一元一次不等式组练习题(含答案)
一元一次不等式组 专题练习(含答案解析)

一元一次不等式组 专题练习(含答案解析)一、计算题(本大题共25小题,共150.0分)1. 解不等式组,并在数轴上表示出解集:(1){8x +5>9x +62x −1<7(2){2x−13−5x+12≤15x −1<3(x +1).2. 解不等式组:{x +1>0x ≤x−23+2.3. 解不等式组{3(x +2)≥x +4x−12<1,并求出不等式组的非负整数解.4. 解不等式组:{2x −6≤5x +63x <2x −15. 求不等式组:{x −3(x −2)≤85−12x >2x 的整数解.6. 解下列不等式组并将不等式组的解集在数轴上表示出来.(1){3x <2(x −1)+3x+62−4≥x ; (2){5x +7>3(x +1)1−32x ≥x−83.7. 解不等式组{x −3(x −2)≥42x−15<x+12,并将它的解集在数轴上表示出来.8. 解不等式组 {3(x −2)+4<5x 1−x 4+x ≥2x −1.9. 解不等式组:{−3(x +1)−(x −3)<82x+13−1−x 2≤1,并求它的整数解的和.10. 试确定实数a 的取值范围,使不等式组{x 2+x+13>0x +5a+43>43(x +1)+a 恰有两个整数解.11. 解不等式组{2(x +2)≤x +3x 3<x+14.12. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.13. {x −3(x −2)≤42x−15>x+12.14. 求不等式组{1−x ≤0x+12<3的解集.15. 解下列不等式组(1){3x −2<82x −1>2(2){5−7x ≥2x −41−34(x −1)<0.5.16. 解不等式组:{2x −1>53x+12−1≥x,并在数轴上表示出不等式组的解集.17. 解不等式组:{x 2−1<xx −(3x −1)≥−5.18. 解不等式组:{2x +9<5x +3x−12−x+23≤019. 解不等式组:{3x +1<2x +3①2x >3x−12②20. 解不等式组:{3x +7≥5(x +1)3x−22>x +1.21. 解不等式组{1−2(x −1)≤53x−22<x +12.22. 解不等式组:{4x >2x −6x−13≤x+19,并把解集在数轴上表示出来.23. 若关于x 的不等式组{x 2+x+13>03x +5a +4>4(x +1)+3a恰有三个整数解,求实数a 的取值范围.24. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.25. 解不等式组{x−32<−1x 3+2≥−x .答案和解析1.【答案】解:(1), 解不等式①得,x <-1,解不等式②得,x <4,∴不等式组的解集是x <-1,在数轴上表示如下:;(2){2x−13−5x+12≤1①5x −1<3(x +1)②, 解不等式①得,x ≥-1,解不等式②得,x <2,∴不等式组的解集是-1≤x <2,在数轴上表示如下:.【解析】 本题考查了不等式的解法与不等式组的解法,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.(1)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解;(2)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解.2.【答案】解:{x +1>0①x ≤x−23+2②, 由①得,x >-1,由②得,x ≤2,所以,原不等式组的解集是-1<x ≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.【答案】解:解不等式(1)得x ≥-1解不等式(2)得x <3∴原不等式组的解是-1≤x <3∴不等式组的非负整数解0,1,2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.本题旨在考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.【答案】解:解不等式①,得x ≥-4,解不等式②,得x <-1,所以不等式组的解集为:-4≤x <-1.【解析】先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.【答案】解:由x -3(x -2)≤8得x ≥-1由5-12x >2x 得x <2∴-1≤x <2∴不等式组的整数解是x =-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.【答案】解:(1){3x <2(x −1)+3①x+62−4≥x②, 解①得x <1,解②得x ≤-2,所以不等式组的解集为x ≤-2,用数轴表示为:;(2){5x +7>3(x +1)①1−32x ≥x−83②, 解①得x >-2,解②得x ≤2,所以不等式组的解集为-2<x ≤2,用数轴表示为:. 【解析】(1)分别解两个不等式得到x <1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集; (2)分别解两个不等式得到x >-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.7.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.8.【答案】解:{3(x−2)+4<5x①1−x4+x≥2x−1②,由①得:x>-1;由②得:x≤1;∴不等式组的解集是-1<x≤1.【解析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.9.【答案】解:由①得x>-2,由②得x≤1,∴不等式组的解集为-2<x≤1∴不等式组的整数解的和为-1+0+1=0.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.【答案】解:由x 2+x+13>0,两边同乘以6得3x +2(x +1)>0,解得x >-25, 由x +5a+43>43(x +1)+a ,两边同乘以3得3x +5a +4>4(x +1)+3a ,解得x <2a ,∴原不等式组的解集为-25<x <2a .又∵原不等式组恰有2个整数解,即x =0,1;则2a 的值在1(不含1)到2(含2)之间,∴1<2a ≤2,∴0.5<a ≤1.【解析】先求出不等式组的解集,再根据x 的两个整数解求出a 的取值范围即可.此题考查的是一元一次不等式的解法,得出x 的整数解,再根据x 的取值范围求出a 的值即可. 求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.【答案】解:{2(x +2)≤x +3①x 3<x+14②, ∵由①得:x ≤-1,由②得:x <3,∴不等式组的解集是x ≤-1.【解析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可. 本题考查了不等式的性质,解一元一次不等式(组)的应用,关键是根据不等式的解集找出不等式组的解集,题目比较好,难度也适中.12.【答案】解:由①得4x +4+3>x解得x >- 73,由②得3x -12≤2x -10,解得x ≤2,∴不等式组的解集为- 73<x ≤2.∴正整数解是1,2.【解析】 本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.13.【答案】解:{x −3(x −2)≤4①2x−15>x+12②, 由①得:x ≥1,由②得:x <-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.14.【答案】解:{1−x ≤0①x+12<3②, 解不等式①,得x ≥1.解不等式②,得x <5.所以,不等式组的解集是1≤x <5.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.15.【答案】解:(1){3x −2<8①2x −1>2②, 解不等式①,得x <103, 解不等式②,得x >32.∴原不等式组的解集是:32<x <103;(2){5−7x ≥2x −4①1−34(x −1)<0.5②, 解不等式①,得x ≤1,解不等式②,得x >53. ∴原不等式组无解.【解析】 本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x 大于较小的数、小于较大的数,那么解集为x 介于两数之间.(1)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;(2)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;如果两个不等式没有交集,说明原不等式组无解.16.【答案】解:{2x −1>5①3x+12−1≥x②解①得:x >3,解②得:x ≥1,则不等式组的解集是:x >3;在数轴上表示为:【解析】分别解两个不等式得到x >3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集. 本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.【答案】解:{x2−1<x①x −(3x −1)≥−5②, 由①得:x >-2,由②得:x ≤3,∴不等式组的解集是:-2<x ≤3.【解析】根据不等式的性质求出不等式的解集,根据找不等式组的解集得规律找出不等式组的解集即可.本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,根据不等式的解集能找出不等式组的解集是解此题的关键.18.【答案】解:解不等式2x +9<5x +3,得:x >2,解不等式x−12-x+23≤0,得:x ≤7,则不等式组的解集为2<x ≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】解:由①,得3x-2x<3-1.∴x<2.由②,得4x>3x-1.∴x>-1.∴不等式组的解集为-1<x<2.【解析】分别求出不等式①②的解集,同大取大;同小取小;大小小大中间找;大大小小找不到求出不等式组解集.本题考查了解一元一次不等式组的解法,利用同大取大;同小取小;大小小大中间找;大大小小找不到求不等式组解集是本题关键.20.【答案】解:{3x+7≥5(x+1)①3x−22>x+1②,由①得,x≤1,由②得,x>4,所以,不等式组无解.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解.21.【答案】解:由①得:1-2x+2≤5∴2x≥-2即x≥-1由②得:3x-2<2x+1∴x<3.∴原不等式组的解集为:-1≤x<3.【解析】解先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22.【答案】解:{4x>2x−6①x−13≤x+19②,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.23.【答案】解:{x2+x+13>0①3x+5a+4>4(x+1)+3a②,由①得:x>-25,由②得:x<2a,则不等式组的解集为:-25<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤32,故答案为:1<a≤32.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.【答案】解:由①得4x+4+3>x解得x>-73,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为-73<x≤2.∴正整数解是1、2.【解析】先解每一个不等式,求出不等式组的解集,再求出正整数解即可.此题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.25.【答案】解:{x−32<−1①x3+2≥−x②,解①得x<1,解②得x≥-32,所以不等式组的解集为-32≤x<1.【解析】分别解两个不等式得到x<1和x≥-,然后根据大于小的小于大的取中间确定不等式组的解集.本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.。
一元一次不等式组练习题(附答案)

一元一次不等式组练习题(附答案)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式 x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解 D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠,b≠3 B.a= ,b=-3C.a≠,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分 B.15分 C.20分 D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减 D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( •)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是(). A.从甲组调12人去乙组 B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个 B.4个 C.5个 D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程: -9.5.20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米) 1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数 1~50人 51~100人 100人以上票价 5元 4.5元 4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程 x-1=- ,得x= )4. x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则 =5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x( + )=1,解得x=4]二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得 =0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.。
初一数学一元一次不等式练习题汇总(复习用)含答案

一元一次不等式和一元一次不等式组培优训练一、填空题1. 比较大小:-3________-π,-0.22______(-0.2)2;2. 若2-x<0,x________2;3. 若>0,则xy_________0;4. 代数式的值不大于零,则x__________;5. a、b关系如下图所示:比较大小|a|______b,-6. 不等式13-3x>0的正整数解是__________;7. 若|x-y|=y-x,是x___________y;8. 若x≠y,则x2+|y|_________0;9. 不等式组的解集是____________.二、选择题在下列各题中的四个备选答案中,只有一个是正确的,将正确答案前的字母填在括号内:1.若|a|>-a,则a的取值范围是( ).(A)a>0; (B)a≥0; (C)a<0; (D)自然数.2.不等式23>7+5x的正整数解的个数是( ).(A) 1个;(B)无数个;(C)3个;(D)4个.3.下列命题中正确的是( ).(A) 若m≠n,则|m|≠|n|; (B)若a+b=0,则ab>0;(C)若ab<0,且a<b,则|a|<|b|; (D)互为例数的两数之积必为正.4.无论x取什么数,下列不等式总成立的是( ).(A) x+5>0; (B)x+5<0; (C)-(x+5)2<0;(D)(x-5)2≥0.5.若,则x的取值范围是( ).(A)x>1; (B)x≤1;(C)x≥1; (D)x<1.三、解答题1.解不等式(组),并在数轴上表示它们的解集.(1)(x-1)≥1; (2);(3)(4)2. x取什么值时,代数式的值不小于代数式的值.3. K取何值时,方程=5(x-k)+1的解是非负数.4. k为何值时,等式|-24+3a|+中的b是负数?参考答案一、1.-3>-π,-22 <(-0.2)2; 2.x>2; 3.xy>0; 4.X≥2; 5.|a|>b,-,-b<-; 6.1,2,3,4; 7.x≤y; 8.x2+|y|>0; 9.无解.二、1.A; 2.C; 3.D 4.D; 5.B.三、1.(1)x≤-3;(2)x<1;(3)2≤x<8;(4)x<0;2.x≤-;3.k≥;4.k>-48.一元一次不等式能力测试题一、填空题(每空3分,共27分)1.(1)不等式的解集是________;(2)不等式的非负整数解是________;(3)不等式组的解集是______________;(4)根据图1,用不等式表示公共部分x的范围______________.2.当k________时,关于x的方程2x-3=3k的解为正数.3.已知,且,那么ab________b2(填“>”“<”“=”).4.一个三角形的三边长分别是3,1-2m,8,则m的取值范围是________.5.若不等式的解集为,则m的值为________.6.若不等式组无解,则m的取值范围是________.二、选择题(每小题4分,共24分)7. 如果不等式的解集为,那么( )A.B.C.D.m为任意有理数8.如果方程有惟一解,则( )A.B.C.D.9.下列说法①是不等式的一个解;②当时,;③不等式恒成立;④不等式和解集相同,其中正确的个数为( )A.4个 B.3个 C.2个 D.1个10.下面各个结论中,正确的是( )A.3a一定大于2a B.一定大于aC.a+b一定大于a-b D.a2+1不小于2a11.已知-1<x<0,则x、x2、三者的大小关系是( )A.B.C.D.12.已知a=x+2,b=x-1,且a>3>b,则x的取值范围是( ) A.x>1 B.x<4 C.x>1或x<4 D.1<x<4三、解答题13.解下列不等式(组).(12分)(1)(2)14.已知满足不等式的最小正整数是关于x的方程的解,求代数式的值.(12分)15.某人9点50分离家赶11点整的火车.已知他家离火车站10千米.到火车站后,进站、“非典”健康检查、检票等事项共需20分钟.他离家后以3千米/时的速度走了1千米,然后乘公共汽车去火车站.问公共汽车每小时至少行驶多少千米才能不误当次火车?(12分)16.某企业为了适应市场经济的需要,决定进行人员结构调整.该企业现有生产性行业人员100人,平均每人全年可创造产值a元.现欲从中分流出x人去从事服务性行业.假设分流后,继续从事生产性行业的人员平均每人全年创造产值可增加20%,而分流从事服务性行业的人员平均每人全年可创造产值3.5a元.如果要保证分流后,该厂生产性行业的全年总产值不少于分流前生产性行业的全年总产值,而服务性行业的全年总产值不少于分流前生产性行业全年总产值的一半,试确定分流后从事服务性行业的人数.(12分)一元一次不等式能力测试题参考答案一、填空题1. (1)(2)0,1,2 (3)(4)2.k>-13.>4.5.6.二、选择题7.C 8.D 9.A 10.D 11.D 12.D三、解答题13.(1)(2)x<2 14.15.18千米/时 16.15人功16人一、选择题:(每小题3分,共30分)1、下列不等式中,是一元一次不等式的是()A; B; C; D;2、“x大于-6且小于6”表示为()A -6<x<6;B x>-6,x≤6;C -6≤x≤6; D -6<x≤6;3、解集是x≥5的不等式是()A x+5≥0B x–5≥0C –5–x ≤0D 5x–2 ≤–94、不等式组的解是( )A、x≤2B、x≥2C、-1<x≤2D、x>-15、不等式组的解集在数轴上表示正确的是()6、下列不等式组无解的是()A.B.C.D.7、不等式组的正整数解的个数是()A.1个 B.2个 C.3个 D.4个8、等式组的解集是,则m的取值范围是()A.m ≤2 B.m≥2 C.m≤1 D. m>19、关于x的一元一次方程4x-m+1=3x-1的解是负数,则m的取值范围是()A m=2B m>2C m<2 Dm≤210、ax>b的解集是()A.; B.; C.; D.无法确定;二、填空题(每题4分,共20分)1、不等式的解集是:;不等式的解集是:;2、不等式组的解集为 . 不等式组的解集为 .3、不等式组的解集为 . 不等式组的解集为 .4、当x 时,3x-2的值为正数;x为时,不等式的值不小于7;5、已知不等式组无解,则的取值范围是三、解不等式(组),并在数轴上表示它的解集(每题6分,共24分)(1)(2)(3)(4)三、根据题意列不等式(组)——只列式,不求解;(每题6分,共12分)1、某次知识竞赛共有20道选择题.对于每一道题,若答对了,则得10分;若答错了或不答,则扣3分.请问至少要答对几道题,总得分才不少于70分?解:设,依题意得:2、小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?解:设,依题意得:四、解答题:(每题7分,共14分)1、若方程组的解、的值都不大于1,求的取值范围。
七年级下一元一次不等式组100题(有答案)

解不等式不等式组100题1.3(2x +5)<2(4x +6)2.10-4(x -3)≤2(x -2)3.3x -2(9-x )>3(7+2x )-(11-6x )4.2(3x -1)-3(4x +5)≤x -4(x -7)5.2(x -1)-x >3(x -1)-3x +56.3[y -2(y -7)]≤4y7.15-(7+5x )≤2x +(5-3x )8.2(x -4)-3<1-3(x -2)9.2+≤2-3(y +1)8y -3410.0.5x +3(1+0.2x )>0.4x -0.611.2[x -]≤x 43(x -2312)3412.-≥0.04x +0.090.050.3+0.2x 0.3x -5213.7(4-x )-2(4-3x )<-4x14.2+<3+3(y +1)8y -1415.+<1x 3x -1216.3[x -2(x -2)]>x -3(x -3)17.x ++<1+x 2x +13x +8618.x -4<3243(1+x )(x -216)19.5-≥-x 3122x +1420.+1<+3y +137y -352(y -2)1521.-1<x +523x +2222.{2x -5<3x>x -22x 323.{->-1x 2x 32-3>-6(x -3)(x -2)24.{+4≤1x2x -8>2(x +2)25.{x -3<4(x -2)≥x -12x +1326.{2≤10-4(x -3)(x +8)-<1x -124x +1627.{->x3x -322x +13<112[x -2(x +3)]28.{x -3>1-x x -5>5-x 2x -4>x 229.4≤<73x -2-230.2x -1≤x -5≤4-x 3231.y -≤+13y -832(10-y )732.>(1-)(+1)(1+y 3)(+1y 2)y -22y 233.{3x -2<82x -1>234.{5-7x ≥2x -41-<0.534(x -1)35.2x <1-x ≤x +536.{3<2(x +9)(1-x)-≤-14x -30.5x +40.237.{-3x ≤04x +7>038.{x -1<x122x -4>3x +339.{2x -5<3x >x -22x 340.{->-1x 2x 32-3>-6(x -3)(x -2)41.{+4≤1x 2x -8>2(x +2)42.{5x -3≥2x <43x -1243.{2x +7>3x -1≥0x -2544.{>x -11+2x34<3x -4(x -1)45.-1<<1-2-3x446.{2-1≥3(x +1)4+x <747.{2x -1≥3(x -2)-2x <448.{3x +1>x +32x -1<x +149.{x +3>42x <650.{2x -5≥3(x -1)-<1x 3x -1251.{x<2x +13x -2≤4(x -1)52.{x +3>02+3≥3x(x -1)53.{3x +1<2(x +2)-x ≤x +2135354.{>0x +132≥6(x -1)(x +5)55.{5x -9<3(x -1)1-x ≤x -1321256.{2≤5x +5(x -3)4x <3x +157.{2x +3≤x +6>x +22x +3358.{-3≤4-x(x -2)>x -11+2x359.{4x -3<5x +≤x-42x +261360.{<212(x +4)x -3>5(x -1)61.{x ->-31+3x 25x -12≤2(4x -3)62.{1-2(x -1)≤5<x +3x -221263.{+3>x +1x -321-3≤8-x(x -1)解不等式不等式组100题64.{5x +2>3(x -1)7-x ≥x -1321265.{2<x +4(x +2)≥x 3x +1466.{2x +5≤3(x +2)x -1<x2367.{3≥x +4(x +2)<1x -1268.{2-x >0+1≥5x +122x -1369.{-3x ≤5616(x +5)2-9x >5[x -2(x -3)](x +19)70.{3x -2≤x +6+1>x 5x -2271.{2x +2≥3x +3-<-2x-13x +4272.{5x +3(x -2)≤10>x -11+3x273.{+2≥xx -241-3<9-x (x -2)74.{5x -2>3(x +1)x -1≤7-x 123275.{4x -10<05x +2>3x11-2x ≥1+3x 76.{-≤12x -135x +125x -1<3(x +1)77.{2x -3<1+2≥-x x -1278.{3+4<5x (x -2)-x ≥3x +1x -1279.{x -3(x -2)≥4<2x -15x +1280.{>2+x 22x -135-2≤x -1(x -3)81.{5x -2<3x +4>-x x +8382.{10-4(x -3)≥2(x -1)x -1>1-2x383.{5x -2<3(x +1)≤x -222x +3384.{3>2(x +9)(1-x)-≤-14x -30.5x +40.285.{2-x >0+1≥5x +122x -1386.{-3-<8(x +1)(x -3)-≤12x +131-x287.{5x -2≤3(x +1)x -1≤7+x 123288.{1-≤x +2x +12x >x (x +3)(x +1)89.{-≤12x -135x +125x -1<3(x +1)90.{5x +4<3(x +1)≥x -122x -1591.{2x +7>3x -1≥0x -2592.{1-2(x -1)≤5<x +3x -221293.{2≤3x +3(x +2)<x 3x +1494.{3x -1<2(x +1)≥1x +3295.{3x -2>x +2x -1≤7-x 123296.{3x -1<2x +11-2≤3+5(x -1)(x +1)97.{x -(2x -1)≤432>2x -11+3x298.{+3<x -1x -231-3≥6-x(x +1)99.{2x -1≥03x +1>03x -2<0100.≤5|-2x +13|解不等式不等式组100题答案12345678910x >32x ≥133x <-4x ≥-15x >4y ≥6x ≥34x <185y ≤35x >-36711121314151617181920x ≥35x ≤9x <-203y <3x <95x <3x <65x >152x ≥-572y >33821222324252627282930x >12x >6-6<x <6x <-121<x ≤4-10<x ≤1无解x >8-4<x ≤-2x ≤-431323334353637383940y ≤256y >65<x <32103无解-2≤x <13x >-3x ≥0无解x >6-6<x <641424344454647484950x <-121≤x <32≤x <8x <0-2<x <231≤x <3-2<x ≤51<x <21<x <3-3<x ≤-251525354555657585960-1<x ≤2-3<x ≤1-1≤x <3-1<x ≤41≤x <3-<x <11130<x ≤31≤x <4-3<x ≤3X <-161626364656667686970-2≤x <5-1≤x <3-2≤x <1-<x ≤452无解-1≤x <31≤x <3-1≤x <20≤x <40<x ≤471727374757677787980-2<x ≤-1-3<x ≤8-<x ≤212<x ≤452-1<x ≤2-1≤x <2-1≤x <2-1<x ≤-37-7<x ≤14≤x <881828384858687888990-2<x <3<x ≤445-12≤x <52-4≤x <-3-1≤x <2-2<x ≤1-8≤x ≤52-1≤x <0-1≤x <2无解9192939495969798991002≤x <8-1≤x <31≤x <3-1≤x <32<x ≤4﹣1≤x <2﹣≤x <354无解≤x <1223-7≤x ≤8。
七年级数学下册一元一次不等式组练习题

七年级数学下册一元一次不等式组练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.不等式组23x x >-⎧⎨>⎩的解集是__________________. 2.已知方程组23325x y m x y m -=+⎧⎨+=-⎩①②,以下说法:①无论m 和y 取何值,x 的值一定等于2:①当3m =时,x 与y 互为相反数;①当方程组的解满足25x y +=时,1m =-;①方程组的解不可能为20x y =-⎧⎨=⎩,其中正确的是____________(填序号).3.判断下列不等式组是否为一元一次不等式组:(1)276331y x -<⎧⎨+>⎩__________;(2)12x x <⎧⎨>-⎩__________; (3)2111x x+=⎧⎪⎨<⎪⎩ __________;(4)271330a a ->⎧⎨+<⎩__________ 4.若关于x 的不等式组3410x x x a ≤+⎧⎨-<⎩,恰有2个整数解,则a 的取值范围为___. 5.若关于x 的分式方程2122224x m x x x ++=-+-的解大于1,则m 的取值范围是______________. 6.已知点(2,)P m m -关于原点对称的点在第三象限,则m 的取值范围是_______.二、单选题7.新定义:对非负实数x “四舍五入”到个位的值记为x 〈〉,即:当n 为非负整数时,如果1122n x n -≤<+,则x n 〈〉=;反之,当n 为非负整数时,如果x n 〈〉=,则1122n x n -≤<+.例如:00.480〈〉=〈〉=,0.64 1.491〈〉=〈〉=,33〈〉=,3.5 4.124〈〉=〈〉=,…如果13x 〈-〉=,则实数x 的取值范围为( )A .3.5 4.5x <≤B .3.5 4.5x ≤<C .3.5 4.5x ≤≤D .3.5 4.5x <<8.把不等式组1034x x +>⎧⎨+⎩的解集表示在数轴上,下列选项正确的是( ) A . B .C .D .9.如果 57x y a b +和-3132y x a b -是同类项,则x ,y 的值是( )A .﹣3,2B .2,﹣3C .﹣2,3D .3,﹣210.若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程11322ay y y --=---有非负整数解,则符合条件的所有整数a 的和为( )A .0B .1C .4D .711.若不等式组643x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( ) A .3m > B .3m ≥ C .3m ≤ D .3m <12.如果点P (m ,1+2m )在第三象限内,那么m 的取值范围是( )A .102m -<<B .12m >-C .0m <D .12m <-三、解答题13.解不等式组510032x x x-≤⎧⎨+>-⎩,并把解集在数轴上表示出来.14.数学实验室:点A 、B 在数轴上分别表示有理数a ,b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB =|a ﹣b |.利用数形结合思想回答下列问题:(1)数轴上表示2和6两点之间的距离是;数轴上表示1和﹣4的两点之间的距离是.(2)数轴上表示x和6的两点之间的距离表示为;数轴上表示x和﹣3的两点之间的距离表示为.若|x+3|=4,则x=.(3)若x表示一个有理数,则|x﹣1|+|x+4|的最小值=.(4)若x表示一个有理数,且|x+1|+|x﹣3|=4,则满足条件的所有整数x的值为,则满足条件的所有整数x的和为.(5)若x表示一个有理数,当x为,式子|x+2|+|x﹣3|+|x﹣4|有最小值为.15.一建筑物的地面结构如图所示(图中各图形均为长方形或正方形),请根据图中的数据(单位:米),解答下列问题:(1)用含x,y的代数式表示地面总面积;(2)图中阴影部分需要铺设地砖,铺地砖每平方米的平均费用为80元,若x=6,y=2,则铺地砖的总费用为多少元?参考答案:1.3x>【分析】找出两个不等式的解的公共部分即为不等式组的解集.【详解】不等式组23xx>-⎧⎨>⎩的解集是3x>,故答案为:3x>.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.2.①①①【分析】把m看作已知数求出x的值,进而表示出y,进而判断即可.【详解】解:23325x y m x y m -=+⎧⎨+=-⎩①②, ①+①得:48x =,解得:2x =,①正确;当2x =时,12m y --=,3m =可得2y =-,x 与y 互为相反数,①正确; 25x y +=时,12252m --⨯+=,即3m =-,①错误; 由2x =,可知20x y =-⎧⎨=⎩不可能是方程的解,①正确, 综上,正确的有①①①.故答案为:①①①.【点睛】此题考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.3. 不是 是 不是 是【解析】略4.0<a ≤1【分析】先求出不等式组的解集(含有字母a ),利用不等式组有2个整数解,逆推出a 的取值范围即可.【详解】解:解不等式3x ≤4x +1得:x ≥-1,解不等式x -a <0得:x <a①不等式组的解集为:-1≤x <a ,∵不等式组3410x x x a ≤+⎧⎨-<⎩恰有2个整数解, ∴2个整数解为:-1,0,∴0<a ≤1,解得:0<a ≤1,,故答案为:0<a ≤1.【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键就是根据整数解的个数求出关于a 的不等式组.5.m >0且m ≠1【分析】先解分式方程得到解为1x m =+,根据解大于1得到关于m 的不等式再求出m 的取值范围,然后再验算分母不为0即可.【详解】解:方程两边同时乘以()()22x x +-得到:22(2)2x x x m ,整理得到:1x m =+,①分式方程的解大于1,①11m +>,解得:0m >,又分式方程的分母不为0,①12m 且12m ,解得:1m ≠且3m ≠-, ①m 的取值范围是m >0且m ≠1.故答案为:m >0且m ≠1.【点睛】本题考查分式方程的解法,属于基础题,要注意分式方程的分母不为0这个隐藏条件. 6.2m >【分析】根据关于原点对称的点的性质可得点P 在第一象限,进而得出不等式组,再解不等式组即可.【详解】解:①点P (m −2,m )关于原点对称的点在第三象限,①点P (m −2,m )在第一象限,①200m m ->⎧⎨>⎩, 解得:m >2,故答案为:m >2.【点睛】此题主要考查了关于原点对称的点的坐标特点,解一元一次不等式组,关键是掌握各象限内点的坐标符号.7.B【分析】根据题目的定义进行求解即可.【详解】解:①n 为非负整数时,如果1122n x n -≤<+,则x n 〈〉=,13x 〈-〉=, ①1131322x -≤-<+, ①3.5 4.5x ≤<,故选B .【点睛】本题主要考查了新定义,解一元一次不等式组,正确理解题意是解题的关键.8.D【分析】求出不等式组的解集,即可得【详解】解:1034x x +>⎧⎨+⎩①②, 由①得:1x >-,由①得:1x ,∴不等式组的解集为11x -<,在数轴上表示该不等式组的解集只有D 选项符合题意;故选D .【点晴】本题考查解一元一次不等式组,解题的关键是掌握解不等式的步骤,能求出不等式组中各不等式的公共解集.9.B【分析】根据同类项的定义构造关于x 、y 的方程组求解即可【详解】解:①57x y a b +和-3132y x a b -是同类项,①51372x y y x =-⎧⎨+=⎩, 解得:23x y =⎧⎨=-⎩. 故选:B .【点睛】本题考查了同类项即含有字母相同且相同字母的指数相同,方程组的解法,熟练掌握同类项定义,准确求解方程组是解题的关键.10.A【分析】先解关于x 的一元一次不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩,再根据其解集是x a ,得a 小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a 的值,再求和即可.【详解】解:由不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩得:5x a x ⎧⎨<⎩, 解集是x a ,5a ∴<;由关于y 的分式方程11322ay y y --=---得1136ay y -+=-+,63y a ∴=+, 有非负整数解, ∴603a +, 35a ∴-<<,0a =(舍去,此时分式方程为增根),2a =-,1a =-,3a =,(1a =,2或4时,y 不是整数), 它们的和为0.故选:A .【点睛】本题综合考查了含参数的一元一次不等式,含参数的分式方程的问题,需要考虑的因素较多,属于易错题.11.C【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式643x x +<-,得:3x >,x m >且不等式组的解集为3x >,3m ∴,故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.D【分析】根据第三象限点的特征,横纵坐标都为负,列出一元一次不等式组,进而即可求解.【详解】解:①点P (m ,1+2m )在第三象限内,①0120m m <⎧⎨+<⎩①②, 解不等式①得:0m <,解不等式①得:12m <-, ①不等式组的解集为:12m <-, 故选D .【点睛】本题考查了第三象限的点的坐标特征,一元一次不等式组的应用,掌握各象限点的坐标特征是解题的关键.13.12x -<≤;解集表示见解析【分析】先求出每个不等式的解集,然后求出不等式组的解集,并在数轴上表示出来即可.【详解】解:原不等式组为510032x x x -≤⎧⎨+>-⎩①②, 解不等式①,得2x ≤;解不等式①,得1x >-.①原不等式组的解集为12x -<≤ ,将不等式组的解集表示在数轴上如下:【点睛】本题主要考查解一元一次不等式组,掌握解一元一次不等式组的方法是解题的关键.14.(1)4,5(2)|x ﹣6|;|x +3|;1或﹣7(3)5(4)﹣1或0或1或2或3;5(5)3,6【分析】(1)数轴上两点间的距离等于两个数的差的绝对值;(2)数轴上两点间的距离等于两个数的差的绝对值;(3)根据绝对值几何意义即可得出结论.(4)分情况讨论计算即可得出结论;(5)|2||3||4|x x x ++-+-表示数轴上某点到表示2-、3、4三点的距离之和,依此即可求解. (1)解:数轴上表示2和6两点之间的距离是|62|4-=,数轴上表示1和4-的两点之间的距离是|1(4)|5.故答案为:4,5;(2)数轴上表示x 和6的两点之间的距离表示为6x -;数轴上表示x 和3-的两点之间的距离表示为|(3)||3|x x --=+;若|x +3|=4,则x +3=4或﹣4,①x =1或﹣7,故答案为:|x ﹣6|;|x +3|;1或﹣7;(3)根据绝对值的定义有:|1||4|x x -++可表示为点x 到1与4-两点距离之和,根据几何意义分析可知: 当x 在4-与1之间时,|1||4|x x -++的最小值为5.故答案为:5;(4)当1x <-时,|1||3|13224x x x x x ++-=--+-=-+=,解得:1x =-,此时不符合1x <-,舍去;当13x -时,|1||3|134x x x x ++-=++-=,此时1x =-或0x =,1x =,2x =,3x =;当3x >时,|1||3|13224x x x x x ++-=++-=-=,解得:3x =,此时不符合3x >,舍去.此时满足条件的所有整数x 的和:﹣1+0+1+2+3=5,故答案为:﹣1或0或1或2或3;5;(5)式子|2||3||4|x x x ++-+-可看作是数轴上表示x 的点到2-、3、4三点的距离之和,∴当x 为3时,|2||3||4|x x x ++-+-有最小值,|2||3||4|x x x ∴++-+-的最小值|32||33||34|6=++-+-=.故答案为:3,6.【点睛】此题考查了绝对值,两点间的距离公式,明确|2||3||4|x x x ++-+-的几何意义是解题的关键. 15.(1)22(125832)m x x y x +-++(2)铺地砖的总费用为8000元【分析】(1)利用长方形和正方形的面积公式分别表示出四个图形的面积,再相加即可;(2)利用代数式分别表示出两部分阴影面积之和,将x=6,y=2代入计算得出阴影部分的面积,再乘以铺地砖每平方米的平均费用为80元,即可得出结论.(1)解:图形的面积为:x2+4x+3y+8(x+4﹣y)=x2+4x+3y+8x+32﹣8y=(x2+12x﹣5y+32)m2;(2)解:阴影部分的面积为:x2+8(x+4﹣y),当x=6,y=2时,阴影部分的面积为:62+8(6+4﹣2)=36+64=100(m2).①铺地砖每平方米的平均费用为80元,①铺地砖的总费用为:100×80=8000(元).答:铺地砖的总费用为8000元.【点睛】本题主要考查了列代数式,求代数式的值、整式的加减,利用图示数据表示出相应的长方形的边长是解题的关键.。
初中数学分式方程一元一次不等式组练习题(附答案)

初中数学分式方程一元一次不等式组练习题一、单选题1.已知关于x 的分式方程211x kx x-=--的解为正数,则k 的取值范围为( ) A .20k -<< B .2k >-且1k ≠- C .2k >-D .2k <且1k ≠2.若分式293x x --的值为0,则x 的值等于( )A.0B.3±C.3D.3-3.方程2131x x =+-的解是( ) A.53x =B.5x =C.4x =D.5x =-4.已知: 3x =是分式方程2121kx k x x--=-的解,那么实数是k 的值为( ) A. 1- B.0 C.1 D.25.已知3x =是分式方程2121kx k x x--=-的解,那么实数k 的值为( ) A.1-B.0C.1D.26.关于x 的方程32211x mx x -=+++无解,则m 的值为( ) A.5- B.8- C.2- D.57.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( )A .3m ≤B .3m <C .3m >-D .3m ≥-8.解分式方程1101x +=-,正确的结果是( ) A.0x =B.1x =C.2x =D.无解9.对于非零的两个实数a ,b ,规定11a b b a=-,若2(21)1x -=,则x 的值为( )A.56 B.54C.32 D.16- 10.若关于x 的方程2230x x +-=与213x x a=+-有一个解相同,则a 的值为( ) A.1 B.1或3- C.1- D.1-或311.不等式32xx ->的解为( ) A.1x < B.1x <- C.1x > D.1x >- 12.不等式()215x -<的正整数解的个数为( ) A.2 B.3 C. 4 D. 5 13.不等式组2(2)22323x x x x -≤-⎧⎪++⎨>⎪⎩的解集是( )A.02x <≤B.06x <≤C.0x >D.2x ≤14.不等式组123122x x -<⎧⎪⎨+≤⎪⎩的正整数解的个数是( )A.5B.4C.3D.215.若数a 使关于x 的分式方程2311a x x x --=--有正数解,且使关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩有解,则所有符合条件的整数a 的个数为( ) A .1B .2C .3D .416.不等式293(2)x x +≥+的解集是( ) A .3x ≤ B .3x ≤-C .3x ≥D .3x ≥-17.不等式932122x x --+<的负整数解有( ) A.1个 B.2个 C.3个 D.4个18.下列各数轴上表示的x 的取值范围可以是不等式组2(21)60x aa x +>⎧⎨--<⎩的解集的是( )A .B .C .D .19.不等式组12,92x x x +⎧⎨-<⎩的解集在数轴上表示正确的是( )A. B. C.D.20.如果关于x 的分式方程1311a x x x --=++有负分数解,且关于x 的不等式组()24,3412a x x x x -≥--⎧⎪⎨+<+⎪⎩的解集为2x <-,那么符合条件的所有整数a 的积是( ) A 、3-B 、0C 、3D 、9二、解答题 21.解方程: (1)21133x x x x =+++; (2)241111x x x -+=-+. 22.对于实数m n ,,定义一种新运算”©”为:21m n m n ©=-,这里等式右边是实数运算.求方程2(2)14x x ©-=--的解. 23.如果230x x +-=,求321121x x x x x x -⎛⎫-÷ ⎪--+⎝⎭的值. 24.解下列方程: (1)125210x x x x --=--; (2)214111x x x ++=--. 25.解不等式组:2(1)7122x x x x +>⎧⎪⎨+-≥⎪⎩并在数轴上表示它的解集.26.解不等式组131722324334x x x x x ⎧+<-⎪⎪⎨--⎪≥+⎪⎩并写出它的所有整数解.27.解不等式组205121123x x x ->⎧⎪+-⎨+≥⎪⎩,并把解集在数轴上表示出来.28.如果一元一次方程的解是一元一次不等式组的解,那么称该一元一次方程为该不等式组的关联方程.(1)若不等式组122136x x x ⎧-<⎪⎨⎪+>-+⎩,的一个关联方程的解是整数,则这个关联方程可以 是 (写出一个即可);(2)若方程1322(2)3x x x x -=+=+,都是关于的不等式组22x x m x m <-⎧⎨-≤⎩,的关联方程,试求的取值范围. 三、填空题 29.若关于x 的方程2222x mx x++=--有增根,则m 的值是__________ 30.分式方程2332x x =--的解是_____. 31.若关于x 的分式方程1322m xx x-=---有增根,则实数m 的值是 . 32.方程3122x x x =++的解是__________. 33.分式方程11233x x x-=---的解为 .34.若3311m m m m m --⋅=--,则m = . 35.不等式组30412x x -<⎧⎪⎨+≥⎪⎩的解为___________.36.不等式组23182x x x >-⎧⎨-≤-⎩的最小整数解是 .37.不等式组302321xx -⎧≤⎪⎨⎪+≥⎩的解集是________________。
完整版)一元一次不等式组练习题及答案(经典)
完整版)一元一次不等式组练习题及答案(经典)1、选择题1、选B。
解集为2<x<3的不等式组是x<3且x>2.2、选B。
根据题意可列出不等式组:a<1+a,1+a<-a,-a<a,解得a<0.3、选D。
将不等式组化简可得x≤1或x>2,所以解集在数轴上表示为(-∞,1]∪(2,+∞)。
4、选C。
将不等式组化简可得2<x<5/3,所以整数解的个数是3个。
5、选C。
根据题意可列出不等式组:2x-6>0,x-5<0,解得-5<x<3.6、选D。
将每个不等式化简,得到①x>1,②x>4,③x <2,④x<3,所以选项D符合条件。
7、选B。
根据题意可得2-b<a<2-a,即b-2<x<a-2.8、选A。
将方程组化简可得x=(3m-2)/7,y=(8x-m)/3,代入x>y中得到4m<25,即m>9/4,所以m的取值范围是m>xxxxxxx。
二、填空题9、解得y<1或y>3,所以取值范围为y<1或y>3.10、将不等式组化简可得x<2或x≥3,所以解集是(-∞,2)∪[3,+∞)。
11、将不等式组化简可得x≤-0.25或x≥0.8333,所以解集是(-∞,-0.25]∪[0.8333,+∞)。
12、将不等式组化简可得m≤0.5或m≥1.5,所以取值范围是m≤0.5或m≥1.5.13、解得x≥2,所以解集为[2,+∞)∩(-∞,5)=[2,5)。
14、将不等式组化简可得x>a且x>2,所以解得a<2.15、将不等式组化简可得x<2b-1且x>(x+3)/2,所以解得b>3/2且a<1/2,所以(a+1)(b-1)=ab+a-b+1=(3/2)a+1/2.16、将不等式组化简可得x<4a-1且x>x-2b-3,所以解得a<(x+1)/4且b<(x-3)/2,所以(a+1)(b-1)<(x+1)/4·(x-3)/2=(x²-2x-3)/8.1)解不等式组begin{cases}3x-2<8\\2x-1>2end{cases}化简得begin{cases}x<10/3\\x>3/2end{cases}因此解集为$(3/2,10/3)$。
解一元一次不等式专项练习题有答案
解一元一次不等式专项练习87题(有答案)(1)3(x+2)﹣8≥1﹣2(x﹣1);(2)x ﹣≤2﹣.(3)2(x﹣1)+2<5﹣3(x+1)(4).(5)﹣<1;(6)3﹣(3y﹣1)≥(3+y)(7)x ﹣≥﹣1(8)﹣>﹣1(9)﹣1≤.(10)﹣3x+2≤8.(11)﹣3x﹣4≥6x+2.(12)﹣8x﹣6≥4(2﹣x)+3.(13)(14)(15).(16)2(x﹣1)<﹣3(1﹣x)(17)≤﹣1(18)10﹣3(x﹣2)≤2(x+1)(19)﹣2≤.(20)﹣3x>2(21)x >﹣x﹣2(22)3(x+1)<4(x﹣2)﹣3 (23)≤1.(24)≥;(25)﹣>﹣2.(26)5x﹣4>3x+2(27)4(2x﹣1)>3(4x+2)(28)≤(29)﹣2≥.(30)4(x﹣1)+3≥3x;(31)2x﹣3<;(32)≤1.(33)3[x﹣2(x﹣2)]>6+3(34)(35)(36).(37)3(x+2)﹣8≥1﹣2(x﹣1);(38)>;(39)≤;(40)<.(41)3(2x﹣3)≥2(x﹣4)(42)≥0(43)7(1﹣2x)>10﹣5(4x﹣3)(44).(45)﹣<0;(46)1﹣≤﹣x.(47)5x﹣12≤2(4x﹣3);(48)≥x﹣2.(49)4x﹣2(3+x)<0(50)﹣≥0.(51)3x﹣2<﹣4(x﹣5);(52)﹣1<<2.(53);(54).(55)5x+15>4x﹣13(56)≤.(57)7(4﹣x)﹣2(4﹣3x)<4x;(58)10﹣4(x﹣3)≥2(x﹣1);(59)3[x﹣2(x﹣2)]>x﹣3(x﹣3);(60)(2x﹣1)+x﹣1+(1﹣2x)≤0;(61)﹣y ﹣;(62).(63)x(x+1)>(x﹣2)2;(64).(65)3(y﹣3)<7y﹣4(66)﹣21<6﹣3x≤9.(67);(68);(69)0.5x+3(1﹣0.2x)≥0.4x﹣0.6;(70)x ﹣<1﹣;(71)2[x﹣(x﹣1)+2]<1﹣x;(72).(73)3x﹣7<5x﹣3;(74).(75)(76)(77)≤.(78)3x﹣9≤0;(79)2x﹣5<5x﹣2;(80)2(﹣3+x)>3(x+2);(81)﹣1<.(82)3(2x+2)≥4(x﹣1)+7.(83).(84)(85).(86)8(1﹣x)≥5(4﹣x)+3;(87)<﹣1.解不等式87题参考答案:(1)3(x+2)﹣8≥1﹣2(x﹣1), 3x+6﹣8≥1﹣2x+2,3x+2x≥1+2﹣6+8, 5x≥5,x≥1;(2)x ﹣≤2﹣,6x﹣3(x﹣1)≤12﹣2(x+2),6x﹣3x+3≤12﹣2x﹣4,3x+2x≤8﹣3,5x≤5,x≤1(3)2(x﹣1)+2<5﹣3(x+1)2x﹣2+2<5﹣3x﹣3,2x+3x<5﹣3+2﹣2,5x<2,x,(4),3(1+x)≤2(2x﹣1)+6,3+3x≤4x﹣2+6,3x﹣4x≤﹣2+6﹣3,﹣x≤1,x≥﹣1(5)去分母得,2x﹣3(x﹣1)<6,去括号得,2x﹣3x+3<6,移项、合并同类项得,﹣x<3,把x的系数化为1得,x>﹣3.(6)去分母得,24﹣2(3y﹣1)≥5(3+y),去括号得,24﹣6y+2≥15+5y,移项、合并同类项,﹣11y≥﹣11,把x的系数化为1得,y≤1(7)去分母得,6x﹣2(2x﹣1)≥3(2+x)﹣6去括号得,6x﹣4x+2≥6+3x﹣6,移项得,6x﹣4x﹣3x≥6﹣6﹣2,合并同类项得,﹣x≥﹣2,把x的系数化为1得,x≤2,(8)去分母得,6(2x﹣1)﹣4(2x+5)>3(6x﹣1),去括号得,12x﹣6﹣8x﹣20>18x﹣3,移项得,12x﹣8x﹣18x>﹣3+6+20,合并同类项得,﹣14x>23,把x的系数化为1得,x <﹣,(9)分子与分母同时乘以10得,﹣1≤,去分母得,2(2x﹣1)﹣6≤3(5x+2),去括号得,4x﹣2﹣6≤15x+6,移项得,4x﹣15x≤6+2+6,合并同类项得,﹣11x≤14,把x的系数化为1得,x ≥﹣(10)移项合并得:﹣3x≤6,解得:x≥﹣2,(11)移项合并得:9x≤﹣6,解得:x ≤﹣,(12)去括号得:﹣8x﹣6≥8﹣4x+3,移项合并得:﹣4x≥17,解得:x ≤﹣(13)去分母得:4x﹣8>6x+2,移项合并得:﹣2x>10,解得:x<﹣5;(14)去分母得:2x﹣4x+1<3,移项合并得:﹣2x<2,解得:x>﹣1;(15)去分母得:12+3x﹣6≥8x+8,移项合并得:5x≥﹣2,解得:x ≤﹣(16)去括号得,2x﹣2≤﹣3+3x,移项得,2x﹣3x≤﹣3+2,合并同类项得,﹣x≤﹣1把x的系数化为1得,x≥1,(17)去分母得,3(2﹣3x)≤2x﹣1﹣6,去括号得,6﹣9x≤3x﹣7,移项得,﹣9x﹣3x≤﹣7﹣6,合并同类项得,﹣12x≤13,x的系数化为1得,x ≥﹣,(18)去括号得,10﹣3x+6≤2x+2,移项得,﹣3x﹣2x≤2﹣10﹣6,合并同类项得,﹣5x≤﹣24把x的系数化为1得,x ≥﹣,(19)去分母得,2(1﹣5x)﹣24≤3(3﹣x)去括号得,2﹣10x﹣24≤9﹣3x,移项得,﹣10x+3x≤9﹣2+24,合并同类项得,﹣7x≤31,x的系数化为1得,x ≥﹣(20)﹣3x>2,解得:x <﹣;(21)去分母得:x>﹣2x﹣6,解得:x>﹣2;(22)去括号得:3x+3<4x﹣8﹣3,解得:x>14;(23)去分母得:2(2x﹣1)﹣3(5x+1)≤6,去括号得: 4x﹣2﹣15x﹣3≤6,解得: x≥﹣1(24)去分母得,3(x+4)≥﹣2(2x+1),去括号得,3x+12≥﹣4x﹣2,移项、合并同类项得,7x≥﹣14,把x的系数化为1得,x ≥﹣.(25)去分母得,4(x﹣1)﹣3(2x+5)>﹣24,去括号得,4x﹣4﹣6x﹣15>﹣24,移项、合并同类项得,﹣2x>﹣5,把x的系数化为1得,x <(26)移项得,5x﹣3x>2+4,合并同类项得,2x>6,把x的系数化为1得,x>3.(27)去括号得,8x﹣4>12x+6,移项得,8x﹣12x>6+4,合并同类项得,﹣4x>10,把x的系数化为1得,x <﹣.(28)去分母得,3(4x﹣1)≤1﹣5x,去括号得,12x﹣3≤1﹣5x,移项得,12x+5x≤1+3,合并同类项得,17x≤4,把x的系数化为1得,x ≤.(29)去分母得,2(5x+1)﹣24≥3(x﹣5),去括号得,10x+2﹣24≥3x﹣15,移项得,10x﹣3x≥﹣15﹣2+24,合并同类项得,7x≥7,把x的系数化为1得,x≥1(30)去括号得,4x﹣4+3≥3x,移项得,4x﹣3x≥4﹣3,合并同类项得,x≥1,(31)去分母得,3(2x﹣3)<x+1,去括号得,6x﹣9<x+1,移项得,6x﹣x<1+9,合并同类项得,5x<10,x的系数化为1得,x<2,(32)去分母得,2(2x﹣1)﹣(9x+2)≤6,去括号得,4x﹣2﹣9x﹣2≤6,移项得,4x﹣9x≤6+2+2,合并同类项得,﹣5x≤10,x的系数化为1得,x≥﹣2(33)3[x﹣2(x﹣2)]>6+3x解:去小括号,3[x﹣3x+4]>6+3x合并,3[﹣x+4]>6+3x去中括号,﹣3x+12>6+3x移项,合并,﹣6x>﹣6化系数为1,x<1.(34)解:去分母,2(2x﹣5)≤3(3x+1)﹣8x 去括号,4x﹣10≤9x+3﹣8x移项合并,3x≤13化系数为1,x ≤.(35)解:去分母,3(2﹣x)﹣3(x﹣5)>2(﹣4x+1)+8去括号,6﹣9x﹣3x+15>﹣8x+2+8移项合并,﹣4x>﹣11化系数为1,x <.(36)解:利用分数基本性质化小数分母为整数去括号,4x﹣1﹣10x+7>2﹣4x移项合并,﹣2x>﹣4化系数为1,x<2(37)去括号,得:3x+6﹣8≥1﹣2x+2,移项、合并同类项,得:5x≥5,系数化成1得:x≥1;(38)去分母,得:3(x﹣3)﹣6>2(x﹣5),去括号,得:3x﹣9﹣6>2x﹣10,移项、合并同类项得:x>5;(39)去分母,得:6x﹣3(x﹣1)≤12﹣2(x+2),去括号,得:6x﹣3x+3≤12﹣2x﹣4,移项、合并同类项得:5x≤5系数化成1得:x≤1;(40)去分母,得:6x﹣3x<6+x+8﹣2(x+1),去括号,得:6x﹣3x<6+x+8﹣2x﹣2,移项得:6x﹣3x﹣x+2x<6﹣2+8合并同类项得:4x<12系数化成1得:x<3(41)去括号,得6x﹣9≥2x﹣8,移项,得6x﹣2x≥﹣8+9,合并同类项,得4x≥1,两边同除以4,得x ≥,(42)去分母,得4﹣8x≥0,移项得﹣8x≥﹣4,两边同除以﹣8,得x ≤,(43)去括号,得7﹣14x>10﹣20x+15,移项,得﹣14x+20x>10+15﹣7,合并同类项得6x>18,两边同除以6得x>3,(44)去分母,得2x+6<﹣6x﹣3(x+10),去括号,得2x+6<﹣6x﹣3x﹣30,移项,得2x+6x+3x<﹣30﹣6,合并同类项,得11x<﹣36,两边同除以11得x <﹣(45)去分母得:2(2x+1)﹣(5﹣2x)<0,去括号得:4x+2﹣5+2x<0,移项合并得:6x<3,解得:x <,表示在数轴上,如图所示:;(46)去分母得:6﹣2(x﹣1)≤3(2x+3)﹣6x,去括号得:6﹣2x+2≤6x+9﹣6x,移项合并得:﹣2x≤1,解得:x ≥﹣(47)去括号得,5x﹣12≤8x﹣6,移项得,5x﹣8x≤﹣6+12,合并同类项得,﹣3x≤6,x的系数化为1得,x≥﹣2;(48)去分母得,x﹣3≥2(x﹣2),去括号得,x﹣3≥2x﹣4,移项得,x﹣2x≥﹣4+3,合并同类项得,﹣x≥﹣1,x的系数化为1得,x≤1(49)去括号得4x﹣6﹣2x<0,移项、合并同类项得2x<6,系数化为1得x<3;这个不等式的解集在数轴上表示如图1:(50)去分母得3(2x﹣3)﹣4(x﹣2)≥0,去括号得6x﹣9﹣4x+8≥0,移项、合并同类项得2x≥1,系数化为1得x≥0.5(51)3x﹣2<﹣4(x﹣5);去括号得3x﹣2<﹣4x+20,移项得3x+4x<20+2合并同类项得7x<22未知项的系数化为1得x <,(52)﹣1<<2,去分母得﹣3<2﹣x<6,移项得﹣3﹣2<﹣x<6﹣2,合并同类项得﹣5<﹣x<4未知项的系数化为1得﹣4<x<5(53)去分母得,2(x﹣1)﹣3(x+4)>﹣12,去括号得,2x﹣2﹣3x﹣12>﹣12,移项、合并同类项得﹣x<2,化系数为1得x<﹣2.(54)去分母得,(x﹣2)﹣3(x﹣1)<3,去括号得,x﹣2﹣3x+3<3,移项、合并同类项得﹣2x<2,化系数为1得x>﹣120.解:(55)移项,得:5x﹣4x>﹣13﹣15,合并同类项,得:x>﹣28;(56)去分母,得:2(2x﹣1)≤3x﹣4,去括号,得:4x﹣2≤3x﹣4,移项,得:4x﹣3x≤﹣4+2,合并同类项,得:x≤﹣2(57)去括号得,28﹣7x﹣8+6x<4x,移项得,﹣7x+6x﹣4x<8﹣28,合并同类项得,﹣5x<﹣20,系数化为1得,x>4.(58)去括号得,10﹣4x+12≥2x﹣2,移项得,﹣4x﹣2x≥﹣2﹣10﹣12,合并同类项得,﹣6x≥﹣24,系数化为1得,x≤4.(59)去括号得,3x﹣6x+12>x﹣3x+9,移项得,3x﹣6x﹣x+3x>9﹣12,合并同类项得,﹣x>﹣3,系数化为1得,x<3.(60)去分母得,(2x﹣1)+3x﹣3+(1﹣2x)≤0,去括号得,2x﹣1+3x﹣3+1﹣2x≤0,移项得,2x+3x﹣2x≤3+1﹣1,合并同类项得,3x≤3,系数化为1得,x≤1.(61)去分母得,﹣10y﹣5(y﹣1)≥20﹣2(y+2),去括号得,﹣10y﹣5y+5≥20﹣2y﹣4,移项得,﹣10y﹣5y+2y≥20﹣4﹣5,合并同类项得,﹣13y≥11,系数化为1得,y ≤﹣.(62)去分母得,2(3x+2)﹣(7x﹣3)>16,去括号得,6x+4﹣7x+3>16,移项得,6x﹣7x>16﹣4﹣3,合并同类项得,﹣x>9,系数化为1得,x<﹣9(63)由原不等式,得x2+x>x2﹣4x+4,移项、合并同类项,得5x>4,不等式两边同时除以5,得x >,即原不等式的解集是x >;(64)由原不等式,得﹣17x+1<12﹣10x,移项、合并同类项,得﹣7x<11,不等式两边同时除以﹣7(不等号的方向发生改变),得x >﹣,即原不等式的解集是x >﹣(65)去括号,得:3y﹣9<7y﹣4,移项,得:3y﹣7y<9﹣4,即﹣4y<5,;(66)﹣21<6﹣3x≤9两边同时减去6再除以﹣3,不等号的方向改变,得:﹣1≤x<9(67)去分母得,2(1﹣2x)≥4﹣3x,去括号得,2﹣4x≥4﹣3x,移项得,﹣4x+3x≥4﹣2,合并同类项得,﹣x≥2,化系数为1得,x≤﹣2;(68)去分母得,2(x+4)﹣3(3x﹣1)<6,去括号得,2x+8﹣9x+3<6,移项得,2x﹣9x<6﹣8﹣3,合并同类项得,﹣7x<﹣5,化系数为1得,x >;(69)去括号得,0.5x+3﹣0.6x≥0.4x﹣0.6,移项得,0.5x﹣0.6x﹣0.4x≥﹣0.6﹣3,合并同类项得,﹣0.5x≥﹣3.6,化系数为1得,x≤7.2.(70)去分母得,6x﹣3x﹣(x+8)<6﹣2(x+1),去括号得,6x﹣3x﹣x﹣8<6﹣2x﹣2,移项得,6x﹣3x﹣x+2x<6﹣2+8,合并同类项得,4x<12,化系数为1得,x<3;(71)去括号得,2x﹣2x+2+4<1﹣x,移项得,2x﹣2x+x<1﹣2﹣4,合并同类项得,x<﹣5;(72)去分母得,2(2x﹣1)﹣3(5x+1)≤6,去括号得,4x﹣2﹣15x﹣3≤6,移项得,4x﹣15x≤6+2+3,合并同类项得,﹣11x≤11,化系数为1得,x≥﹣1(73)移项合并得:﹣2x<4,解得:x>﹣2;(74)去分母得:3(x+5)﹣2(2x+3)≥12,去括号得:3x+15﹣4x﹣6≥12,移项合并得:﹣x≥3,解得:x≤﹣3(75)原不等式的两边同时乘以6,得2x+6>21﹣3x,移项,合并同类项,得5x>15,不等式的两边同时除以5,得x>3,∴原不等式的解集是x>3.(76)原不等式的两边同时乘以6,得 8x+2≤14﹣x,移项,合并同类项,得9x≤12,不等式的两边同时除以9,得x≤34所以,原不等式的解集是x≤;(77)原不等式的两边同时乘以6,得 8﹣2x≤9,移项,合并同类项,得﹣2x≤1,不等式的两边同时除以﹣2,得x ≥﹣,所以,原不等式的解集是x≥﹣(78)移项得,3x≤9,x的系数化为1得,x≤3.(79)移项得,2x﹣5x<﹣2+5,合并同类项得,﹣3x<3,把x的系数化为1得,x>﹣1.(80)去括号得,﹣6+2x>3x+6,移项得,2x﹣3x>6+6,合并同类项得,﹣x>12,把x的系数化为1得,x<﹣12,(81)去分母得,x+7﹣2<3x+2,移项得,x﹣3x<2+2﹣7,合并同类项得,﹣2x<﹣3,把x的系数化为1得,x >.(82)去括号,得:6x+6≥4x﹣4+7,移项,得:6x﹣4x≥﹣4+7﹣6,合并同类项,得:2x≥﹣3,系数化为1得:x ≥﹣,(83)去分母,得:2(x﹣1)﹣3(x+4)>﹣12,去括号,得:2x﹣2﹣3x﹣12>﹣12,移项、合并同类项,得:﹣x>2,系数化为1得:x<﹣2(84)去分母得:x﹣2﹣2(x﹣1)<2,去括号得:x﹣2﹣2x+2<2,移项合并得:﹣x<2,解得:x>﹣2,(85)去分母得:x+5﹣2<3x+2,移项合并得:﹣2x<﹣1,解得:x >(86)去括号得,8﹣8x≥20﹣5x+3,移项得,﹣8x+5x≥20+3﹣8,合并同类项得,﹣3x≥15,x的系数化为1得,x≤﹣5,(87)去分母得,3(3y﹣1)<10y+5﹣6,去括号得,9y﹣3<10y+5﹣6,移项得,9y﹣10y<5﹣6+3,合并同类项得,﹣y<2,x的系数化为1得,y>﹣2。
七年级数学下册《一元一次不等式与不等式组》练习题及答案解析
七年级数学下册《一元一次不等式与不等式组》练习题及答案解析1. 不等式组{x>−1x≤1的解集是( )A. x<1B. x≥1C. −1<x≤1D. 1≤x<−12. 不等式组{x+2<0x+3<0的解集是( )A. x<−2B. x<−3C. −3<x<−2D. x>−23. 下列各式中一元一次不等式是( )A. x≥5xB. 2x>1−x2C. x+2y<1D. 2x+1≤3x4. 若代数式2a+7的值不大于3则a的取值范围是( )A. a≤4B. a≤−2C. a≥4D. a≥−25. 已知a>b>0则下列不等式不一定成立的是( )A. ab>b2B. a+c>b+cC. 1a <1bD. ac>bc6. 不等式4x−511<1的正整数解为( )A. 1个B. 3个C. 4个D. 5个7. 不等式组{x+1≤02x+3<5的解集是( )A. x≤−1或x>1B. −1≤x<1C. x≤−1D. x>18. 亮亮准备用自己节省的零花钱买一台英语复读机他现在已存有45元计划从现在起以后每个月节省30元直到他至少有300元.设x个月后他至少有300元则可以用于计算所需要的月数x的不等式是( )A. 30x−45≥300B. 30x+45≥300C. 30x−45≤300D. 30x+45≤3009. 关于x的不等式组{x+43>x2+1x+a<0的解集为x<2则a的取值范围是( )A. a≤−2B. a≥−2C. a≤2D. a≥210. 如果a<b<0下列不等式中错误的是( )A. ab>0B. a+b<0C. ab<1 D. a−b<011. 不等式12x>−3的解集是______.12. 不等式x+2>12x的负整数解______.13. 不等式组:{x−1<0x>0的解集是______.14. 不等式组{2x+1>x−1x+8>4x−1的正整数解是______.15. 某生物兴趣小组要在温箱里培养A B两种菌苗A种菌苗的生长温度x(℃)的范围是35≤x≤38 B种菌苗的生长温度y(℃)的范围是34≤y≤36.那么温箱里的温度t(℃)d的范围是______.16. 已知不等式3x −a ≤0的正整数解只有1 2 3 那么a 的取值范围是______.17. 若不等式组{x −a >2b −2x >0的解集是−1<x <1 则(a +b)2014等于______. 18. 已知关于x 的不等式组{5−2x ≥1x −a ≥0无解 则a 的取值范围是______. 19. 一位老师说 他班学生的一半在学数学 四分之一的学生在学音乐 七分之一的学生在学外语 还剩不足6名同学在操场上踢足球 则这个班的学生最多有______人.20. 几个小朋友分糖块 如果每人分4块糖 则多余8块糖 如果每人分8块糖 则有一人分到了糖块但不足8块 请你猜想 共有______位小朋友______块糖.21. 解下列不等式 并把它们的解集在数轴上表示出来.(1)−3(1−x)+6>1+4x(2)x −12+1≥x. 22. 解下列不等式组:(1){3x −1<52x +6>0(2){3(x +1)>5x +4x −12≤2x −13. 23. 已知关于x 的方程5x −2m =3x −6m +1的解为x 满足−3<x ≤2 求m 的整数值.24. 某软件公司开发一种图书软件 前期投入的开发、广告宣传费用共50000元 且每售出一套软件 软件公司还需支付安装调试费200元.如果每套定价700元 软件公司至少要售出多少套才能确保不亏本?25. 一本科普读物共98页 晓芬读了一周(七天)还没有读完 而小敏不到一周就读完了.已知小敏平均每天比晓芬多读3页 那么晓芬平均每天读多少页?(答案取整数)26. 扬州火车站有某公司待运的甲种货物1530吨 乙种货物1150吨 现计划用50节A 、B 两种型号的车厢将这批货物运至北京、已知每节A 型货厢的运费是0.5万元 每节B 型货厢的运费是0.8万元 甲种货物35吨和乙种货物15吨可装满一节A 型货厢 甲种货物25吨和乙种货物35吨可装满一节B 型货厢 按此要求安排A 、B 两种货厢的节数 共有几种方案?请你设计出来 并说明哪种方案的运费最少 最少运费是多少?参考答案与解析1.【答案】C【解析】解:把解集表示在数轴上如下:所以不等式组的解集是−1<x ≤1.故选:C.把两个解集表示在数轴上 再找公共部分即可.本题考查一元一次不等式组的解集 熟练掌握在数轴上表示不等式的解集是解题关键.2.【答案】B【解析】解:{x +2<0①x +3<0②由①得:x <−2由②得:x <−3则不等式组的解集为x <−3.故选:B.分别求出不等式组中两不等式的解集 找出两解集的公共部分即可.此题考查了解一元一次不等式组 熟练掌握不等式组的解法是解本题的关键.3.【答案】D【解析】解:A 、不是整式 不符合题意B 、未知数的最高次数是2 不符合题意C 、含有2个未知数 不符合题意D 、是只含有1个未知数 并且未知数的最高次数是1 用不等号连接的整式 符合题意故选D.找到只含有1个未知数 并且未知数的最高次数是1 用不等号连接的整式即可.考查一元一次不等式的定义:只含有1个未知数 并且未知数的最高次数是1 用不等号连接的整式叫做一元一次不等式.4.【答案】B【解析】解:依题意得2a +7≤32a ≤−4a≤−2.故选:B.根据题意列出不等式利用不等式的性质来求a的取值范围.本题考查了解一元一次不等式.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.5.【答案】D【解析】解:A、ab>b2成立B、a+c>b+c成立C、1a <1b成立D、ac<bc不一定成立.故选:D.根据不等式的性质分析判断.不等式两边同时乘以或除以同一个数或式子时一定要注意不等号的方向是否改变.6.【答案】B【解析】解:解不等式得x<4则不等式4x−511<1的正整数解为123共3个.故选:B.首先利用不等式的基本性质解不等式然后找出符合题意的正整数解.本题考查了一元一次不等式的整数解正确解不等式求出解集是解答本题的关键.解不等式应根据不等式的基本性质.7.【答案】C【解析】解:解不等式x+1≤0得:x≤−1解不等式2x+3<5得:x<1则不等式组的解集为x≤−1故选C.分别求出每一个不等式的解集根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组正确求出每一个不等式解集是基础熟知“同大取大同小取小大小小大中间找大大小小找不到”的原则是解答此题的关键.8.【答案】B【解析】解:x个月可以节省30x元根据题意得30x+45≥300.故选:B.此题中的不等关系:现在已存有45元计划从现在起以后每个月节省30元直到他至少有300元.至少即大于或等于.本题主要考查简单的不等式的应用解题时要注意题目中的“至少”这类的词.9.【答案】A【解析】解:根据题意得:x<2x+a<0∴x<−a∴a=−2或a<−2∴a≤−2故选A.根据题意知道不等式组的解集为x<2再由x+a<0直接求出a的取值范围.本题考查了不等式的解集解题的关键是根据题意及不等式的解集直接求出a的取值范围.10.【答案】C【解析】解:A、如果a<b<0则a、b同是负数因而ab>0故A正确B、因为a、b同是负数所以a+b<0故B正确C、a<b<0则|a|>|b|则ab >1也可以设a=−2b=−1代入检验得到ab<1是错误的.故C错误D、因为a<b所以a−b<0故D正确故选:C.根据不等式的性质分析判断.利用特殊值法验证一些式子错误是有效的方法.11.【答案】x>−6【解析】解:去分母得故答案为:x>−6.直接把不等式的两边同时乘以2即可得出结论.本题考查的是解一元一次不等式熟知不等式的基本性质是解答此题的关键.12.【答案】−3−2−1【解析】解:不等式x +2>12xx −12x >−2 12x >−2 解得x >−4故不等式x +2>12x 的负整数解有−3、−2、−1.故答案为:−3、−2、−1.首先利用不等式的基本性质解不等式 再从不等式的解集中找出非负整数解即可.本题考查了一元一次不等式的整数解 正确解不等式 求出解集是解答本题的关键.解不等式应根据不等式的基本性质.13.【答案】0<x <1【解析】解集:由(1)得 x <1由(2)得 x >0所以不等式组{x −1<0x >0的解集是0<x <1. 分别求出两个不等式的解集 求其公共解集.求不等式的公共解集 要遵循以下原则:同大取较大 同小取较小 小大大小中间找 大大小小解不了.14.【答案】1 2【解析】解:{2x +1>x −1①x +8>4x −1②解不等式①得:x >−2解不等式②得:x <3∴原不等式组的解集为:−2<x <3∴该不等式组的正整数解为:1 2故答案为:1按照解一元一次不等式组的步骤 进行计算可得−2<x <3 然后再找出此范围内的正整数即可. 本题考查了一元一次不等式组的整数解 准确熟练地进行计算是解题的关键.15.【答案】35≤t ≤36【解析】解:由题意可得不等式组{35≤x ≤3834≤y ≤36根据求不等式解集的方法可知温箱里的温度t ℃应该设定在35≤t ≤36故答案为:35≤t ≤36.温箱里的温度T ℃应该设定在能使A B 两种菌苗同时满足的温度 即35≤x ≤38与34≤y ≤36的公共部分.此题考查的是不等式的解集.求不等式组的解集 应注意:同大取较大 同小取较小 小大大小中间找 大大小小解不了.16.【答案】9≤x <12【解析】解:不等式的解集是:x ≤a 3∵不等式的正整数解恰是1 2 3∴3≤a 3<4 ∴a 的取值范围是9≤a <12.故答案为:9≤a <12.首先确定不等式组的解集 利用含a 的式子表示 再根据整数解的个数就可以确定有哪些整数解 然后根据解的情况可以得到关于a 的不等式 从而求出a 的范围.本题考查了一元一次不等式的整数解 正确解出不等式的解集 正确确定a 3的范围 是解决本题的关键.解不等式时要用到不等式的基本性质.17.【答案】1【解析】解:{x −a >2①b −2x >0②解不等式①得 x >2+a解不等式②得 x <b 2所以 不等式组的解集是2+a <x <b 2∵不等式组的解集是−1<x <1∴{2+a =−1b 2=1 解得{a =−3b =2所以故答案为:1.先去用a 、b 表示出不等式组的解集 然后根据不等式组的解集列出关于a 、b 的方程组并求出a 、b 最后代入代数式进行计算即可得解.本题主要考查了一元一次不等式组解集的求法 难点在于用a 、b 表示出不等式组的解集再列出方程组.18.【答案】a>2【解析】解:解不等式5−2x≥1得:x≤2解不等式x−a≥0得:x≥a∵不等式组的无解∴a>2故答案为:a>2.分别求出每一个不等式的解集根据口诀:大大小小找不到并结合不等式组的解集可得答案.本题考查的是解一元一次不等式组正确求出每一个不等式解集是基础熟知“同大取大同小取小大小小大中间找大大小小找不到”的原则是解答此题的关键.19.【答案】28【解析】解:设这个班的学生共有x人依题意得:x−12x−14x−17x<6解之得:x<56又∵x为2、4、7的公倍数∴这个班的学生最多共有28人.本题考查一元一次不等式的应用将现实生活中的事件与数学思想联系起来读懂题列出不等关系式即可求解.解决问题的关键是读懂题意找到关键描述语找到所求的量的等量关系.20.【答案】3 20【解析】解:设x个小朋友y块糖由题意可知y−4x=81≤y−8(x−1)<8∴y=8+4x代入不等式可知2<x≤154∵x为整数所以x为3则y为20所以共有3位小朋友20块糖.故答案为3可以设x个小朋友y块糖列出不等式从而根据条件求解x和y的值.