空间向量运算的坐标表示教学设计说明

空间向量运算的坐标表示教学设计说明
空间向量运算的坐标表示教学设计说明

空间向量运算的坐标表示

教学设计

讲课人: 宋海阳指导人:红松

一、教学容分析课程标准指出:“用空间向量解决几何问题,提供了新视角。空间向量的引入,为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具。学生将在平面向量的基础上,把平面向量及运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,体会向量法在研究几何图形中的作用,进一步发展空间想象能力和几何直观能力。”

本节课是在学生已经掌握了平面向量运算的坐标表示的基础上进行的,是《空间向量运算的坐标表示》的第一课时,是用向量法解决立体几何问题的基础,让学生初步体会向量法在解决立体几何问题中的优越性,帮助空间想象能力较弱的同学顺利解题。

二、学生学情分析

1、学生学习本节容的基础

本节的学习对象是高二学生, 他们已经掌握了平面向量坐标运算及规律,并学会了空间向量的几何形式及其运算,数学基础较为扎实,学习上具备了一定的

观察、分析、解决问题的能力,但在探究问题的部联系和在发展上还有所欠缺. 所以通过教师的引导, 学生的自主探索, 不断地完善自我的认知结构。

2、学生学习本节容的能力

具有一定的画图能力,图形思维与代数思维可以结合起来。具有一定的推导能力,具备一定的数学的严谨性。

3、学生学习本节容的心理本节容学生容易接受,学生在学习的过程中会有很强的求知欲和成就感,对培养数学思想有推动作用。

三、教学目标分析

1、知识与技能:

(1)会运算空间向量的加法、减法、数乘及数量积的坐标表示;

(2)熟记空间向量长度公式、两向量夹角公式、空间两点间距离公式;

(3)会根据向量的坐标,判断两个向量共线或垂直;

(4)掌握用向量法解决两条异面直线所成角的方法。

2、过程与方法:

(1)在与平面向量的坐标运算的比较的基础上,培养学生观察、分析、类比转化的能力;

(2)通过对几何图形的研究,使学生恰当地建立空间直角坐标系,从“定

性推理”到“定量计算”,从而提高分析问题和解决问题的能力。

3、情感态度价值观:

(1)通过自主探究与合作交流的教学环节的设置,激发学生的学习热情和求知欲,充分体现学生的主体地位;

(2)通过数形结合的思想和方法的应用,让学生感受和体会数学的魅力。

四、教学重点难点分析

1、教学重点

(1)掌握空间向量运算的坐标表示;

(2)应用向量法求两条异面直线所成角及线线垂直问题。

2、教学难点

(1)建立恰当的空间直角坐标系,正确求出点的坐标及向量的坐标;

(2)正确理解两条异面直线所成角与两个空间向量夹角的区别。

五、教学策略分析

1、教学方法:自主探索、观察发现、类比猜想、合作交流

2、教学手段:多媒体,电子白板

3、教学准备:

(1)由于维度的增加,新知识不能直接被学生在原有的知识结构中同化吸收,为学生配备了相应的训练题,通过训练更好地接受空间向量的坐标运算;

(2)在求异面直线所成角时,会出现所求余弦值为负数。引领学生复习异面直线所成角的概念,强化应用空间向量解决几何问题与几何法的差异。

六、教学过程分析

(一)自主预习,熟悉要领

1.精读教材95页,用红笔勾画重点、记忆公式,完成以下容:

(1)空间向量的坐标运算

若a (a1,a2,a3),b (gbb),

a

a ______________ ( R),a b

)空间可两个向量共线的充要条件:

a//b

( R)

_______________________________________ ( R)

(3)空间两个非零向量垂直的充要条件

a b a b 0 _________ ;

(4)」向量的模与夹角

a

a ---------------------------------- ;

cos a, b __________________ ________________________

(5)空间两点间的距离公式(6)线段中点坐标公式

2.独立完成自我检测,小组对答案解惑。

【自我检测】

1?已知?=(-3,2,5),? =(i,5,-i),求:(i)a+b (2)3a- ?;

(3)6a;⑷ a???

