初中数学解直角三角形的计算题目

合集下载

初中数学,锐角三角函数,解直角三角形及其应用练习题及答案

初中数学,锐角三角函数,解直角三角形及其应用练习题及答案

锐角三角函数——解直角三角形及其应用一、解直角三角形1.任何一个三角形都有六个元素,三条边、三个角,在直角三角形中,已知有一个角是直角,我们把利用已知的元素求出未知元素的过程,叫做_______________.2.在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c . (1)两锐角互余,即∠A +∠B =_______________; (2)三边满足勾股定理,即a 2+b 2=_______________;(3)边与角关系sin A =cos B ,cos A =sin B ,tan A =_______________,tan B =_______________.二、解直角三角形在实际问题中的应用(一)俯角、仰角在进行测量时,从下往上看,视线与水平线的夹角叫做_______________;从上往下看,视线与水平线的夹角叫做_______________.(二)方向角1.方向角是以观察点为中心(方向角的顶点),以正_______________或正_______________为始边,旋转到观察目标的方向线所成的_______________,方向角也称象限角.2.如图,我们说点A 在O 的北偏东30°方向上,点B 在点O 的南偏西45°方向上,或者点B 在点O 的西南方向.(三)坡度、坡角1.坡度通常写成1∶________的形式.坡面与水平面的夹角叫做坡角,记作α,有i =hl =_________.2.一斜坡的坡角为30°,则它的坡度为________.(四)利用解直角三角形的知识解决实际问题的一般过程1.将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题,也就是建立适当的函数模型);2.根据条件的特点,适当选用锐角三角函数,运用解直角三角形的有关性质解直角三角形;3.得到数学问题的答案;4.得到实际问题的答案.一、解直角三角形【例1】在Rt△ABC中,∠C=90°.(1)已知a=4,b=8,求c;(2)已知b=10,∠B=60°,求a,c;(3)已知c=20,∠A=60°,求a,b.二、解直角三角形在实际问题中的应用【例2】如图,为了测量河的宽度AB,测量人员在高21 m的建筑物CD的顶端D处测得河岸B处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB约是多少?(精确到0.1 m,参考数据:2≈1.41,3≈1.73)【例3】如图,某大楼顶部有一旗杆AB,甲、乙两人分别在相距6米的C、D两处测得点B和点A的仰角分别是42°和65°,且C、D、E在一条直线上.如果DE=15米,求旗杆AB的长大约是多少米?(结果保留整数,参考数据:sin 42°≈0.67,tan 42°≈0.9,sin 65°≈0.91,tan 65°≈2.1)【例4】如图,海中一小岛A,该岛四周10海里内有暗礁,今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后到达该岛的南偏西25°的C处,之后,货轮继续向东航行,你认为货轮向东航行的途中会有触礁的危险吗?(参考数据:tan55°≈1.43,tan25°≈0.47)【例5】如图,铁路路基的横断面是四边形ABCD,AD∥BC,路基顶宽BC=9.8 m,路基高BE=5.8 m,斜坡AB的坡度i=1∶1.6,斜坡CD的坡度i′=1∶2.5,求铁路路基下底宽AD的值(精确到0.1 m).【例6】如图,在△ABC中,∠A=30°,AC=4,AB=33,求BC的长.基础练习题1.如图,在△ABC中,AD⊥BC,垂足为点D,若AC=6,∠C=45°,tan∠ABC=3,则BD等于A.2 B.3 C.32D.232.如图,在综合实践活动中,小明在学校门口的点C处测得树的顶端A仰角为37°,同时测得BC=15米,则树的高AB(单位:米)为A.15tan37︒B.15sin37︒C.15tan 37°D.15sin 37°3.如图,在海拔200米的小山顶A处,观察M,N两地,俯角分别为30°,45°,则M,N两地的距离为A.200米B.2003米C.400米D.200(3+1)米4.如图,从山顶A望地面C、D两点,测得它们的俯角分别为45和30,已知100CD=米,点C在BD 上,则山高AB=A.100米B.3C.502米D.)5031米5.如图,某水库堤坝横截面迎水坡AB 的坡度是1:3,堤坝高为40m ,则迎水坡面AB 的长度是A .80mB .803mC .40mD .403m6.下图是某商场一楼与二楼之间的手扶电梯示意图,其中AB 、CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8m ,则乘电梯从点B 到点C 上升的高度h 是__________m .7.如图,在△ABC 中,AB =AC =5,BC =8.若∠BPC =12∠BAC ,则sin ∠BPC =__________.8.如图,小明沿着一个斜坡从坡底A 向坡顶B 行走的过程中发现,他毎向前走60m ,他的高度就升高36m ,则这个斜坡的坡度等于__________.9.如图,在菱形ABCD 中,AE DC ⊥于E ,8cm AE =,2sin 3D =,则菱形ABCD 的面积是__________.10.一艘货轮以182km/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B的距离是__________km.11.某地铁站口的垂直截图如图所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C点到地面AD的距离(结果保留根号).12.如图,AD是△ABC的角平分线,且AD=16315,∠C=90°,AC=85,求BC及AB.13.已知:如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,CD =8cm ,AC =10cm ,求AB ,BD的长.能力提升14.如图,在Rt △ABC 中,∠C =90°,AC =BC =6,D 是AC 上一点,若tan ∠DBC =23,则AD 的长为A .2B .4C .2D .3215.如图,在四边形ABCD 中,60,90,2,3,A B D BC CD ∠=∠=∠===则AB =A .4B .5C .3D 83316.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为A.603n mile B.602n mileC.303n mile D.302n mile17.如图,一艘海轮位于灯塔P的北偏东55°方向上,距离灯塔为2海里的点A处.如果海轮沿正南方向航行到灯塔的正东位置B处,海轮航行的距离AB长是A.2 海里B.2sin55海里C.2cos55海里D.2tan55海里18.在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分∠BCE,BC=23,则AB=______________.19.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45和30.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为______________米(结果保留根号).20.如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D 处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为______m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)21.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁,可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:3≈1.7,2≈1.4)22.如图,某日在我国某岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留小数点后一位)参考数据:2≈1.414,3≈1.732,5≈2.236.23.某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在D点测得旗杆顶端E点的仰角为30°.已知小明和小军的距离BD=6 m,小明的身高AB=1.5 m,小军的身高CD=1.75 m,求旗杆的高EF.(结果精确到0.1,参考数据:2≈1.41,3≈1.73)真题练习24.(2018·益阳市)如图,小刚从山脚A出发,沿坡角为α的山坡向上走了300米到达B点,则小刚上升了A.300sinα米B.300cosα米C.300tanα米D.300 tanα米25.(2018·重庆市b卷)如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)A.21.7米B.22.4米C.27.4米D.28.8米26.(2018·长春市)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B 地的俯角为α,则A、B两地之间的距离为A.800sinα米B.800tanα米C.800sinα米D.800tanα米27.(2018·阜新市)如图,在点B处测得塔顶A的仰角为30°,点B到塔底C的水平距离BC是30m,那么塔AC的高度为_____________m(结果保留根号).28.(2018·无锡市)已知△ABC中,AB=10,AC=27,∠B=30°,则△ABC的面积等于_____________.29.(2018·黄石市)如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为1003米,点A、D、B在同一水平直线上,则A、B两点间的距离是_____________米.(结果保留根号)30.(2018·锦州市)如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者.在消防车上点A处测得点B和点C的仰角分别是45°和65°,点A距地面2.5米,点B距地面10.5米.为救出点C处的求救者,云梯需要继续上升的高度BC约为多少米?(结果保留整数.参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,2≈1.4)31.(2018·本溪市)如图,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠AEF =23°,量得树干倾斜角∠BAC =38°,大树被折断部分和坡面所成的角∠ADC =60°,AD =4m . (1)求∠CAE 的度数; (2)求这棵大树折断前的高度?(结果精确到个位,参考数据:2 1.4≈,3 1.7≈,6 2.4≈).32.(2018·兰州市)如图,斜坡BE ,坡顶B 到水平地面的距离AB 为3米,坡底AE 为18米,在B 处,E处分别测得CD 顶部点D 的仰角为30,60,求CD 的高度.(结果保留根号)33.(2018·青海省)如图,同学们利用所学知识去测量三江源某河段某处的宽度.小宇同学在A 处观测对岸点C ,测得45CAD ∠=,小英同学在距点A 处60米远的B 点测得30CBD ∠=,请根据这些数据算出河宽(精确到0.01米,2 1.414≈,3 1.732)≈.34.(2018·莱芜市)在小水池旁有一盏路灯,已知支架AB的长是0.8m,A端到地面的距离AC是4m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测(sin65°≈0.9,得支架A端的仰角是50°(点C、E、D在同一直线上),求小水池的宽DE.(结果精确到0.1m)cos65°≈0.4,tan50°≈1.2)35.(2018·镇江市)如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8米到达点G处,测得教学楼CD顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB的高度.(精确到0.1米)参考值:2≈1.41,3≈1.73.36.(2018·盘锦市)两栋居民楼之间的距离CD=30米,楼AC和BD均为10层,每层楼高3米.(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部.37.(2018·大庆市)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:6≈2.449,结果保留整数)38.(2018·徐州巿)如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m)参考数据:2≈1.414,3≈1.732.参考答案1.A;2.C;3.D;4.D;5.A6.47.4 58.1:4 39.296cm10.1811.C点到地面AD的距离为:()m.12.BC AB13.AB=503,BD=32314.A;15.D;16.B;17.C18.419.)1200120.9.521.22422.23.约为10.3 m24.A;25.A;26.D27.28.29.100(30.云梯需要继续上升的高度BC约为9米. 31.(1)75°;(2)这棵大树折断前高约10米.32.CD的高度是92⎛⎫⎪⎝⎭米.33.河宽为81.96米.34.小水池的宽DE为1.7米.35.教学楼AB的高度AB长13.3m.36.(1)此刻B楼的影子落在A楼的第5层;(2)当太阳光线与水平面的夹角为45度时,B楼的影子刚好落在A楼的底部.38.此时轮船所在的B处与灯塔P的距离是98海里.38.该坝的坝高和坝底宽分别为7m和25.1m.。

1.3 解直角三角形(1)

1.3 解直角三角形(1)
AC
所以 AC= =
AB 2000 = ≈ 3111(米) cos 50° cos 50°
答:敌舰与A、B两炮台的距离分 敌舰与 、 两炮台的距离分 别约为3111米和 米和2384米. 别约为 米和 米
A
b C 3 a B
练习1 练习 :
在⊿ABC中,∠C=900,根据下列条件解直角三角 ⊿ABC中 形(长度保留到2个有效数字,角度精确到1度)
(1)c=10, ∠A=30° ) , ° (2)b =4,∠ B =72° ) , ° (3)a =5, c=7 ) , (4)a =20, SinA=1/2 ) , SinA 1
练:
本题是已知 一边,一锐角. 一边,一锐角.
解: 在Rt△ABC中,因为 △ 中 ∠CAB=90゜-∠DAC=50゜, = ゜ = ゜ BC =tan∠CAB, ∠ AB BC=AB•tan∠CAB 所以 = ∠ =2000×tan50゜ × ゜ ≈2384(米). 米 又因为 AB = cos 50 ° ,
1.3解直角三角形 解直角三角形(1) 解直角三角形
解直角三角形
已知两条边; (1)已知两条边;
A
B c a ┌ b C
(2)已知一条边和一个锐角
C=90° 例1:如图,在Rt△ABC中,∠C=90°, :如图, △ 中 解直角三角形. ∠A=50 °,AB=3, 解直角三角形 =50 (边长保留2个有效数字) 边长保留 个有效数字
A c
Байду номын сангаас
B a ┌ b C
例2:已知平顶屋面的宽度 为10m,坡顶的设 :已知平顶屋面的宽度L为 , 计高度h为 计高度 为3.5m,你能求出斜面钢条的长度和 , 倾角a 倾角 。(长度精确到0.1米,角度精确到1度)

中考数学真题分类汇编(第三期)专题28 解直角三角形试题(含解析)-人教版初中九年级全册数学试题

中考数学真题分类汇编(第三期)专题28 解直角三角形试题(含解析)-人教版初中九年级全册数学试题

解直角三角形一.选择题1.(2018·某某市B卷)5.坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()【分析】作BM⊥ED交ED的延长线于M,⊥DM于N.首先解直角三角形Rt△CDN,求出,DN,再根据tan24°=,构建方程即可解决问题;【解答】解:作BM⊥ED交ED的延长线于M,⊥DM于N.在Rt△CDN中,∵==,设=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴=8,DN=6,∵四边形BMNC是矩形,∴BM==8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故选:A.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.2.(2018·某某某某·3分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A.B在同一水平面上).为了测量A.B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A.B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题;【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(2018·某某某某·2分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.【分析】如图,连接AD.只要证明∠AOB=∠ADO,可得sin∠AOB=sin∠ADO==;【解答】解:如图,连接AD.∵OD是直径,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO==,故选:D.【点评】本题考查圆周角定理、直径的性质、锐角三角函数等知识,解题的关键是学会用转化的思想思考问题,属于中考创新题目.二.填空题1. (2018·某某江汉·3分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile 处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD.CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:182. (2018·某某荆州·3分)荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a米后到达B处,在B处测得塔顶的仰角为45°(如图所示),那么a的值约为米(≈1.73,结果精确到0.1).【解答】解:如图,设CD为塔身的高,延长AB交CD于E,则CD=40,DE=7,∴CE=33,∵∠CBE=45°=∠BCE,∠CAE=30°,∴BE=CE=33,∴AE=a+33,∵tanA=,∴tan30°=,即33=a+33,解得a=33(﹣1)≈24.1,∴a的值约为24.1米,故答案为:24.1.3.(2018·某某省某某市) 如图,某景区的两个景点A.B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C 处时、测得景点A的俯角为45°,景点B的俯角为知30°,此时C到地面的距离CD为100米,则两景点A.B间的距离为100+100米(结果保留根号).【解答】解:∵∠MCA=45°,∠NCB=30°,∴∠ACD=45°,∠DCB=60°,∠B=30°.∵CD=100米,∴AD=CD=100米,D B=米,∴AB=AD+DB=100+100(米).故答案为:100+100.4. (2018·某某某某·3分)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110m,那么该建筑物的高度BC约为_____m(结果保留整数,≈1.73).【答案】300【解析】【分析】在Rt△ABD中,根据正切函数求得BD=AD•tan∠BAD,在Rt△ACD中,求得CD=AD•tan∠CAD,再根据BC=BD+CD,代入数据计算即可.【详解】如图,∵在Rt△ABD中,AD=110,∠BAD=45°,∴BD= AD•tan45° =110(m),∵在Rt△ACD中,∠CAD=60°,∴CD=AD•tan60°=110×≈190(m),∴BC=BD+CD=110+190=300(m),即该建筑物的高度BC约为300米,故答案为:300.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,熟练应用锐角三角函数关系是解题关键.5.(2018·某某某某·3分)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为53°,∴∠ADE=53°.∵BC=DE=6m,∴AE=DE•tan53°≈6×1.33≈7.98m,∴AB=AE+BE=AE+CD=7.98+1.5=9.48m≈9.5m.故答案为:9.5.三.解答题1. (2018·某某贺州·8分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:≈1.41,≈1.73)【解答】解:过点C作CM⊥AB,垂足为M,在Rt△ACM中,∠MAC=90°﹣45°=45°,则∠MCA=45°,∴AM=MC,由勾股定理得:AM2+MC2=AC2=(20×2)2,解得:AM=CM=40,∵∠ECB=15°,∴∠BCF=90°﹣15°=75°,∴∠B=∠BCF﹣∠MAC=75°﹣45°=30°,在Rt△BCM中,tanB=tan30°=,即=,∴BM=40,∴AB=AM+BM=40+40≈40+40×1.73≈109(海里),答:A处与灯塔B相距109海里.2. (2018·某某某某·8分)随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上D点处测得瀑布顶端A点的仰角是30°,测得瀑布底端B点的俯角是10°,AB与水平面垂直.又在瀑布下的水平面测得CG=27m,GF=17.6m(注:C.G、F三点在同一直线上,CF⊥AB于点F).斜坡CD=20m,坡角∠ECD=40°.求瀑布AB的高度.(参考数据:≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)【分析】过点D作DM⊥CE,交CE于点M,作DN⊥AB,交AB于点N,在Rt△CMD中,通过解直角三角形可求出CM的长度,进而可得出MF、DN的长度,再在Rt△BDN、Rt△ADN中,利用解直角三角形求出BN、AN的长度,结合AB=AN+BN即可求出瀑布AB的高度.【解答】解:过点D作DM⊥CE,交CE于点M,作DN⊥AB,交AB于点N,如图所示.在Rt△CMD中,CD=20m,∠DCM=40°,∠CMD=90°,∴CM=CD•cos40°≈15.4m,DM=CD•sin40°≈12.8m,∴DN=MF=CM+CG+GF=60m.在Rt△BDN中,∠BDN=10°,∠BND=90°,DN=60m,∴BN=DN•tan10°≈10.8m.在Rt△ADN中,∠ADN=30°,∠AND=90°,DN=60m,∴AN=DN•tan30°≈34.6m.∴AB=AN+BN=45.4m.答:瀑布AB的高度约为45.4米.【点评】本题考查了解直角三角形的应用中的仰角俯角问题及坡度坡角问题,通过解直角三角形求出AN、BN的长度是解题的关键.3. (2018·某某某某·7分)如图,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔C的南偏东30°方向上的B处,求此时船距灯塔的距离(参考数据:≈1.414,≈1.732,结果取整数).【分析】过C作CD垂直于AB,根据题意求出AD与BD的长,由AD+DB求出AB的长即可.【解答】解:过C作CD⊥AB,在Rt△ACD中,∠A=45°,∴△ACD为等腰直角三角形,∴AD=CD=AC=50海里,在Rt△BCD中,∠B=30°,∴BC=2CD=100海里,根据勾股定理得:BD=50海里,则AB=AD+BD=50+50≈193海里,则此时船锯灯塔的距离为193海里.【点评】此题考查了解直角三角形﹣方向角问题,熟练掌握各自的性质是解本题的关键.4.(2018·某某省某某·7分)小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)【分析】如图作AE⊥BD于E.分别求出BE.DE,可得BD的长,再根据CD=BD﹣BC计算即可;【解答】解:如图作AE⊥BD于E.在Rt△AEB中,∵∠EAB=30°,AB=10m,∴BE=AB=5(m),AE=5(m),在Rt△ADE中,DE=AE•tan42°=7.79(m),∴BD=DE+BE=12.79(m),∴CD=BD﹣BC=12.79﹣6.5≈6.3(m),答:标语牌CD的长为6.3m.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.5.(2018·某某省某某·8分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,X角∠HAC 为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)【分析】作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF 即可.【解答】解:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH﹣∠HAF=118°﹣90°=28°,在Rt△ACF中,∵sin∠CAF=,∴CF=9sin28°=9×0.47=4.23,∴CE=CF+EF=4.23+3.4≈7.6(m),答:操作平台C离地面的高度为7.6m.【点评】本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.6.(2018·某某省某某市)两栋居民楼之间的距离CD=30米,楼AC和B D均为10层,每层楼高3米.(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部.【解答】解:(1)延长BG,交AC于点F,过F作FH⊥BD于H,由图可知,FH=CD=30m.∵∠BFH=∠α=30°.在Rt△BFH中,BH=,,答:此刻B楼的影子落在A楼的第5层;(2)连接BC\1BD=3×10=30=CD,∴∠BCD=45°,答:当太阳光线与水平面的夹角为45度时,B楼的影子刚好落在A楼的底部.7.(2018·某某省某某市)(12.00分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A.B.C.D.M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)【分析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解决问题;【解答】解:(1)延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH===20,∴AB=AH﹣BH=20﹣8.65=11.4(米).【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.8. (2018•呼和浩特•8分)如图,一座山的一段斜坡BD的长度为600米,且这段斜坡的坡度i=1:3(沿斜坡从B到D时,其升高的高度与水平前进的距离之比).已知在地面B处测得山顶A的仰角为33°,在斜坡D处测得山顶A的仰角为45°.求山顶A到地面BC的高度AC是多少米?(结果用含非特殊角的三角函数和根式表示即可)解:作DH⊥BC于H.设AE=x.∵DH:BH=1:3,在Rt△BDH中,DH2+(3DH)2=6002,∴DH=60,BH=180,在Rt△ADE中,∵∠ADE=45°,∴DE=AE=x,∵又HC=ED,EC=DH,∴HC=x,EC=60,在Rt△ABC中,tan33°=,∴x=,∴AC=AE+EC=+60=.答:山顶A到地面BC的高度AC是米9. (2018•某某•8分)据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:≈1.41,≈1.73)【分析】根据直角三角形的性质和三角函数得出DB,DA,进而解答即可.【解答】解:由题意得:∠DCA=60°,∠DCB=45°,在Rt△CDB中,tan∠DCB=,解得:DB=200,在Rt△CDA中,tan∠DCA=,解得:DA=200,∴AB=DA﹣DB=200﹣200≈146米,轿车速度,答:此车没有超过了该路段16m/s的限制速度.【点评】本题考查了解直角三角形的应用﹣方向角问题,解答本题的关键是利用三角函数求出AD与BD的长度,难度一般.10. (2018•莱芜•9分)在小水池旁有一盏路灯,已知支架AB的长是0.8m,A端到地面的距离AC是4m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C.E.D在同一直线上),求小水池的宽DE.(结果精确到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)【分析】过点B作BF⊥AC于F,BG⊥CD于G,根据三角函数和直角三角形的性质解答即可.【解答】解:过点B作BF⊥AC于F,BG⊥CD于G,在Rt△BAF中,∠BAF=65°,BF=AB•sin∠×0.9=0.72,AF=AB•cos∠×0.4=0.32,∴FC=AF+AC=4.32,∵四边形FCGB是矩形,∴BG=FC=4.32,CG=BF=0.72,∵∠BDG=45°,∴∠BDG=∠GBD,∴GD=GB=4.32,∴CD=CG+GD=5.04,在Rt△ACE中,∠AEC=50°,CE=,∴≈1.7,答:小水池的宽DE为1.7米.【点评】此题考查的知识点是解直角三角形的应用﹣仰角俯角问题,关键是本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.11.(2018·某某某某·6分)如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8米到达点G处,测得教学楼CD 顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB 的高度AB长.(精确到0.1米)参考值:≈1.41,≈1.73.【解答】解:延长HF交CD于点N,延长FH交AB于点M,如右图所示,由题意可得,MB=HG=FE=ND=1.6m,HF=GE=8m,MF=BE,HN=GD,MN=BD=24m,设AM=xm,则=xm,在Rt△AFM中,MF=,在Rt△H中,HN=,∴HF=MF+HN﹣MN=x+x﹣24,即8=x+x﹣24,解得,x≈11.7,∴AB=11.7+1.6=13.3m,答:教学楼AB的高度AB长13.3m.12.(2018·某某某某·8分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A.B和点C.D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).【分析】过D作DE⊥AB,可得四边形CHED为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH与直角三角形BDE中,设CH=DE=xm,利用锐角三角函数定义表示出AH与BE,由AH+HE+EB=AB列出方程,求出方程的解即可得到结果.【解答】解:过D作DE⊥AB,可得四边形CHED为矩形,∴HE=CD=40m,设CH=DE=xm,在Rt△BDE中,∠DBA=60°,∴BE=xm,在Rt△ACH中,∠BAC=30°,∴AH=xm,由AH+HE+EB=AB=160m,得到x+40+x=160,解得:x=30,即CH=30m,则该段运河的河宽为30m.【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.。

锐角三角函数解直角三角形例题

锐角三角函数解直角三角形例题

主题:锐角三角函数解直角三角形例题【序言】直角三角形是我们初中数学学习中的一个重要内容,而锐角三角函数作为直角三角形中的一个重要概念,在解题中也扮演着重要的角色。

下面我们将通过一些例题来详细讲解锐角三角函数在直角三角形中的应用。

【例一】已知直角三角形中的一角为30°,对边长为3cm,求斜边长。

求sin30°、cos30°、tan30°的值。

1. 根据三角函数的定义,sin30°=对边/斜边=3/斜边,而cos30°=邻边/斜边,tan30°=对边/邻边2. 根据30-60-90三角形的性质,可知对边为3cm,邻边为3*sqrt(3)cm,斜边为2*3cm=6cm3. 所以sin30°=1/2,cos30°=sqrt(3)/2,tan30°=1/sqrt(3)【例二】已知直角三角形中的一角为45°,斜边长为5cm,求对边和邻边的长度。

求sin45°、cos45°、tan45°的值。

1. 根据三角函数的定义,sin45°=对边/斜边,cos45°=邻边/斜边,tan45°=对边/邻边2. 根据45-45-90三角形的性质,可知对边和邻边的长度相等,且均为斜边的1/sqrt(2)倍3. 所以对边和邻边的长度均为5/sqrt(2)cm,sin45°=1/sqrt(2),cos45°=1/sqrt(2),tan45°=1【例三】已知直角三角形中的一角为60°,对边长为4cm,求斜边和邻边的长度。

求sin60°、cos60°、tan60°的值。

1. 根据三角函数的定义,sin60°=对边/斜边,cos60°=邻边/斜边,tan60°=对边/邻边2. 根据30-60-90三角形的性质,可知对边为4cm,邻边为2*4cm=8cm,斜边为4*sqrt(3)cm3. 所以sin60°=sqrt(3)/2,cos60°=1/2,tan60°=sqrt(3)【总结】通过以上三个例题的讲解,我们可以得出在直角三角形中,根据已知角度和已知边长来求解斜边长、对边长、邻边长以及三角函数值的具体方法。

解直角三角形的应用-方向角问题-初中数学习题集含答案

解直角三角形的应用-方向角问题-初中数学习题集含答案
解直角三角形的应用-方向角问题(北京习题集)(教师版)
一.填空题(共 5 小题) 1.(2018 秋•顺义区期末)轮船从 B 处以每小时 50 海里的速度沿南偏东 30 方向匀速航行,在 B 处观测灯塔 A 位于
南偏东 75 方向上,轮船航行半小时到达 C 处,在观测灯塔 A 北偏东 60 方向上,则 C 处与灯塔 A 的距离是 海里.
2.(2019 秋•东城区校级期中)如图,某货船以 24 海里 / 时的速度从 A 处向正东方向的 D 处航行,在点 A 处测得某 岛 C 在北偏东 60 的方向.该货船航行 30 分钟后到达 B 处,此时测得该岛在北偏东 30 的方向上.则货船在航行中 离小岛 C 的最短距离是 .
3.(2017 春•西城区校级期中)如图,在点 A 测得某岛 C 在北偏东 60 方向上,且距 A 点18 3 海里,某船以每小时 36 海里的速度从点 A 向正东方向航行,航行半小时后到达 B 点,此时测得岛 C 在北偏东 30 方向上,已知该岛周围 16 海里内有暗礁. B 点与 C 岛的距离是 B 点暗礁区域 (填内或外)
7.(2016•延庆县一模)如图,甲船在港口 P 的南偏西 60 方向,距港口 86 海里的 A 处,沿 AP 方向以每小时 15 海 里的速度匀速驶向港口 P .乙船从港口 P 出发,沿南偏东 45 方向匀速驶离港口 PC 2x ,现两船同时出发,2 小 时后乙船在甲船的正东方向.求乙船的航行速度.(结果精确到个位,参考数据: 2 1.414 , 3 1.732 , 5 2.236)
【分析】根据题中所给信息,求出 BCA 90 ,再求出 CBA 45 ,从而得到 ABC 为等腰直角三角形,然后根据 解直角三角形的知识解答.
【解答】解:根据题意,得 1 2 30 , Q ACD 60 , ACB 30 60 90 , CBA 75 30 45 , ABC 为等腰直角三角形, Q BC 50 0.5 25 , AC BC 25 (海里). 故答案为:25.

初中数学:解直角三角形练习题

初中数学:解直角三角形练习题

1. 如图,在中,,,,解这个直角三角形.2.已知中,,,,则的长为.3.如图,在中,,,,,求的长和.4.如图所示,中,,,,则BC的长为?5.如图,中,,于,,BD=4.求:及的长.6.如图,在中,,,点在上,且.求的值.7.如图,一山坡的坡度为,小辰从山脚出发,沿山坡向上走了米到达点,则小辰上升了米.8.数学拓展课程(玩转学具)课堂中,小陆同学发现,一副三角板中,含的三角板的斜边与含的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼在一起,点,,在同一直线上,若,求的长.请你运用所学的数学知识解决这个问题.9.将一副三角尺如图所示叠放在一起,则的值是.10.如图,在中,,,.若用科学计算器求边的长,则下列按键顺序正确的是A. B.C. D.11.如图,长的楼梯的倾斜角为度,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角为,调整后的楼梯的长为。

12.如图,某建筑物顶部有一旗杆,且点,,在同一条直线上,小明在地面处观测旗杆顶端的仰角为,然后他正对建筑物的方向前进了米到达地面的处,又测得旗杆顶端的仰角为,已知建筑物的高度,求旗杆的高度.13.如图所示,小明想测量电线杆的高度,发现电线杆的影子恰好落在土坡的坡面和地面上,量得,,与地面成角,且此时测得长的杆的影子长为,则电线杆AB的高度为多少米?14.如图所示,某办公大楼正前方有一根高度是米的旗杆,从办公楼顶端测得旗杆顶端的俯角是,旗杆底端到大楼前梯坎底边的距离是米,梯坎坡长是米,梯坎坡度,则大楼的高度为多少米?15.如图,以为圆心,半径为的弧交坐标轴于,两点,是上一点(不与,重合),连接,设,则点的坐标是A. B. C. D.。

第一章 解直角三角形单元测试卷(困难 含解析)

浙教版初中数学九年级下册第一单元《解直角三角形》(困难)(含答案解析)考试范围:第一单元;   考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1. 如图,已知△ABC中,∠B=90°,D,E分别为BC,AC的中点,连结DE,过D作AC的平行线与∠CAB的角平分线交于点F,连结EF,若EF⊥DF,AC=2,则∠DEF的正弦值为( )A. √5−12B. √5+14C. √5−14D. 3+√542. 在△ABC中,已知tanA=tanB,则下列说法不正确的是( )A. 边AB上任意一点P到边AC、BC的距离之和等于点B到AC的距离B. 边AB的垂直平分线是△ABC的对称轴C. △ABC的外心可能在△ABC内部、边上或外部D. 如果△ABC的周长是l,那么BC=l−2AB3. 如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点M处,折痕为AP,再将△PCM,△ADM分别沿PM,AM折叠,此时点C,D落在AP上的同一点N处.给出以下结论:①M是CD的中点;②AD//BC;③∠DAM+∠CPM=90∘;④当AD=CP时,ABCD =√32.其中正确的个数为( )A. 1B. 2C. 3D. 44. 在Rt△ABC中,∠C=90°,cosB=12,则sinA的值为( )A. 12B. √22C. √32D. √35. 如图,AB⏜是半径为1的半圆弧,△AOC 为等边三角形,点D 是BC ⏜上的一动点、则△COD 的面积S 的最大值是 ( )A. √34B. √33C. √32D. 126. 如图,Rt △ABC 中,∠BAC =90∘,cosB =14,点D 是边BC 的中点,以AD 为底边在其右侧作等腰三角形ADE ,使∠ADE =∠B ,连接CE ,则CEAD的值为( )A. 32B. √3C. √152D. 27. 已知圆内接正三角形的面积为√3,则该圆的内接正六边形的边心距是( ) A. 2B. 1C. √3D. √328. 如图,在正方形ABCD 中,AB =2,点E 是BC 边的中点,连接DE ,延长EC 至点F ,使得EF =DE ,过点F 作FG ⊥DE ,分别交CD 、AB 于N 、G 两点,连接CM 、EG 、EN ,下列正确的是:①tan∠GFB =12;②MN =NC ;③CMEG =12;④S 四边形GBEM =√5+12( )A. 4B. 3C. 2D. 19. 四巧板是一种类似七巧板的传统智力玩具,它是由一个长方形按如图1分割而成,这几个多边形的内角除了有直角外,还有45°、135°、270°角.小明发现可以将四巧板拼搭成如图2的T字形和V字形,那么T字形图中高与宽的比值ℎl为( )A. √2B. √2+12C. 4+√24D. 3√2210. 如图,OA=4,线段OA的中点为B,点P在以O为圆心,OB为半径的圆上运动,PA的中点为Q.当点Q也落在⊙O上时,cos∠OQB的值等于( )A. 12B. 13C. 14D. 2311. 如图,正方形ABCD的对角线AC,BD相交于点O,点F是CD上一点,OE⊥OF交BC于点E,连接AE,BF交于点P,连接OP.则下列结论:①AE⊥BF;②△OAP∽△EAC;③四边形OECF的面积是正方形ABCD面积的14;④AP−BP=√2OP;⑤若BE:CE=2:3,则tan∠CAE=47.其中正确的结论有( )个A. 2个B. 3个C. 4个D. 5个12. 如图,建筑工地划出了三角形安全区(△ABC),一人从A点出发,沿北偏东53°方向走50m 到达C点,另一人从B点出发,沿北偏西53°方向走100m到达C点,则点A与点B相距(tan53°=43)( )A. 30√15mB. 30√17mC. 40√10mD. 130m第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 如图,在Rt△ABC中,∠A=90°,AD⊥BC,垂足为D.给出下列四个结论:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正确的结论有______.14. 如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为______.,BE=2,则该菱形的面积是______.15.如图,在菱形ABCD中,DE⊥AB,cosA=3516.如图,在矩形ABCD中,E,F,G,H分别为AB,BC,CD,DA的中点,若AH:AE=4:3,四边形EFGH的周长是40cm,则矩形ABCD的面积是______cm2.三、解答题(本大题共9小题,共72分。

解直角三角形的应用题型

解直角三角形的应用题型直角三角形是初中数学中一个重要的概念,也是解决实际问题中常用的基本图形之一。

在应用题中,我们经常需要用到直角三角形的性质和定理,以解决各种实际问题。

下面列举一些常见的直角三角形应用题型。

1. 求斜边长已知直角三角形的一条直角边和另一条边的长度,求斜边长。

这类问题可以用勾股定理解决,即斜边的长度等于直角边长度的平方加上另一条边长度的平方的平方根。

例题:已知直角三角形的一个直角边为3,另一条边长为4,求斜边长。

解:斜边长等于3的平方加上4的平方的平方根,即√(3+4)=√25=5。

2. 求角度已知直角三角形两个角度,求第三个角度。

由于直角三角形的内角和为180度,因此第三个角度可以用90度减去已知的两个角度得到。

例题:已知直角三角形两个角度分别为30度和60度,求第三个角度。

解:第三个角度等于90度减去30度和60度的和,即90-30-60=0度。

3. 求高已知直角三角形的斜边和一条直角边,求高。

我们可以通过求出这个三角形的面积以及底边长度来求出高,也可以利用正弦定理或余弦定理求出高。

例题:已知直角三角形的斜边长为5,直角边长为3,求高。

解:利用勾股定理可求出这个三角形的面积为(3*4)/2=6。

利用面积公式S=1/2*底边长*高,可得高为(2*6)/3=4。

4. 求面积已知直角三角形的两条直角边长度,求面积。

我们可以利用面积公式S=1/2*底边长*高求出面积。

例题:已知直角三角形的两条直角边长分别为4和3,求面积。

解:利用面积公式S=1/2*4*3,可得面积为6。

以上是直角三角形应用题的一些常见类型,希望能对大家的学习有所帮助。

【解析版】华师大版九年级数学下册课后练习:解直角三角形+课后练习二及详解


∴BE =10 2 ,
∵AC =30,
∴S△ABC= 1 AC?BE= 1 × 30× 10 2 = 150 2 .
2
2
题二:
答案: 8; 4 . 5
详解:在 Rt△ ABC中, AC= BC2 AB2 =8;
AB2 =BD?BC, ∴BD=3.6 ,CD=6.4 , 在 Rt△ ACD中, sin a= CD = 4 .
学科: 数学
专题: 解直角三角形
金题精讲
题一:
题面:如图,在△ ABC中,∠ ACB=90°, BC=4,AC=5,CD⊥ AB,则 sin ∠ ACD的值是

tan ∠ BCD的值是 .
题二:
题面:已知如图,△ ABC中, AD⊥ BC于 D, AC=BD=5,tan ∠ CAD= 1 ,求 AB的值. 2
x2+4x
2
=25

∵x>0∴ x= 5 , ∴在 Rt△ ADB中
AB= AD 2 BD 2 = 3 5 ,
即 AB长为 3 5
满分冲刺 题一:
答案: 150 2
详解:过点 B 作 BE⊥ AC, ∵∠ A=135°, ∴∠ BAE=180° ∠ A=180° 135° =45°, ∴∠ ABE=90 ° ∠ BAE =90° 45° =45 °, 在 Rt△ BAE 中, ∵AB =20,
金题精讲 题一:
课后练习详解
答案: 5
41 4
;
41 5
详解:∵△ ABC中,∠ ACB=90°, BC=4, AC=5,CD⊥ AB,
∴AB= AC 2 BC2 = 52 42 = 41 .
在 Rt△ ABC与 Rt△ ACD中,∠ A+∠ B=90°,∠ A+∠ ACD=90°,∠ ADC=∠ ACB=90°. ∴∠ B=∠ ACD.Rt△ ABC∽Rt△ ACD,∠ BCD=∠ A.

初中数学专题复习解直角三角形的应用题

解直角三角形的应用题1.如图,已知测速站P 到公路L 的距离PO 为40米,一辆汽车在公路L 上行驶,测得此车从点A 行驶到点B 所用的时间为2秒,并测得∠APO=600,∠BPO=300,计算此车从A 到B 的平均速度为每秒多少米(结果保留四个有效数字),并判断此车是否超过了每秒22米的限制速度。

2.市政府为改善我市的交通状况,促进经济发展,在“温泉——崇阳”路段间修建了“翠竹岭”隧道。

如图,隧道BC 沿直线ABC 打通,测得∠ABD=167.2°,BD=600m, ∠D=77.2°。

已知汽车走隧道的耗油量为0.2升/km ,走原山坡公路的耗油量为0.6升/km 。

隧道长与山坡公路长的比为1:10,那么汽车每通过“翠竹岭”一次,走隧道比走山坡公路节省油料多少升(精确到0.1升)?(参考数据:sin12.8°=0.2215,sin77.2°=0.9750,cos12.8°=0.9750,cos77.2°=0.2215)ALO P B3.如图,客轮沿折线A -B -C 从A 出发经B 再到C 匀速航行,货轮从AC 的中点D 出发沿某一方向匀速直线航行,将一批物品送达客轮。

两船同时起航,并同时到达折线A -B -C 上的某点E 处,已知AB =BC =200海里,∠ABC =900,客轮速度是货轮速度的2倍。

(1)选择:两船相遇之处E 点 ( )A 、 线段AB 上B 、 在线段BC 上C 、 可以在线段AB 上,也可以在线段BC 上(1) 求货轮从出发到两船相遇共航行了多少海里?(结果保留根号)4.某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ABC=900,AC=80米,BC=60米。

(1) 若入口E 在边AB 上,且与A 、B 等距离,求从入口E 到出口C 的最短路线的长,(2) 若线段CD 是一条水渠,且D 点在边AB 上,已知水渠的造价为10元/米,则D 点在距A 点多远处时,此水渠的造价最低?最低造价是多少?. D A B C B A(第28题图)5.如图,A 市气象站测得台风中心在市正东方向320千米处,正以每小时25千米的速度向西北的OP 方向移动已知台风中心240千米处的范围内是受台风影响的区域,问A 市是否受到这次台风的影响?如受影响,那么遭受台风影响的时间有多长?如不受影响,说明理由.6.城市规划期间,欲拆除一电线杆AB (如图)已知距电线杆AB 水平距离14米的D 处有一大坝,背水坡CD 的坡度i=2:1,坝高CF 为2米.在坝顶C 处测得杆顶A 的仰角为30,D 、E 之间是宽为2米的人行道.试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心、以AB 为半径的圆形区域为危险区域).(732.13≈,414.12≈)B A7、台湾“华航”客机失事后,祖国大陆海上搜救中心立即通知位于A、B两处的上海救捞人局所属专业救助轮“华意”轮、“沪救12”轮前往出事地点协助搜索。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学解直角三角形的计算题目
直角三角形是初中数学中的一个重要概念,解直角三角形的计算题
目是培养学生计算能力和几何思维逻辑的一种训练方式。本文将以实
例的形式,逐步介绍解直角三角形计算题目的步骤和方法。

【实例一】
已知一个直角三角形,其中直角边长为3cm,斜边长为5cm,求另
一直角边的长度。

解答:
根据勾股定理,直角三角形中直角边的平方和等于斜边的平方。设
另一直角边的长度为x,则有:

x^2 + 3^2 = 5^2
x^2 + 9 = 25
x^2 = 16
x = 4
所以,另一直角边的长度为4cm。
【实例二】
已知一个直角三角形,其中两条直角边的长度分别为7cm和24cm,
求斜边的长度。

解答:
同样利用勾股定理,设斜边的长度为x,则有:
7^2 + 24^2 = x^2
49 + 576 = x^2
625 = x^2
x = 25
所以,斜边的长度为25cm。
【实例三】
已知一个直角三角形,其中斜边的长度为10cm,另一直角边的长
度为6cm,求直角边的长度。

解答:
根据勾股定理,直角边的平方和等于斜边的平方。设另一直角边的
长度为x,则有:

6^2 + x^2 = 10^2
36 + x^2 = 100
x^2 = 64
x = 8
所以,另一直角边的长度为8cm。
通过以上三个实例,我们可以总结出解直角三角形计算题目的一般
步骤:
Step 1: 根据题目给出的已知条件,确定直角边、斜边的长度。
Step 2: 利用勾股定理,建立方程,求解另一直角边或斜边的长度。
Step 3: 根据方程求解的结果,得出答案。
在解直角三角形计算题目中,我们主要应用了勾股定理,即直角边
的平方和等于斜边的平方。这是因为直角三角形中,直角边与斜边的
关系是固定的,通过勾股定理我们可以方便地求解未知边的长度。

此外,还可以在解题过程中运用一些几何知识,如三角形的内角和
为180度等,来辅助解题。

通过反复练习解直角三角形计算题目,可以提高学生的计算能力、
思维逻辑和几何观察能力,有利于培养学生的数学素养和解决实际问
题的能力。

总之,在解直角三角形计算题目时,我们需要注意题目给出的已知
条件,运用勾股定理建立方程,并通过求解方程得出结果。同时,灵
活运用几何知识,培养学生的数学思维和解题能力。

相关文档
最新文档