本题考查了一元一次不等式的应用解决问题的关键是读懂题意根据实际情况依题意列出不等式进行求解.21.【答案】解:(1)−3(1−x)+6>1+4x−3+3x+6>1+4x3x−4x>1+3−6−x >−2x <2将解集表示在数轴上如图所示:(2)x −12+1≥x x −1+2≥2xx −2x ≥1−2−x ≥−1x ≤1..【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得 然后在数轴上表示出解集即可.本题主要考查解一元一次不等式的基本能力 严格遵循解不等式的基本步骤是关键 尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.22.【答案】解:(1){3x −1<5①2x +6>0②解不等式①得:x <2解不等式②得:x >−3则不等式组的解集为−3<x <2(2){3(x +1)>5x +4①x −12⩽2x −13② 解不等式①得:x <−12解不等式②得:x ≥−1则不等式组的解集为−1≤x <−12.【解析】分别求出每一个不等式的解集 根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组 正确求出每一个不等式解集是基础 熟知“同大取大 同小取小 大小小大中间找 大大小小找不到”的原则是解答此题的关键.23.【答案】解:解方程5x −2m =3x −6m +1 得x =12−2m.∵−3<x ≤2∴{12−2m ≤212−2m>−3解得−34≤m <134∴m 的整数值是0 1. 【解析】先用m 的式子表示x 再根据−3<x ≤2 列出不等式组 求出不等式组的解集 再从中找出m 的整数值.此题考查的是一元一次不等式组的解法和一元一次方程的解 根据x 的取值范围 得出a 的整数解.24.【答案】解:设软件公司要售出x 套软件才能确保不亏本则有:700x ≥50000+200x解得:x ≥100.答:软件公司至少要售出100套软件才能确保不亏本.【解析】要使公司不赔本 那么销售软件的收入≥投资的总费用 然后得出自变量的取值范围.本题考查一元一次不等式的应用 将现实生活中的事件与数学思想联系起来 读懂题列出不等式关系式即可求解.25.【答案】解:设晓芬平均每天读x 页 则小敏平均每天读(x +3)页依题意得:{7x <987(x +3)>98解得:11<x <14又∵x 为整数∴x =12或13.答:晓芬平均每天读12页或13页.【解析】设晓芬平均每天读x 页 则小敏平均每天读(x +3)页 根据“晓芬读了一周(七天)还没有读完 而小敏不到一周就读完了” 即可得出关于x 的一元一次不等式组 解之即可得出x 的取值范围 再取其中的整数值即可得出结论.本题考查了一元一次不等式组的应用 根据各数量之间的关系 正确列出一元一次不等式组是解题的关键.26.【答案】解:设A 型货厢的节数为x 则B 型货厢的节数为(50−x)节.{35x +25(50−x)≥153015x +35(50−x)≥1150解得:28≤x ≤30.∵x 为正整数∴x 可为28 29∴方案为①A型货厢28节B型货厢22节②A型货厢29节B型货厢21节③A型货厢30节B型货厢20节总运费为:0.5x+0.8×(50−x)=−0.3x+40∵−0.3<0∴x越大总运费越小∴x=30最低运费为:−0.3×30+40=31万元.答:A型货厢30节B型货厢20节运费最少最少运费是31万元.【解析】关系式为:A型货厢装甲种货物吨数+B型货厢装甲种货物吨数≥1530A型货厢装乙种货物吨数+B型货厢装乙种货物吨数≥1150把相关数值代入可得一种货厢节数的范围进而求得总运费的等量关系根据函数的增减性可得最少运费方案及最少运费.考查一元一次不等式组的应用及方案的选择问题得到所运货物吨数的两个关系式及总运费的等量关系是解决本题的关键。
不等式(组) 有答案
期末数学复习试卷(一元一次不等式(组))一、不等式的性质1.若a>b,c<0,则下列四个不等式中成立的是()A.ac>bc B.C.a﹣c<b﹣c D.a+c<b+c2.下列判断中,正确的序号为.①若﹣a>b>0,则ab<0;②若ab>0,则a>0,b>0;③若a>b,c≠0,则ac>bc;④若a>b,c≠0,则ac2>bc2;⑤若a>b,c≠0,则﹣a﹣c<﹣b﹣c.二、解不等式(组)3.解下列不等式(组),并把解集在数轴上表示出来(1)<1﹣(2).三、不等式(组)的解的问题4.不等式组的整数解为.5.若不等式组无解,则m的取值范围是.6.若不等式组的解集是x>3,则m的取值范围是.7.若不等式组有解,则m的取值范围是.8.若不等式组有三个整数解解,则m的取值范围是.9.不等式(﹣2m+1)x>﹣2m+1的解集为x<1,则m的取值范围是.10.若关于x的方程3x+2m=2的解是正数,则m的取值范围是.11.若不等式组的解集是﹣1<x<1,则a、b的值分别是.12.已知方程组的解x+y>0,则m的取值范围是.13.关于x、y方程组的解满足x>y,求a的取值范围.14.方程组满足x>0,y<0,则a的取值范围是.五、不等式(组)应用问题19.若三角形的三边长分别为3,4,x﹣1,则x的取值范围是()A.0<x<8 B.2<x<8 C.0<x<6 D.2<x<624.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买多少瓶甲饮料.25.某校5名教师要带若干名学生到外地参加一次科技活动.已知每张车票价格是120元,购车票时,车站提出两种优惠方案供学校选择.甲种方案是教师按车票价格付款,学生按车票价格的60%付款;乙种方案是师生都按车票价格的70%付款.设一共有x名学生,请问选择哪种方案合算?27.某车间有20名工人,每人每天可加工甲种零件5个或乙种零件4个,每加工一个甲种零件获利16元,每加工一个乙种零件获利24元,若派x人加工甲种零件,其余的人加工乙种零件.(1)此车间每天所获利润为y元,求用y表示x的式子.(2)要使车间每天所获利润不低于1800元,至多派多少人加工甲种零件?28.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2012年5月1日122.5元.该市一户居民在2012年5月以后,某月用电x千瓦时,当月交电费y元.(1)上表中,a=;b=;(2)请直接写出用y表示x的式子;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?期末数学复习试卷(一元一次不等式(组))参考答案与试题解析一、不等式的性质1.若a>b,c<0,则下列四个不等式中成立的是()A.ac>bc B.C.a﹣c<b﹣c D.a+c<b+c【考点】不等式的性质.【分析】根据c的符号确定在不等式的两边加减乘除运算后的不等号的方向即可.【解答】解:A、∵a>b,c<0,∴ac<bc,故A错误;B、∵a>b,c<0,∴<,故B错误;C、∵a>b,c<0,∴a﹣c>b﹣c,故C错误;D、∵a>b,c<0,∴a+c<b+c,故D错误;故选B.2.下列判断中,正确的序号为①④⑤.①若﹣a>b>0,则ab<0;②若ab>0,则a>0,b>0;③若a>b,c≠0,则ac>bc;④若a>b,c≠0,则ac2>bc2;⑤若a>b,c≠0,则﹣a﹣c<﹣b﹣c.【考点】不等式的性质.【分析】①若﹣a>b>0,则a<0,b>0,所以ab<0,据此判断即可.②若ab>0,则a>0,b>0或a<0,b<0,据此判断即可.③若a>b,c≠0,则c>0时,ac>bc;c<0时,ac<bc;据此判断即可.④若a>b,c≠0,则c2>0,所以ac2>bc2,据此判断即可.⑤若a>b,c≠0,则﹣a<﹣b,所以﹣a﹣c<﹣b﹣c,据此解答即可.【解答】解:∵﹣a>b>0,∴a<0,b>0,∴ab<0,①正确;∵ab>0,∴a>0,b>0或a<0,b<0,②错误;∵a>b,c≠0,∴c>0时,ac>bc;c<0时,ac<bc;③错误;∵a>b,c≠0,∴c2>0,∴ac2>bc2,④正确;∵a>b,c≠0,∴﹣a<﹣b,∴﹣a﹣c<﹣b﹣c,⑤正确.综上,可得判断中,正确的序号为:①④⑤.故答案为:①④⑤.二、解不等式(组)3.解下列不等式(组),并把解集在数轴上表示出来(1)<1﹣(2).【考点】解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式.【分析】(1)去分母,去括号,移项,合并同类项,系数化成1即可;(2)先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:(1)去分母得:3(2x﹣1)<6﹣(4x﹣1)6x﹣3<6﹣4x+16x+4x<6+1+310x<10x<1,在数轴上表示为:;(2)∵解不等式①得:x<2,解不等式②得:x≤﹣4,∴不等式组的解集为x≤﹣4,在数轴上表示为:.三、不等式(组)的解的问题4.不等式组的整数解为﹣1,0,1.【考点】一元一次不等式组的整数解.【分析】先解不等式组,求出解集,再根据解集找出整数解.【解答】解:解不等式①,得x<1.5,解不等式②,得x≥﹣1.∴原不等式组的解集为﹣1≤x<1.5.又∵x为整数,∴x=﹣1,0,1.故答案为:﹣1,0,1.5.若不等式组无解,则m的取值范围是m≤4.【考点】不等式的解集.【分析】利用不等式组取解集的方法判断即可.【解答】解:∵不等式组无解,∴m≤4,故答案为:m≤46.若不等式组的解集是x>3,则m的取值范围是m≤3.【考点】不等式的解集.【分析】根据“同大取较大”的法则进行解答即可.【解答】解:∵不等式组的解集是x>3,∴m≤3.故答案为:m≤3.7.若不等式组有解,则m的取值范围是m>4.【考点】不等式的解集.【分析】利用不等式组取解集的方法判断即可求出m的范围.【解答】解:∵不等式组有解,∴m的范围是m>4,故答案为:m>48.若不等式组有三个整数解解,则m的取值范围是7≤m≤8.【考点】一元一次不等式组的整数解.【分析】根据不等式组的解集和已知得出即可.【解答】解:∵不等式组有三个整数解解,∴7≤m≤8,故答案为:7≤m≤8.9.不等式(﹣2m+1)x>﹣2m+1的解集为x<1,则m的取值范围是m>.【考点】不等式的解集.【分析】根据不等式的解集确定出m的范围即可.【解答】解:∵不等式(﹣2m+1)x>﹣2m+1的解集为x<1,∴﹣2m+1<0,解得:m>,故答案为:m>10.若关于x的方程3x+2m=2的解是正数,则m的取值范围是m<1.【考点】解一元一次不等式;一元一次方程的解.【分析】表示出方程的解,由解是正数求出m的范围即可.【解答】解:方程3x+2m=2,解得:x=,由题意得:>0,解得:m<1,故答案为:m<111.若不等式组的解集是﹣1<x<1,则a、b的值分别是﹣2,3.【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出光a、b的方程,求出即可.【解答】解:∵解不等式①得:x>1+a,解不等式②得:x<,∴不等式组的解集为:1+a<x<,∵不等式组的解集是﹣1<x<1,∴1+a=﹣1,=1,解得:a=﹣2,b=3,故答案为:﹣2,3.12.已知方程组的解x+y>0,则m的取值范围是m>﹣1.【考点】二元一次方程组的解;解一元一次不等式.【分析】由方程组①+②得4(x+y)=2+2m,再由x+y>0,得出不等式>0,求解即可得出m的取值范围.【解答】解:由方程组①+②得4(x+y)=2+2m,∵x+y>0,∴>0,解得m>﹣1,故答案为:m>﹣1,13.关于x、y方程组的解满足x>y,求a的取值范围a>.【考点】解一元一次不等式;二元一次方程组的解.【分析】把a看做已知数表示出方程组的解,代入已知不等式求出a的范围即可.【解答】解:,①﹣②得:3y=6﹣3a,即y=2﹣a,把y=2﹣a代入①得:x=a+1,代入不等式得:a+1>2﹣a,解得:a>,故答案为:a>14.方程组满足x>0,y<0,则a的取值范围是a.【考点】解一元一次不等式组;解二元一次方程组.【分析】利用加减消元法可求出x=,y=,根据x>0,y<0得到,再分别解两个不等,然后根据同大取大,同小取小可确定a的范围.【解答】解:,①+②得2x=1+2a,解得x=,①﹣②得2y=1﹣2a,解得y=,∵x>0,y<0,∴,∴a>.故答案为a>.五、不等式(组)应用问题19.若三角形的三边长分别为3,4,x﹣1,则x的取值范围是()A.0<x<8 B.2<x<8 C.0<x<6 D.2<x<6【考点】三角形三边关系.【分析】三角形的三边关系是:任意两边之和>第三边,任意两边之差<第三边.已知两边时,第三边的范围是>两边的差,<两边的和.这样就可以确定x的范围,从而确定x的值.【解答】解:依据三角形三边之间的大小关系,列出不等式组,解得2<x<8.故选B.20.已知点P(2x﹣6,x﹣5)在第四象限,则x的取值范围是3<x<5.【考点】解一元一次不等式组;点的坐标.【分析】根据第四象限内点的坐标特点列出不等式组,求出x的取值范围即可.【解答】解:∵点P(2x﹣6,x﹣5)在第四象限,∴,解得3<x<5.