2.已知a=(2,-1,3), ?=(-4,2,x), 且a b,求x 的值

设计意图:检测学生预习效果,进而熟悉本节知识

(二)合作探究,解决疑难探究一:求异面直线所成的角

如图1,在正方体ABCD-ABCD中,点E i, F i分别是AB, C i D的一个四等分点,

求BE与DF所成角的余弦值。

探究二:证明线线垂直

如图2,正方体ABCD-ABGD中,点E, F分别是BB, DB i的中点,求证EF DA.

,BA,线段AB的中点坐标及线段AB的长。

3.已知A(3,5,-7),B(-2

探究处理:由小组讨论完成,组解决疑惑,共性问题老师引导;小组展示结果;解题过程通过“找茬”游戏处理。

设计意图:小组讨论,让学生自己积极思考解决问题的方法,引导学生从不同角度考虑,组解决可以个别学生的疑惑;为规解题过程,通过“找茬”的游戏,让学生找出解题过程中不对的地方,帮助学生加深印象。

(三)课堂检测,体现收获

1.如图3,正方体ABCD-ABCD中,点M是AB的中点,求DB与CM所成角的余弦值。

2.如图4,正方体ABCD-A i CD的棱长为a.

⑴求A i B和BC的夹角;(2)求证:A i B AC.

(四)自主反思,总结提升

u

1.空间向量的加法、减法、数乘及数量积的坐标表示;

2.空间向量长度公式、两向量夹角公式、空间两点间距离公式;

3.利用向量解决空间立体几何问题;

4.我的疑惑:

(五)课后练习,巩固强化

3.如图5,正方体ABCD-ABCD中,点M,N分别为棱AA和BB的中点,求CM和DN所成角的余弦值。

《空间向量运算的坐标表示》说课稿

《空间向量运算的坐标表示》——说课稿 各位评委、老师:大家好! 今天我说课的内容是《空间向量运算的坐标表示》的第一课时,我将从教材分析、教学目标、学生情况、教法学法分析、教学过程、教学效果及反思六个方面来介绍: 一、教材分析 (一)地位和作用 本节课内容选自人教数学选修2-1第三章,这节课是在学生学习了空间向量几何形式及其运算、空间向量基本定理的基础上进一步学习的知识内容,是在学生已经学过的二维的平面直角坐标系的基础上的推广,是《空间向量运算的坐标表示》的第一课时,是以后学习“立体几何中的向量方法”等内容的基础。它将数与形紧密地结合起来。这节课学完后,如把几何体放入空间直角坐标系中来研究,几何体上的点就有了坐标表示,一些题目如两点间距离、异面直线成的角等就可借助于空间向量来解答,所以,这节课对于沟通高中各部分知识,完善学生的认知结构,起到了很重要的作用。 (二)目标的确定及分析 根据新课标和我对教材的理解,结合学生实际水平,从知识与技能;过程和方法;情感态度价值观三个层面出发,我将本课的目标定位以下三个:(1)知识与技能:通过与平面向量类比学习并掌握空间向量加法、减法、数乘、数量积运算的坐标表示以及向量的长度、夹角公式的坐标表示,并能初步应用这些知识解决简单的立体几何问题。(2)过程与方法:①通过将空间向量运算与熟悉的平面向量的运算进行类比,使学生掌握空间向量运算的坐标表示,渗透类比的数学方法;②会用空间向量运算的坐标表示解决简单的立体几何问题,体会向量方法在研究空间图形中的作用,培养学生的空间想象能力和几何直观能力。(3)情感态度价值观:通过提问、讨论、合作、探究等主动参与教学的活动,培养学生主人翁意识、集体主义精神。 (三)重难点的确定及分析 本节课的重点是:空间向量运算的坐标表示,应用向量法求两条异面直线所

空间向量的坐标运算练习

空间向量的坐标运算练 习 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

空间向量的坐标运算——1 1、已知向量b ,a 分别平行于x 、y 轴,则它们的坐标各有什么特点 答:a 的__________________________; b 的________________________________ 2、如果的横坐标为0,其它坐标都不为0,则与哪个坐标平面平行答:_________ 4、点P(2,-3,4)在xoy 面上的射影坐标是___________;在xoz 面上的射影坐标是 ___________; 在yoz 面上的射影坐标是___________ 5、点Q (-3,2,5)关于原点对称的点的坐 标是___________;关于xoz 面对称的点的坐标是__________________ 6、已知A (3,4,5),B (0,2,1),若 AB 5 2OC =,则C 点的坐标是______________ 7、写出与原点距离等于3的点所满足的条件________________________________ 8、已知A(2,0,0),B(6,2,2),C(4,0, 2) A :2 D 3C 4B 6ππππ ::: 9、如图,ABC-A 1B 1C 1是正三棱柱(即底面是正三角形,沿着垂直于底面的向量平移所得到的轨迹),若AB =2,AA 1=4,R 是BB 1的中点,取AB 的中点为原点建立坐标系如图,写出下列向量的坐标: ______________= ______________=______________=A A'

空间向量的坐标运算(人教A版)(含答案)

空间向量的坐标运算(人教A版) 一、单选题(共10道,每道10分) 1.已知点的坐标分别为与,则向量的相反向量的坐标是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:空间向量运算的坐标表示 2.已知空间直角坐标系中且,则点的坐标为( ) A. B. C. D. 答案:A 解题思路:

试题难度:三颗星知识点:空间向量运算的坐标表示 3.若向量,,则向量的坐标是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:空间向量运算的坐标表示 4.已知向量,,则=( ) A. B. C. D. 答案:C

解题思路: 试题难度:三颗星知识点:空间向量运算的坐标表示 5.已知向量是空间的一组单位正交基底,若向量在基底下的坐标为,那么向量在基底下的坐标为( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:空间向量的基本定理及其意义 6.已知为空间的一组单位正交基底,而是空间的另一组

基底,若向量在基底下的坐标为,则向量在基底下的坐标为( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:空间向量的基本定理及其意义 7.已知三点不共线,点为平面外的一点,则下列条件中,能使得平面成立的是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:共线向量与共面向量 8.已知,,,若,,三向量共面,则实数=( ) A. B.

C. D. 答案:D 解题思路: 试题难度:三颗星知识点:共线向量与共面向量 9.已知空间三点的坐标为,,,若三点共线,则=( ) A. B. C. D. 答案:D 解题思路:

空间向量及其运算(经典)

§8.5 空间向量及其运算 1.空间向量的有关概念 2.(1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . 推论 如图所示,点P 在l 上的充要条件是 OP →=OA → +t a ① 其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a ,则①可化为OP → = OA →+tAB →或OP →=(1-t )OA →+tOB →. (2)共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O ,有OP →=OM →+xMA →+yMB →或OP →=xOM → +yOA →+zOB → ,其中x +y +z =__1__. (3)空间向量基本定理 如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,把{a ,b ,c }叫做空间的一个基底.

3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB → =b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π 2,则称a 与b 互相垂 直,记作a ⊥b . ②两向量的数量积 已知空间两个非零向量a ,b ,则|a||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a·b ,即a·b =|a||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4.空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =a 21+a 22+a 23, cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23 . 设A (a 1,b 1,c 1),B (a 2,b 2,c 2), 则d AB =|AB → |=(a 2-a 1)2+(b 2-b 1)2+(c 2-c 1)2. 1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两非零向量a ,b 共面. ( √ ) (2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ). ( × )

空间向量的坐标运算

空间向量的坐标运算 第一课时空间直角坐标系 教学目标: ㈠知识目标: ⒈空间直角坐标系; ⒉空间向量的坐标表示; ⒊空间向量的坐标运算; ⒋平行向量、垂直向量坐标之间的关系; 5.中点公式。 ㈡能力目标: ⒈掌握空间右手直角坐标系的概念,会确定一些简单几何体(正方体、长方体)的顶点坐标; ⒉掌握空间向量坐标运算的规律; 3.会根据向量的坐标,判断两个向量共线或垂直; 4.会用中点坐标公式解决有关问题。 教学重点:空间右手直角坐标系,向量的坐标运算 教学难点:向量坐标的确定 教学方法:讨论法. 教具准备:多媒体投影. 教学过程: 复习回顾 空间向量基本定理 探索研究 1、空间右手直角坐标系的概念 ⑴单位正交基底如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常用{i,j,k}表示。 ⑵空间直角坐标系O-xyz 在空间选定一点O和一个单位正交基底{i,j,k},以点O 为原点,分别以i、j、k的方向为正方向建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴,这时我们说建立了一个直角坐标系O-xyz,点O叫做原点,向量i,j,k叫做坐标向 量,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面,yOz平面,zOx平面。 ⑶空间直角坐标系的画法作空间直角坐标系O-xyz 时,一般使∠xOy=135°(或45°),∠yOz=90°。 注:在空间直角坐标系O-xyz中,让右手拇指指向x轴 的正方向,食指指向y轴的正方向,如果中指能指向z轴的正 方向,则称这个坐标系为右手直角坐标系。 ⑷空间向量的坐标表示给定一空间直角坐标系和向

向量的直角坐标运算设a=(a 1,a 2,a 3),b=(b 1,b 2,b 3),则a+b=(a 1+b 1,a 2+b 2,a 3+b 3) a -b=(a 1- b 1,a 2-b 2,a 3-b 3)λa=(λa 1,λa 2,λa 3) a ?b=a 1 b 1+a 2b 2+a 2b 2 a//b a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R)a ⊥b a 1b 1+a 2b 2+a 3b 3=0设A(x 1,y 1,z 1),B(x 2,y 2,z 2),则 AB =OB -OA =(x 2-x 1,y 2-y 1,z 2-z 1)  量a ,且设i,j,k 为坐标向量(如图),由空间向量基本定理,存在唯一的有序实数组(a 1,a 2,a 3)叫做向量a 在此直角坐标系中的坐标,可简记作a =(a 1,a 2,a 3)。 在空间直角坐标系O -xyz 中,对于空间任一点A ,对应一个向量OA ,若 ,k z j y i x OA ++=则有序数组(x,y,z)叫做点A 在 此空间直角坐标系中的坐标,记为A(x,y,z),其中x 叫做A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标,写点的坐标时,三个坐标间的顺序不能变。 ⑸空间任一点P 的坐标的确定 过P 分别作三个与坐标平面平行的平面(或垂面),分别交坐标轴于A 、B 、C 三点,|x|=|OA|,|y|=|OB|,|z|=|OC|,当OA 与i 方向相同时,x >0,反之x <0,同理可确定y 、z (如图) 例1已知ABCD -A 1B 1C 1D 1是棱长为2的正方体,E 、F 分别是BB 1和DC 的中点,建立如图所示的空间直角坐标系,试写出图中各点的坐标。 分析:要求点E 的坐标,过点E 与x 轴、y 轴垂直的平面已存在,只要过E 作平面垂直于z 轴交E ‘ 点,此时|x|=|,|DA |y|=|,|DC |z|=||'DE ,当DA 的方向与x 轴正向相同时,x >0,反之x <0,同理确定y 、z 的符号,这样可求得点E 的坐标。 解:D(0,0,0),A(2,0,0),B(0,2,0),C(0,0,2), A 1(2,0,2), B 1(2,2,2), C 1(0,2,2),, D 1(0,0,2),E(2,2,1),F(0,1,0) 2、向量的直角坐标运算 注:3 32 21 1i 321321b a b a b a b //a 1,2,3),0(i b ),b ,b ,(b b ),a ,a ,(a a = = ? =≠==则若

空间向量的基本运算

第六节 空间向量 1. 空间向量的概念:在空间,我们把具有 和 的量叫做向量。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线 或 ,那么这些向量也叫做共 线向量或平行向量,a 平行于b ,记作b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ, 使a = 。 4. 共面向量 (1)定义:一般地,能平移到同一 内的向量叫做共面向量。 说明:空间任意的两向量都是 的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y ,使 。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使 。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个 的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使zk yi xi OA ++=,有序实数组 (,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作

3.1.1空间向量及其运算

3. 1.1空间向量及其运算(一) 教学目标: ㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律; ㈡能力目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. ㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物. 教学重点:空间向量的加减与数乘运算及运算律. 教学难点:应用向量解决立体几何问题. 教学方法:讨论式. 教学过程: Ⅰ.复习引入 [师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢? [生]既有大小又有方向的量叫向量.向量的表示方法有: ①用有向线段表示; ②用字母a、b等表示; ③用有向线段的起点与终点字母:AB. [师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量. [师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算: ