等知识,解题的关键是数形结合思想的应用.18(2023•佳木斯一模)如图,在平面直角坐标系中,平行四边形OABC的顶点A在反比例函数y=a x的图象上,顶点B在反比例函数y=bx的图象上,点C在x轴的正半轴上,平行四边形OABC的面积是3,则a-b的值是​()A.3B.-3C.5D.-5【答案】B【分析】利用△BOD 和△AOD 的面积差等于平行四边形面积的一半,求出b 与a 的差.【详解】解:如图,延长BA 交y 轴于点D ,连接OB ,∵四边形OABC 为平行四边形,∴AB ∥x 轴,即AD ⊥y 轴由反比例的几何意义得,S △AOD =a 2,S △BOD =b2,∵平行四边形OABC 的面积是3,∴△AOB 的面积为32,∴b 2-a 2=32,∴b -a =3,∴a -b =-3,故选:B .【点睛】本题考查了反比例函数的几何意义,平行四边形的面积的求法,三角形的面积与底和高的关系等知识点.19(2023•雨山区校级一模)如图,在平面直角坐标系中,将一块直角三角形纸板如图放置,直角顶点与原点O 重合,顶点A 、B 恰好分别落在函数y =-1x (x <0),y =4x(x >0)的图象上,则sin ∠ABO 的值为()A.13B.64C.25D.55【答案】D【分析】点A ,B 落在函数y =-1x (x <0),y =4x(x >0)的图象上,根据反比例函数的几何意义,可得直角三角形的面积;根据题意又可知这两个直角三角形相似,而相似比恰好是直角三角形AOB 的两条直角边的比,再利用勾股定理,可得直角边与斜边的比,从而得出答案.【详解】解:过点A 、B 分别作AD ⊥x 轴,BE ⊥x 轴,垂足为D 、E ,∵点A 在反比例函数y =-1x (x <0)上,点B 在y =4x(x >0)上,∴S △AOD =12,S △BOE =2,又∵∠AOB =90°∴∠AOD =∠OBE ,∴△AOD ∽△OBE ,∴OA OB 2=S △AOD S △BOE =14,∴OA OB=12,设OA =m ,则OB =2m ,AB =m 2+(2m )2=5m ,在Rt △AOB 中,sin ∠ABO =OA AB =m 5m=55.故选:D .【点睛】考查反比例函数的几何意义、相似三角形的性质,将面积比转化为相似比,利用勾股定理可得直角边与斜边的比,求出sin ∠ABO 的值.20(2023•驻马店模拟)某商家设计了一个水箱水位自动报警仪,其电路图如图1所示,其中定值电阻R 1=10Ω,R 2是一个压敏电阻,用绝缘薄膜包好后放在一个硬质凹形绝缘盒中,放入水箱底部,受力面水平,承受水压的面积S 为0.01m 2,压敏电阻R 2的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深,压力F 越大),电源电压保持6V 不变,当电路中的电流为0.3A 时,报警器(电阻不计)开始报警,水的压强随深度变化的关系图象如图3所示(参考公式:I =UR,F =pS ,1000Pa =1kPa ),则下列说法中不正确的是()A.当水箱未装水(h =0m )时,压强p 为0kPaB.当报警器刚好开始报警时,水箱受到的压力F 为40NC.当报警器刚好开始报警时,水箱中水的深度h 是0.8mD.若想使水深1m 时报警,应使定值电阻R 1的阻值为12Ω【答案】B【分析】由图3可以直接判断A ;根据欧姆定律计算当报警器刚好开始报警时通过电路的电阻,根据串联电路电阻规律计算此时压敏电阻的阻值,根据F =pS 计算压敏电阻受到的压力即可判断B ,根据液体压公式计算水箱中水的深度即可判断C ;根据液体压强公式计算水深为1m 时压敏电阻受到的压强,根据F =pS 计算此时压敏电阻受到的压力,由乙图可知此时压敏电阻的阻值,由B 知当报警器刚好开始报警时电路总电阻,根据串联电路电阻规律计算选用的定值电阻的阻值.【详解】解:A 、由图3可知,水箱未装水(h =0m )时,压强p 为0kPa ,故A 正确,不符合题意;B 、当报警器刚好开始报警时,根据欧姆定律可知此时电路的电阻:R =U I=60.3=20(Ω),比时压敏电阻的阻值:R 2=R -R 1=20Q -10Q =10Ω,由乙图可知此时压敏电阻受到压力为80N ,故B 不正确,符合题意;C 、当报警器刚好开始报警时,则水箱受到的压强为P =F S=800.01=8000(Pa ),则水箱的深度为h =P ρg =80001×103×10=0.8(m ),故C 正确,不符合题意;D 、水深为lm 时,压敏电阻受到的压强:P =ρgh =1.0×103×10×l =10000(Pa ),此时压敏电阻受到的压力:F =PS =10000×0.01=100(N ),由图2可知此时压敏电阻的阻值为8Ω,由B 知当报警器刚好开始报警时,电路总电阻为20Q ,根据串联电路电阻规律可知选用的定值电阻的阻值:R 1=R -R 2=20-8=12.故D 正确,不符合题意.故选:B .【点睛】本题考查了反比例函数,关键串联电路特点、欧姆定律、液体压强公式、压强定义公式的灵活运用.21(2023•长春一模)如图,在平面直角坐标系中,点A 在反比例函数y =2x(x >0)的图象上,点B 在反比例函数y =k x (x >0)的图象上,AB ∥x 轴,BD ⊥x 轴与反比例函数y =2x的图象交于点C ,与x 轴交于点D ,若BC =2CD ,则k 的值为()A.4B.5C.6D.7【答案】C【分析】设点C 的坐标为a ,2a ,则CD =2a ,BC =4a ,BD =6a ,进而得到B a ,6a,将其代入反比例函数y =kx中即可求解.【详解】解:设点C 的坐标为a ,2a,∵BD ⊥x 轴,∴CD =2a,∵BC =2CD ,∴BC=4a,∴BD=CD+BC=6a,∴B a,6a,∵点B在反比例函数y=k x(x>0)的图象上,∴6a=k a,∴k=6.故选:C.【点睛】本题主要考查反比例函数图象上点的坐标特征,熟练掌握反比例函数图象上点的坐标一定满足该函数解析式.22(2023•翼城县一模)如图,在平面直角坐标系内,四边形OABC是矩形,四边形ADEF是正方形,点A,D在x轴的负半轴上,点F在AB上,点B,E均在反比例函数y=kx(x<0)的图象上,若点B的坐标为(-1,6),则正方形ADEF的周长为()A.4B.6C.8D.10【答案】C【分析】设正方形的边长是a(a>0),表示出E的坐标是(-1-a,a),把B的坐标代入y=kx(x<0)得到y=-6x,把E的坐标(-1-a,a)代入y=-6x得到关于a的方程,求出a的值即可.【详解】解:设正方形的边长是a(a>0),∵B在反比例函数y=k x(x<0)的图象上,点B的坐标为(-1,6),∴6=k-1,∴k=-6,∵OD=OA+AD=a+1,∴E的坐标是(-1-a,a),把E(-1-a,a)代入y=-6 x,∴a=-6-1-a,∴a=2或a=-3(舍),∴正方形的周长是4a=8.故选:C.【点睛】本题考查反比例函数图象上点的坐标特征,正方形的性质,关键是把E (-1-a ,a )代入y =-6x,列出关于a 的方程.23(2023•萧县一模)如图,在Rt △OAB 中,OC 平分∠BOA 交AB 于点C ,BD 平分∠OBA 交OA 于点D ,交OC 于点E ,反比例函数y =k x 经过点E ,若OB =2,CE OE=12,则k 的值为()A.49B.89C.43D.83【答案】B【分析】过点E 作EG ⊥x 轴交于点G ,过点E 作EH ⊥OB 交于点H ,过点C 作CF ⊥x 轴交于点F ,根据角平分线的性质可得HE =EG ,BC =CF ,再由平行线的性质可得OH OB =OE OC =HE BC=23,EG CF =OE OC=23,分别求出EG 、BC 、CF ,再由勾股定理求出CO 、OG ,从而得到E 点坐标为43,23 ,由此可求k 的值.【详解】解:过点E 作EG ⊥x 轴交于点G ,过点E 作EH ⊥OB 交于点H ,过点C 作CF ⊥x 轴交于点F ,∵OC 平分∠BOA ,BC ⊥OB ,∴BC =CF ,HE =EG ,∵BD 平分∠OBA ,∠OBA =90°,∴∠OBE =45°,∴HB =HE ,∵OB ⊥AB ,HE ⊥OB ,∴HE ∥AB ,∵CE OE=12,∴OHOB =OE OC =HE BC=23,∵OB =2,∴OH =43,∴BH =HE =23,∴BC =1,∴CF =1,∵EG ⊥OA ,CF ⊥OA ,∴GE∥CF,∴EG CF=OEOC=23,∴EG=23,在Rt△OBC中,BC=1,OB=2,∴OC=5,在Rt△EOG中,EG=23,OE=235,∴OG=43,∴E43,23,∵E点在反比例函数y=k x上,∴k=89,故选:B.【点睛】本题考查反比例函数的图象及性质,熟练掌握反比例函数的图象及性质,角平分线的性质,平行线的性质,勾股定理是解题的关键.24(2023•仙桃校级一模)如图,菱形ABCD的对角线AC,BD交于点P,且AC过原点O,AB∥x轴,点C的坐标为(6,3),反比例函数y=kx的图象经过A,P两点,则k的值是()A.4B.3C.2D.1【答案】C【分析】根据菱形的性质可得对角线BD与AC互相垂直且平分,再根据反比例函数的对称性可得点P 坐标,进而求得k的值,再利用一次函数性质即可求解.【详解】解:∵在菱形ABCD中,对角线BD与AC互相垂直且平分,∴PA=PC,∵AC经过原点O,且反比例函数y=k x的图象恰好经过A,P两点,∴由反比例函数y=k x图象的对称性知:OA=OP=12AP=12CP,∴OP=13OC.过点P和点C作x轴的垂线,垂足为E和F,∴△OPE∽△OCF,∴OP :OC =OE :OF =PE :CF =1:3,∵点C 的坐标为(6,3),∴OF =6,CF =3,∴OE =2,PE =1,∴点P 的坐标为(2,1),∴k =2×1=2.故选:C .【点睛】本题考查了反比例函数与几何综合,解决本题的关键是综合利用相似三角形的判定和性质、反比例函数的图象和性质、菱形的性质等.25(2022•吴兴区校级二模)已知在平面直角坐标系xOy 中,过点O 的直线交反比例函数y =1x的图象于A ,B 两点(点A 在第一象限),过点A 作AC ⊥x 轴于点C ,连结BC 并延长,交反比例函数图象于点D ,连结AD ,将△ACB 沿线段AC 所在的直线翻折,得到△ACB 1,AB 1与CD 交于点E .若点D 的横坐标为2,则AE的长是()A.23B.223C.22D.1【答案】B【分析】首先根据题意设出点A 和点B 的坐标,即可得出点C 的坐标,求出直线BC 的解析式为:y =x 2m2-12m ,把点D 的坐标代入可得m 的值,即可得出点A 、B 、C 的坐标以及直线BC 的解析式,根据△ACB 1是通过△ACB 沿线段AC 翻折得到的,即可得出点B 1的坐标,即可求出直线AB 1的解析式y =-x +2,联立y =-x +2y =12x -12,即可得出点E 的坐标,利用两点间的距离公式得出AE 的长.【详解】解:根据题意可设点A 的坐标为m ,1m ,则点B 的坐标为-m ,-1m,∵AC ⊥x 轴,∴C (m ,0),设直线BC 的解析式为y =kx +b ,把B -m ,-1m,C (m ,0)代入得:-km +b =-1m mk +b =0,解得:k =12m 2b =-12m ,∴y =x 2m 2-12m ,。

2024江西初三第一次学习效果检测(零模)数学答案

2024年九年级第一次学习效果检测数学参考答案及评分细则一、选择题(本大题共6小题,每小题3分,共18分)6.D∵AB =DE ,FG =AC ,∴【解析】连接OA ,OB ,OC ,OD ,OE ,OF ,OG ,BC ,如图.∵AB +AC >BC ,AB =DE ,FG =AC ,∴DE +FG >BC .∴①错误.AB DE =, F AC G = .∴ DE FG AB AC +=+.∴ DEFG BC +=.∴②正确.∵AB =DE ,FG =AC ,∴∠AOB =∠DOE ,∠AOC =∠FOG .∴∠AOB +∠AOC =∠DOE +∠FOG ,即∠DOE +∠FOG =∠BOC .∴③正确.∵OA =OB ,∴∠OAB =∠OBA =1802AOB ︒-∠=90°﹣12∠AOB .同理可得:∠OAC =90°﹣12∠AOC ,∠DEO =90°﹣12∠DOE ,∠FGO =90°﹣12∠FOG .∴∠OAB +∠OAC =180°﹣12(∠AOB +∠AOC )=180°﹣12∠BOC ,∠DEO +∠FGO =180°﹣12(∠DOE +∠FOG ).由③知:∠DOE +∠FOG =∠BOC ,∴∠OAB +∠OAC =∠DEO +∠FGO .即:∠DEO +∠FGO =∠BAC .∴④正确.∴正确的序号为②③④.故选D .二、填空题(本大题共6小题,每小题3分,共18分)【解析】根据根与系数的关系可知,1212x x +=,121x x =,则121212111x x x x +-=-=.10.【解析】由题意得6E F yy ==,2110640x ∴-+=,解得:1x =,2x =-,F E EF x x ∴=-=11.32a +-【解析】设B 点横坐标为x ,如图,过B 作BM x ⊥轴于点M ,过B '作B N x '⊥轴于点N .∴BM B N '∥,∴BCM B CN ' ∽,∴CM BC CN B C =',即1112x a --=+,解得32a x +=-,∴B 点横坐标为32a +-.12.30°,120°或150°【解析】作BD⊥x轴于D,∵B,3),∴OB==OA,∠BOD=60°,∴∠BOA=120°,根据反比例函数的对称性和图形旋转的性质可知△AOB绕着点O 顺时针旋转30°,120°或150°后使△AOB的顶点依然在该反比例函数的图象上.三、解答题(本大题共5小题,每小题6分,共30分)∴圆形拱门所在圆的半径为∴(()224414480b ac ∆=-=--⨯⨯-=>,∴21x ==15.解:(1)小明从A 、B 、C 、D 四种过关训练卡片题组中,任选一张是A 卡片题组的概率是14.………………2分(2)列出所有可能出现的结果,如下表:ABCD A (A ,A )(B ,A )(C ,A )(D ,A )B (A ,B )(B ,B )(C ,B )(D ,B )C (A ,C )(B ,C )(C ,C )(D ,C )D(A ,D )(B ,D )(C ,D )(D ,D )由上表知,小明和小红分别从A 、B 、C 、D 四种过关训练卡片题组中随机选一张的等可能结果组合有16种,其中,两位同学恰好抽到同种过关训练卡片题组的结果组合有4种,即(A ,A ),(B ,B ),(C ,C ),(D ,D ),……4分∴P (两位同学恰好抽到同种过关训练卡片题组)=41164=.……………6分16.解:(1)如图1,点P 即为所作;………………3分(2)如图2,点Q 即为所作.………………6分图1图217.解:(1)0.95………………2分(2)0.95;提示:根据表格数据可知,随着调查天数的增加,电动自行车骑行者佩戴头盔的频率逐渐稳定在0.95附近,故可估计经过该路口的电动自行车骑行者佩戴了头盔的概率为0.95.…………………………4分(3)12000.951140⨯=(人)答:佩戴了头盔的骑行者大约有1140人.………………6分四、解答题(本大题共3小题,每小题8分,共24分)∵顶点的运动轨迹为二次函数2(3)3y x =---的图象,且该图象开口向下,故当x =3时,y 取得最大值,最大值为-3.………………8分19.(1)∵A (m -3,-4),B (4-m ,6)恰好落到双曲线上,∴-4(m -3)=6(4-m ),解得m =6.∴A (3,-4),将A (3,-4)代入ky x=,得到k =-12.∴反比例函数解析式为12y x=-.………2分(3)四边形ABCD 是正方形.………………5分理由:由点C 的横坐标为-12,可得点C (-12,1),线段BC 沿BA 平移到线段AD 位置,可得BC ∥AD ,BC=AD ,所以四边形ABCD 是平行四边形.过点A ,C 分别作x 轴的垂线AG ,FH ,(即AG ⊥x 轴,FH ⊥x 轴)过点B 作x 轴的平行线FG .∴AG ∥FH ,∴FG ⊥CF ,FG ⊥AG .∴G (3,6),F (-12,6).由坐标可知AG=BF ,BG=CF ,∴△BCF ≌△ABG .∴BC=AB ,∠CBF =∠BAG .∴四边形ABCD 是菱形.∵∠BAG +∠ABG =90°,∴∠CBF +∠ABG =90°.∴∠ABC =90°.∴四边形ABCD 是正方形.………………8分20.解:(1)m =1000-10x ………………2分(2)设销售单价为x 元/盏.由题意,得28000(100010)(40)10140040000x x x x =--=-+-,解得:160x =,280x =.答:销售单价应定为60元或80元.………………5分(3)设月销售利润y 元,销售单价x 元/盏,可列函数为()240(100010)10140040000y x x x x =--=-+-,整理得()210709000y x =--+.∵100-<,∴当70x =时,y 有最大值,最大值为9000,∴当销售单价定为70元时获得利润最大,最大利润是9000元.……………8分五、解答题(本大题共2小题,每小题9分,共18分)21.(1)证明:∵BD =AD ,∠BDA =90°,∴∠ABD =∠BAD =45°.∵DC ∥AB ,∴∠ABD =∠BDC =45°.∵∠BEC =45°,∴∠BEC =∠BDC .∵∠BFE =∠CFD ,∴△FBE ∽△FCD .………………3分(2)证明:∵△FEB ∽△FDC ,∴△FED ∽△FBC .∴∠CED =∠DBC .∵∠DEB =∠CED +∠CEB =∠A +∠ABE ,∠CEB =45°=∠A ,∴∠CED =∠ABE .∴∠ABE =∠DBC .………………6分(3)解:∵AD=BD,AD⊥DB,6AB=,∴AD=∵ED=2AE,∴AE.∴点E到AB的距离为1.∴16132BAES∆=⨯⨯=.∵∠ABE=∠DBC;∠BDC=45°=∠A,∴△BAE∽△BDC.(2)y=-k x2+6kx-5k(1≤x≤5).………………4分(3)①∵△ABP的面积为8,∴4×4k×12=8,∴k=±1.∵k>0,∴k=1,∴图象W向上翻折部分的函数解析式为y=-x2+6x-5(1≤x≤5).六、解答题(本大题共12分)23.解:(1)①②………………2分(2)32BG CF =,直线CF 与BG 的夹角是30°.………………4分证明:如图1,连接AC ,AF .∵四边形ABCD 为矩形,CD =BC =,∴∠ABC =∠BAD =90°,∴AC=8,∴∠BAC =30°,82AB AC ==.∵12AG AB ==,122AE FG AD ===.∴42AG AF ==.∴2AG AB AF AC ==.∴△ACF ∽△ABG .∴32BG AB CF AC ==.………………6分图1图2如图2,设直线CF 与B G 交于点N ,AC 与BG 交于点M .∵△ACF ∽△ABG ,∴∠ABG =∠ACF .在△ABM 和△CMN 中,∵∠AMB =∠CMG ,∠BAC =30°,∴∠BNC =∠CAB =30°.………………7分图3图4②如图4,将AP 绕着点A 顺时针旋转30°,且使AK =3AP ,连接PK .根据△APK 边角关系,可得PK =AP ;同理将AF 绕着点A 顺时针旋转30°,得到AL ,且使AL =3AF ,连接LK .根据旋转,可得∠PAF =∠KAL ,根据两边对应成比例且夹角相等可得△APF ∽△AKL .∴KL =PF .∵CP +PK +KL ≥CL ,即CP +AP PF ≥CL .∴当C ,P ,K ,L 四点共线时,CL 最小,由题意可知∠LAC =150°,AF =4,AC =8,AL =,过点L 作LQ 垂直CA 的延长线于点Q ,可得∠LAQ =30°,∴QL =,AQ =6.在Rt Q C L ∆中,根据勾股定理得CL ==,∴CP +AP +PF 的最小值为……………12分。