故答案为3<x<5.21.若直线y=﹣2x﹣4与直线y=4x+b的交点在第三象限,则b的取值范围是()A.﹣4<b<8 B.﹣4<b<0 C.b<﹣4或b>8 D.﹣4≤b≤8【考点】两条直线相交或平行问题.【分析】首先把y=﹣2x﹣4和y=4x+b,组成方程组,求解,x和y的值都用b来表示,再根据交点坐标在第三象限表明x、y都小于0,即可求得b的取值范围.【解答】解:,解得:,∵交点在第三象限,∴﹣<0,<0,解得:b>﹣4,b<8,∴﹣4<b<8.故选:A.22.已知一次y=(﹣3a+1)x+a的图象经过一、二、三象限,不经过第四象限,则a的取值范围是0<a<.【考点】一次图象与系数的关系.【分析】根据一次的性质列出关于a的不等式,求出k的取值范围即可.【解答】解:∵一次y=(﹣3a+1)x+a的图象经过第一、二、三象限,∴,解得0<a<.故答案为:0<a<.24.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买多少瓶甲饮料.【考点】一元一次不等式的应用.【分析】设小宏能买x瓶甲饮料,则能买(10﹣x)瓶乙饮料,根据总钱数不超过50元,列不等式求解即可.【解答】解:设小宏能买x瓶甲饮料,则能买(10﹣x)瓶乙饮料,由题意得,7x+4(10﹣x)≤50,解得:x≤3,即小宏最多买3瓶甲饮料.25.某校5名教师要带若干名学生到外地参加一次科技活动.已知每张车票价格是120元,购车票时,车站提出两种优惠方案供学校选择.甲种方案是教师按车票价格付款,学生按车票价格的60%付款;乙种方案是师生都按车票价格的70%付款.设一共有x名学生,请问选择哪种方案合算?【考点】一元一次不等式的应用.【分析】设每张车票的原价为a元,分别表示出第一种方案及第二种方案需要的付款,然后比较即可.【解答】解:设每张车票的原价为a元,按第一种方案购票应付款y1元,按第二种方案购票应付款y2元,依题意得:y1=5a+a×60%•x,y2=(x+5)•a•70%,①当y2>y1时,(x+5)•a•70%>5a+a×60%•x,解得x>15,②当y2=y1时,(x+5)•a•70%=5a+a×60%•x,解得:x=15,③当y2<y1时,(x+5)•a•70%<5a+a×60%x,解得:x<15.答:当学生多于15人时,按第一种方案;当学生等于15人时,两种方案都可以;当学生少于15人时,按第二种方案.27.某车间有20名工人,每人每天可加工甲种零件5个或乙种零件4个,每加工一个甲种零件获利16元,每加工一个乙种零件获利24元,若派x人加工甲种零件,其余的人加工乙种零件.(1)此车间每天所获利润为y元,求出y与x的关系式.(2)要使车间每天所获利润不低于1800元,至多派多少人加工甲种零件?【分析】(1)根据题意可以列出y与x之间的关系式;(2)根据题意可以列出相应的不等式,从而可以解答本题.【解答】解:(1)由题意可得,y=5x×16+(20﹣x)×4×24=1920﹣16x,即y与x的关系式是:y=1920﹣16x;(2)1920﹣16x≥1800解得,x≤7.5,即至多派7个人加工甲种零件.28.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2012年5月1日122.5元.该市一户居民在2012年5月以后,某月用电x千瓦时,当月交电费y元.(1)上表中,a=0.6;b=0.65;(2)请直接写出y与x之间的关系式;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?【分析】(1)利用居民甲用电100千瓦时,交电费60元,可以求出a的值,进而利用居民乙用电200千瓦时,交电费122.5元,求出b的值即可;(2)利用当x≤150时,当150<x≤300时,当x>300时分别求出即可;(3)根据当居民月用电量x≤150时,0.6x≤0.62x,当居民月用电量x满足150<x≤300时,0.65x ﹣7.5≤0.62x,当居民月用电量x满足x>300时,0.9x﹣82.5≤0.62x,分别得出即可.【解答】解:(1)根据2012年5月份,该市居民甲用电100千瓦时,交电费60元;得出:a=60÷100=0.6,居民乙用电200千瓦时,交电费122.5元.则÷=0.65,故:a=0.6;b=0.65.(2)当x≤150时,y=0.6x.当150<x≤300时,y=0.65(x﹣150)+0.6×150=0.65x﹣7.5,当x>300时,y=0.9(x﹣300)+0.6×150+0.65×150=0.9x﹣82.5;(3)当居民月用电量x≤150时,0.6x≤0.62x,故x≥0,当居民月用电量x满足150<x≤300时,0.65x﹣7.5≤0.62x,解得:x≤250,当居民月用电量x满足x>300时,0.9x﹣82.5≤0.62x,解得:x≤294,综上所述,试行“阶梯电价”后,该市一户居民月用电量不超过250千瓦时时,其月平均电价每千瓦时不超过0.62元.2017年4月7日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴不等式组的解集是:–a<x<b,
∵不等式组 的解集为2<x<3,
∴–a=2,b=3,即a=–2,
故选A.
13.【答案】C
【解析】把方程组 的两式相加,得3x+3y=2+2m,
两边同时除以3,得x+y= ,所以 <0,即m<–1.故选C.
14.【答案】0
【解析】–1< ≤2,
清理捕鱼网箱人数/人
总支出/元
A
15
9
57000
B
10
16
68000
(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;
(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?
所以整数解为0,1,2共3个.
故选C.
22.【解析】由①,得3x–2x<3–1,∴x<2.
由②,得4x>3x–1,∴x>–1.
∴不等式组的解集为–1<x<2.
23.【解析】解①得:x≤4,
解②得:x>2,
故不等式组的解为:2<x≤4,
在数轴上表示如下:
.
24.【解析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,
第九章不等式与不等式组
9.3一元一次不等式组
1.不等式组 的解集为
A. B.
C. 或 D.
2.在下列各选项中,属于一元一次不等式组的是
A. B.
C. D.
3.在直角坐标系中,点P(2x–6,x–5)在第四象限,则x的取值范围是
A.3<x<5B.–3<x<5
C.–5<x<3D.–5<x<–3
4.关于x的不等式组 的解集为x<2,则m的取值范围是
方案二:19人清理养鱼网箱,21人清理捕鱼网箱.
15.若关于x的不等式组 的解集为–1<x<3,则a=_______,b=_______.
16.若不等式组 的解集为–1<x<2,求a与b的值.
17.现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.
(1)求A,B两种商品每件各是多少元;
(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低.
∵关于x的不等式组 的解集为–1<x<3,
∴2a+1=–1,2–b=3,
解得:a=–1,b=–1,
故答案为:–1;–1.
16.【解析】由不等式①,得x< ,
由不等式②,得x> ,
又因为该不等式组的解集为–1<x<2,
所以该不等式组的解集只能为 <x< ,
即 ,解得 ,
所以a的值为3,b的值为6.
17.【解析】(1)设A商品每件x元,B商品每件y元,
依题意,得 ,解得 .
答:A商品每件20元,B商品每件50元.
(2)设小亮准备购买A商品a件,则购买B商品(10–a)件,
根据题意得 ,
解得 ,
根据题意,a的值应为整数,所以a=5或a=6.
方案一:当a=5时,购买费用为20×5+50×(10–5)=350(元);
方案二:当a=6时,购买费用为20×6+50×(10–6)=320(元);
不等式组的解集为–2≤x<1,
不等式组的解集在数轴上表示如图:
故选D.
20.【答案】C
【解析】 ,
由①得到:2x+6–4≥0,∴x≥–1,
由②得到:x+1>3x–3,∴x<2,
∴–1≤x<2,
∴最大整数解是1,
故选C.
21.【答案】C
【解析】 ,
由不等式①得x>–1,
由不等式②得x≤2,
其解集是–1<x≤2,
∵350>320,∴购买A商品6件,B商品4件的费用最低.
答:有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低.
18.【答案】A
【解析】 ,
解①得x<–2,解②得x≤3,
所以不等式组的解集为x<–2.
故选A.
19.【答案】D
【解析】解不等式2x+1≥–3得:x≥–2,
9.解不等式组: .
10.解不等式组 .
11.不等式组 的解集在数轴上表示为
A. B.
C. D.
12.若不等式组 的解集为2<x<3,则a,b的值分别为
A.–2,3B.2,–3C.3,–2D.–3,2
13.已知方程组 满足x+y<0,则
A.m>–1B.m>1C.m<–1D.m<1
14.不等式组–1< ≤2的所有整数解的和是_______.
故选D.
3.【答案】A
【解析】由题意得, ,解得 , ,故选A.
4.【答案】D
【解析】∵不等式组 的解集是x<2,
∴–m≥2,即m≤–2,故选D.
5.【答案】B
【解析】 ,不等式组的解集在数轴上表示为:
,∴解集对应的图形是线段.故选B.
6.【答案】C
【解析】∵解不等式 得: ,解不等式 ,得:x≤5,∴不等式组的解集是 ,整数解为0,1,2,3,4,5,共6个,故选C.
10.【解析】 ,
由不等式①,得x< ,
由不等式②,得x≥–2,
故知不等式组的解集为–2≤x< .
11.【答案】C
【解析】 ,
解不等式①得:x≥–5,
解不等式②得:x<2,
由大于向右画,小于向左画,有等号画实点,无等号画空心,
∴不等式 的解集在数轴上表示为:
故选C.
12.【答案】A
【解析】 ,
∵解不等式①得:x<b,
18.(2018·丹东)不等式组 的解集是
A.x<–2B.x≤3
C.–2<x≤3D.–2<x<3
19.(2018·毕节市)不等式组 的解集在数轴上表示正确的是
A. B.
C. D.
20.(2018·广元)一元一次不等式组 的最大整数解是
A.–1B.0C.1D.2
21.(2018·兴安盟)不等式组 的整数解的个数为
1.【答案】D
【解析】 ,
解不等式①得,x>–1;
解不等式②得,x<3.
∴不等式组的解集为–1<x<3,故选D.
2.【答案】D
【解析】A中,x=1是等式,故A不是一元一次不等式组;
B中,x2–1>–3中x的最高次数是2,故B不是一元一次不等式组;
C中含有两个未知数,因此C不是一元一次不等式组;
D中,2x2+x≤2(x2–1)化简后为x≤–2,是一元一次不等式,故D是一元一次不等式组.
同时乘以5,得–5<3x+4≤10,
同时减去4,得–9<3x≤6,
同时除以3,得–3<x≤2,
所以不等式组的整数解为–2,–1,0,1,2,
它们的和为0.故答案为:0.
15.【答案】–1;–1
【解析】 ,
∵解不等式①得:x>2a+1,
解不等式②得:x<2–b,
∴不等式组的解集为2a+1<x<2–b,
A.0个B.2个C.3个D.无数个
22.(2018·济南)解不等式组: .
23.(2018·怀化)解不等式组 ,并把它的解集在数轴上表示出来.
24.(2018•济宁)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:
村庄
清理养鱼网箱人数/人
7.【答案】
【解析】 ,由①得: ;由②得: ,则不等式组的解集为 ,故答案为: .
8.【答案】
【解析】∵不等式组 的解集是 ,
∴根据同大取大,同小取小,大小小大中间找,大大小小解不了(无解),知 .故答案为: .
9.【解析】 ,
由不等式 ,得x≥1,
由不等式 ,得x<2,
所以,原不等式组的解集为1≤x<2.
A.m>–2B.m<–2
C.m≥–2D.m≤–2
5.若把不等式组 的解集在数轴上表示出来,则其解集对应的图形为
A.长方形B.线段
C.射线D.直线
6.一元一次不等式组 的解集中,整数解的个数是
A.4B.5C.6D.7
7.一元一次不等式组 的解集是_______.
8.若不等式组 的解集是 ,则 的取值范围是_______.
根据题意,得: ,
解得: .ቤተ መጻሕፍቲ ባይዱ
答:清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;
(2)设m人清理养鱼网箱,则(40–m)人清理捕鱼网箱,
根据题意,得: ,
解得:18≤m<20,
∵m为整数,∴m=18或m=19,
则分配清理人员方案有两种:
方案一:18人清理养鱼网箱,22人清理捕鱼网箱;