2024北京丰台区初三二模数学试题及答案

2024北京丰台初三二模数 学2024.05第1-8题均有四个选项,符合题意的选项只有一个.1.榫卯(s ǔn m ǎo )是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传承,凸出部分叫榫,凹进部分叫卯.如图是某个部件“榫”的实物图,它的主视图是2.芯片内部有数以亿计的晶体管,为追求更高质量的芯片和更低的电力功耗,需要设计体积更小的晶体管.某品牌手机自主研发了最新型号芯片,其晶体管栅极的宽度 为0.000000014米,将数据0.000000014用科学记数法表示为 A .B .C .D .3.如图,l 1∥l 2,点O 在直线l 2上,将三角板的直角顶点放在点O 处,三角板的两条直角边与l 1交于A ,B 两点,若∠1=46°,则∠2的大小为 A .34°B .44°C .46° D .54°4.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是 A. B . C . D .5.如图,△ABC 内接于⊙O ,∠A =45°,BC =,则的长为A .B .π CD .601410.−⨯71410−⨯81410.−⨯91410.−⨯||||a b <a b −>−11a b>22a b <BC π22π6.在平面直角坐标系xOy 中,点,在反比例函数的图象上,且,则下列结论正确的是A. B . C.D .7.某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则最符合这一结果的试验是A .在“石头、剪刀、布”的游戏中,随机出的是“剪刀”B .一副去掉大小王的普通扑克牌洗匀后,从中随机抽取一张牌的花色是红桃C .掷一个质地均匀的正六面体骰子,向上的面点数是4D .不透明的袋子中有红球和黄球各一个,它们除颜色外无其它差别,从中随机摸出一球是黄球8.如图,在平面直角坐标系xOy 中 ,已知y 关于x 的函数图象与x 轴有且只有三个公共点,坐标分别为(-3,0),(-1,0),(3,0).关于该函数的四个结论如下: ①当y >0时,-3<x <-1; ②当x >-3时,y 有最小值;③将该函数图象向右平移1个或3个单位长度后 得到的函数图象经过原点;④点P (m ,-m -1)是该函数图象上一点,则符合 要求的点P 只有两个. 其中正确的结论有A .1个B .2个C .3个D .4个二、填空题(共16分,每题2分)9.若代数式有意义,则实数x 的取值范围是 . 10.分解因式:ab 2﹣4ab +4a = . 11.方程的解为 .12.如图所示,第四套人民币中1角硬币边缘镌刻的图形是正九边形,其内角和为 .13.如图,在□ABCD 中,点E 在边DC 上,若DE ∶EC =1∶2,则BF ∶BE = .11(,)A x y 22(,)B x y 2y x=120x x <<120y y +<120y y +>120y y −<120y y −>4x −23x x =第13题图第14题图14.“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A .非常了解,B .比较了解,C .基本了解,D .不太了解,实践小组把此次调查结果整理并绘制成如图所示的条形统计图和扇形统计图.若该校共有3000名学生,结合图中的信息,估计全校“非常了解”交通法规的有 人. 15.如图,在△ABC 中,AB =AC =5,BC =6,AD 平分∠BA C 交BC 于D ,分别以点A ,C 为圆心,大于AC 的长为半径作弧,两弧交于点M 和点N ,作直线MN交AD 于点P ,则DP 的长为 .16.在正方形网格图形中,每个小正方形的边长为1,将其顶点称为格点.从一个格点运动到与之相距的另一个格点之间的一次移动,因类似中国象棋中马的“日”字型跳跃,故称为一次“跳马”变换. (1)如图1,在4×4的正方形网格图形中,从格点A 经过一次“跳马”变换可以到达的格点为(填“B ” “C ”或“D ”);(2)如图2,现有6×6的正方形网格图形,若从该正方形的格点M 经过三次“跳马变换到达格点N ,则共有 中不同的跳法.三、解答题(共68分,第17-22题,每题5分,第23 -26题,每题6分,第27-28题,每题7分)17.计算:.18.解不等式组: 19.已知22360a a −−=,求代数式(12)(12)3(12)a a a a +−−−的值.20.在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,过点A 作AE ∥BC ,且AE = BD ,连接BE .(1)求证:四边形ADBE 是菱形;(2)连接CE ,若AB =2,∠AEB =60°,求CE 的长.125118|3|2sin 452()°−+−−−22345,.x x x x +⎧<⎪⎨⎪−<+⎩图1图221.为加快公共领域充电基础设施建设,某停车场计划购买甲、乙两种型号的充电桩.已知购买每台甲型充电桩比乙型充电桩少0.3万元,且用18万元购买甲型充电桩的数量与用24万元购买乙型充电桩的数量相等.求甲、乙两种型号每台充电桩的价格.22.在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象由函数y =2x 的图象平移得到,且经过点(1,1).(1)求该一次函数的解析式;(2)当x >-1时,对于x 的每一个值,函数y =mx +2(m ≠0)的值大于一次函数y =kx +b (k ≠0)的值,直接写出m 的取值范围.23.某校甲、乙两个班级各有23名学生进行校运动会入场式的队列训练,为了解这两个班级参加队列训练的学生的身高情况,测量并获取了这些学生的身高(单位:cm ),数据整理如下: a .甲班23名学生的身高:163,163,164,165,165,166,166,166,166,167,167,168,169,169,170,171,171,172,173,173,174,179,180 b .两班学生身高的平均数、中位数、众数如下表所示:(2)在甲班的23名学生中,高于平均身高的学生人数为p 1,在乙班的23名学生中,高于平均身高的学生人数为p 2,则p 1 p 2(填“>” “<”或“=”);(3)若每班只能有20人参加入场式队列表演,首先要求这20人与原来23人的身高平均数相同,其次要求这20人身高的方差尽可能小,则甲班未入选的3名学生的身高分别为________ cm .24.如图,AB 是⊙O 的直径,点C ,E 在⊙O 上,∠CAB =2∠EAB ,点F 在线段AB 的延长线上,且∠AFE =∠ABC . (1)求证:EF 与⊙O 相切; (2)若BF =1,,求BC 的长.4sin 5AFE =25.某实验室在10℃~12℃温度下培育一种植物幼苗,该种幼苗在此温度范围下的生长速度相同.现为了提高其生长速度,研究人员配制了一种营养素,在开始培育幼苗时添加到培育容器中,研究其对幼苗生长速度的影响.研究发现,使用一定量的营养素,会促进该种幼苗的生长速度,营养素超过一定 量时,则会抑制幼苗的生长速度,并且在10℃~12℃范围内的不同温度下,该种幼苗 所能达到的最大生长速度始终不变.经过进一步实验,获得了10℃和12℃温度下营养素用量与幼苗生长速度的部分数据如下表所示: 设营养素用量为x 毫克(0≤x ≤1.0),10℃温度下幼苗生长速度为y 1毫米/天,12℃温度下幼苗生长速度为y 2毫米/天.(2)根据表中数据,发现y 1,y 2都可近似看作x 的函数.在平面直角坐标系xOy 中,描出表中各组数值所对应的点(x ,y 2),并用平滑曲线连接这些点;(3)结合函数图象,回答下列问题:①在12℃温度下,使用约______毫克的营养素时,该种幼苗生长速度最快(结果保留小数点后两位);②当该种幼苗的生长速度在10℃和12℃温度下均不低于1.6毫米/天时,营养素用量x 的取值范围为________(结果保留小数点后两位).26.在平面直角坐标系xOy 中,已知,,是抛物线上的三个点.(1)求该抛物线的对称轴;11(,)A x y 22(,)B x y 33(,)C x y 2220()y ax ax a =−−>(2)若对于,,都有,求证:320a −=;(3)若对于,,都有,求的取值范围.27.如图,等边△ABC 中,过点A 在AB 的右侧作射线AP ,设∠BAP =α(60°<α<90°).点B 与点E 关于直线AP 对称,连接AE ,BE ,CE ,且BE ,CE 分别交射线AP 于点D ,F . (1)依题意补全图形;(2)求∠AFE 的大小;(3)用等式表示线段AF ,CF ,DF 之间的数量关系,并证明.28.在平面直角坐标系xOy 中,⊙O 的半径为2,对于点A 和⊙O 的弦BC ,给出如下定义:若∠BAC =90°,则称弦BC 是点A 的“关联弦”.(1)如图1,已知点(1,0)A ,点12(,0)B,11(C ,22(-,0)B,21(,C , 32(0,)B,31(-,C ,在弦B 1C 1,B 2C 2,B 3C 3中,点A 的“关联弦”是 ; (2)如图2,已知点B (-1),C,-1)在⊙O 上,弦BC 是点A 的“关联弦”,直接写出OA 长度的最大值;(3)如图3,已知点M (0,-2),N (,0),对于线段MN 上一点S ,存在⊙O 的弦BC ,使得弦BC 是点S 的“关联弦”,若对于每一个点S ,将其对应的“关联弦”BC 长度的最大值记为d ,则当点S 在线段MN 上运动时,直接写出d 的取值范围.121x −<<−223x <<120y y <223x <<31m x m <<+32y y >m参考答案一、选择题(共16分,每题2分)17.解:原式=22+3-2-2×22, ···························································· 4分 =22+3-2-2,=2+1. ··············································································· 5分18.解:解不等式①,得2<x , ··················································· 2分解不等式②,得21−>x , ·························································· 4分∴不等式组的解集为221<<−x . ·············································· 5分 19.解:原式=221436a a a −−+=2123a a +−. ························································ 3分∵22360a a −−=,∴2236a a −=. ···························································· 4分∴原式=16+,=7. ··················································································· 5分20.证明:(1)∵AE ∥BC 且AE =BD ,∴四边形ADBE 是平行四边形. ∵在Rt △ABC 中,∠BAC =90°, D 是BC 的中点, ∴AD =BD =DC =12BC . ∴四边形ADBE 是菱形. ······································ 2分 (2)过点E 作EF ⊥CB 交CB 的延长线于点F ,∵四边形ADBE 是菱形,∴AE =BE .∵∠AEB =60°,∴ △AEB 为等边三角形. ∵ AB =2, ∴BE =AB =2. ∴BD =DC =BE =2. ∵AE ∥BC ,∴∠EBF =∠AEB =60°.在Rt △BEF 中,∠F =90°,∠EBF=60°,BE =2. ∴BF =1,EF =3. ∴CF =5.在Rt △CEF 中,∠F =90°,CF =5,EF =3,∴CE =72. ····················································· 5分21.解:(1)设甲种型号充电桩每台x 万元,则乙种型号充电桩每台(x +0.3)万元. ······················ 1分 根据题意得:18240.3x x =+, ····································· 3分 解得:0.9x =. ···················································· 4分 经检验,0.9x =是所列方程的解,且符合实际问题的意义. 当0.9x =时,x +0.3=1.2.答:甲种型号充电桩每台0.9万元,乙种型号充电桩每台1.2万元. ··························· 5分22.解:(1)∵一次函数y =kx +b (k ≠0)的图象由函数y =2x 的图象平移得到,∴k =2. ∴y =2x +b .∵y =2x +b 的图象经过点(1,1), ∴2+b =1. ∴b =-1.∴一次函数解析式为21y x =−. ····································· 3分(2)25≤≤m . ························································· 5分23.解:(1)m =168,n =166. ······················································ 2分(2)p 1<p 2. ································································· 4分 (3)163,164,180. ···················································· 6分24.(1)证明:连接OE,∵AB是⊙O的直径,∴∠ACB=90°.∴∠CAB+∠ABC=90°.∵BE所对的圆心角为∠BOE,圆周角为∠EAB,∴∠BOE=2∠EAB.∵∠CAB=2∠EAB,∴∠BOE=∠CAB.∵∠AFE=∠ABC,∴∠BOE+∠AFE=90°.∴OE⊥EF.∴EF与⊙O相切. ··············································3分(2)解:设⊙O的半径为x,∴OE=OB=x.∵BF=1,∴OF=x+1.∵在Rt△OEF中,4 sin5AFE=∠,∴4 sin5OEAFE=OF∠=.∴415xx=+.∴x=4.∴AB=8.∵∠AFE=∠ABC,∴4 sin sin5ABC=AFE∠∠=.∵在Rt△ACB中,AB=8,∴4 sin5ACABC=AB∠=.∴AC=325.∴BC=245. ··············································6分25.解:(1)1.00;····································································1分(2)·················································································· 3分(3)①0.28; ······························································· 4分②0.17≤x ≤0.60. ··················································· 6分26.解:(1)∵二次函数解析式为y =ax 2-2ax -2(a >0), ∴抛物线的对称轴212a x a−=−=. ······························ 1分 (2)证明:设点22(,)B x y 关于对称轴的对称点为22B x y ''(,),∵抛物线的对称轴1,223x <<,∴210x '−<<.∵点A ,B′在对称轴左侧,a >0,且12210x x '−<<−<<,根据二次函数性质,x <1时,y 随x 的增大而减小,∴12y y >.∵120y y <,∴10y >,20y <.∴当x =-1时,y =0.把(-1,0)代入函数解析式得3a -2=0. ···················· 3分(3)∵抛物线的对称轴1x =,223x <<,∴点22(,)B x y 在对称轴右侧.(ⅰ)当点C 在对称轴右侧时,∵31m x m <<+时,32y y >,根据二次函数性质,x >1时,y 随x 的增大而增大,∴m ≥3.(ⅱ)当点C 在对称轴左侧时,设点C 关于对称轴的对称点为33C'x y '(,),∵31m x m <<+,∵-1=1-m ,-1=1-(m+1),∴312m x 'm −+<<−+.根据二次函数性质,x >1时,y 随x 的增大而增大,∴-m +1≥3,则m ≤-2.由(ⅰ)(ⅱ)可知,m ≤-2或m ≥3.····························· 6分 27.(1)依题意补全图形. ·························································· 1分(2)解:∵点B 与点E 关于直线AP 对称,∴∠BAD =∠EAD=α,AB =AE .∵∠CAE=∠BAD +∠EAD -∠BAC=2α-60°,∵AB=AC ,∴AC=AE .∴∠AEC =∠ACE =120°-α.∴∠AFE =180°-∠AEC -∠EAD = 60°. ··························· 3分(3)猜想:AF =2DF -CF . ··················································· 4分证明:连接BF ,在AP 上截取FG =FC ,连接CG .由(2)可知∠AFE = 60°.∵CF =FG ,∴△CFG 是等边三角形.∴CF =CG ,∠FCG=60°.∵△ABC 是等边三角形,∴AC =BC ,∠ACB=60°.∴∠BCF =∠ACG .∴△BCF ≌△ACG .∴BF =AG .∵点B 与点E 关于直线AP 对称,∴BF =EF ,AF ⊥BE .∵∠DEF =90°-∠DFE =30°,∴EF =2DF .∴BF =AG =2DF .∵AF =AG -FG ,∴AF =2DF -CF . ··························································· 7分 28.解:(1)B 1C 1,B 2C 2; ·························································· 2分 3x '3x '(2)1+ ····································································· 4分(3)4≤d . ····················································· 7分其它解法请参照评分标准酌情给分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年中考数学 专题讲座一:选择题解题方法 一、中考专题诠释 选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养. 二、解题策略与解法精讲 选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做. 解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效. 三、中考典例剖析 考点一:直接法 从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础.

例1 (2012•白银)方程的解是( ) A.x=±1 B. x=1 C. x=﹣1 D. x=0 思路分析: 观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解:方程的两边同乘(x+1),得 x2﹣1=0, 即(x+1)(x﹣1)=0, 解得:x1=﹣1,x2=1. 检验:把x=﹣1代入(x+1)=0,即x=﹣1不是原分式方程的解; 把x=1代入(x+1)=2≠0,即x=1是原分式方程的解. 则原方程的解为:x=1. 故选B. 点评: 此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根. 对应训练 1.(2012•南宁)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),

计划安排10场比赛,则参加比赛的球队应有( ) A.7队 B.6队 C.5队 D.4队 考点二:特例法 运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。用特例法解选择题时,特例取得愈简单、愈特殊愈好.

例2 (2012•常州)已知a、b、c、d都是正实数,且 acbd,给出下列四个不等式:

①acabcd;②cacdab;③ dbcdab;④bdabcd。 其中不等式正确的是( ) A.①③ B.①④ C.②④ D.②③

思路分析:由已知a、b、c、d都是正实数,且 acbd,取a=1,b=3,c=1,d=2,代入所求四个式子即可求解。 解:由已知a、b、c、d都是正实数,且 acbd,取a=1,b=3,c=1,d=2,则 1111,134123acabcd,所以acabcd,故①正确;

2233,123134dbcdab,所以dbcdab,故③正确。

故选A。 点评:本题考查了不等式的性质,用特殊值法来解,更为简单. 对应训练 2.(2012•南充)如图,平面直角坐标系中,⊙O的半径长为1,点P(a,0),⊙P的半径

长为2,把⊙P向左平移,当⊙P与⊙O相切时,a的值为( ) A.3 B.1 C.1,3 D.±1,±3

考点三:筛选法(也叫排除法、淘汰法) 分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法。使用筛选法的前提是“答案唯一”,即四个选项中有且只有一个答案正确.

例3 (2012•东营)方程(k-1)x2-1kx+14=0有两个实数根,则k的取值范围是( ) A.k≥1 B.k≤1 C.k>1 D.k<1 思路分析:原方程有两个实数根,故为二次方程,二次项系数不能为0,可排除A、B;又因为被开方数非负,可排除C。故选D.

解:方程(k-1)x2-1kx+14=0有两个实数根,故为二次方程,二次项系数10k,1k,

可排除A、B;又因为10,1kk厔,可排除C。 故选D. 点评:此题考查了一元二次方程根的判别式与解的情况,用排除法较为简单. 对应训练 3. (2012•临沂)如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交

函数

y= 1kx(x>0)和y=2kx(x>0)的图象于点P和Q,连接OP和OQ.则下列结论正确的

是( ) A.∠POQ不可能等于90°

B. 12kPMQMk C.这两个函数的图象一定关于x轴对称 D.△POQ的面积是12(|k1|+|k2|)

考点四:逆推代入法 将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法. 在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度.

例4 (2012•贵港)下列各点中在反比例函数y=6x的图象上的是( ) A.(-2,-3) B.(-3,2) C.(3,-2) D.(6,-1) 思路分析:根据反比例函数y=6x中xy=6对各选项进行逐一判断即可. 解:A、∵(-2)×(-3)=6,∴此点在反比例函数的图象上,故本选项正确; B、∵(-3)×2=-6≠6,∴此点不在反比例函数的图象上,故本选项错误; C、∵3×(-2)=-6≠6,∴此点不在反比例函数的图象上,故本选项错误; D、∵6×(-1)=-6≠6,∴此点不在反比例函数的图象上,故本选项错误. 故选A. 点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy的特点是解答此题的关键. 对应训练 4.(2012•贵港)从2,﹣1,﹣2三个数中任意选取一个作为直线y=kx+1中的k值,则所

得的直线不经过第三象限的概率是( )

A. B. C. D. 1 考点五:直观选择法 利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法。这种解法贯穿数形结合思想,每年中考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速. 例5 (2012•贵阳)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是( ) A.有最小值-5、最大值0 B.有最小值-3、最大值6 C.有最小值0、最大值6 D.有最小值2、最大值6

解:由二次函数的图象可知, ∵-5≤x≤0, ∴当x=-2时函数有最大值,y最大=6; 当x=-5时函数值最小,y最小=-3. 故选B. 点评:本题考查的是二次函数的最值问题,能利用数形结合求出函数的最值是解答此题的关键. 对应训练 5. (2012•南宁)如图,在平面直角坐标系中,有两条位置确定的抛物线,它们的对称轴

相同,则下列关系不正确的是( ) A.k=n B.h=m C.k<n D.h<0,k<0

考点六:特征分析法 对有关概念进行全面、正确、深刻的理解或根据题目所提供的信息,如数值特征、结构特征、位置特征等,提取、分析和加工有效信息后而迅速作出判断和选择的方法 例6 (2012•威海)下列选项中,阴影部分面积最小的是( ) A. B. C. D. 分析:根据反比例函数系数k的几何意义对各选项进行逐一分析即可. 解:A、∵M、N两点均在反比例函数y=2x的图象上,∴S阴影=2;

B、∵M、N两点均在反比例函数y=2x的图象上,∴S阴影=2; C、如图所示,分别过点MN作MA⊥x轴,NB⊥x轴,则S阴影=S△OAM+S阴影梯形

ABNM-S△OBN=12×2+12(2+1)×1-12×2=32;

D、∵M、N两点均在反比例函数y=2x的图象上,∴12×1×4=2. ∵32<2, ∴C中阴影部分的面积最小. 故选C. 点评:本题考查的是反比例函数系数k的几何意义,即在反比例函数的图象上任意一点象坐

标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是 ||2k,且保持不变. 对应训练 6.(2012•丹东)如图,点A是双曲线y=在第二象限分支上的任意一点,点B、点C、点

D分别是点A关于x轴、坐标原点、y轴的对称点.若四边形ABCD的面积是8,则k的值

为( ) A.﹣1 B. 1 C. 2 D. ﹣2 考点七:动手操作法 与剪、折操作有关或者有些关于图形变换的试题是各地中考热点题型,只凭想象不好确定,处理时要根据剪、折顺序动手实践操作一下,动手可以直观得到答案,往往能达到快速求解的目的. 例7 (2012•西宁)折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想,把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论( )

A.角的平分线上的点到角的两边的距离相等 B.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半 C.直角三角形斜边上的中线等于斜边的一半 D.如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形 思路分析:严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来,也可仔细观察图形特点,利用对称性与排除法求解. 解:如图②,∵△CDE由△ADE翻折而成, ∴AD=CD, 如图③,∵△DCF由△DBF翻折而成, ∴BD=CD, ∴AD=BD=CD,点D是AB的中点,

∴CD=12AB,即直角三角形斜边上的中线等于斜边的一半.

相关文档
最新文档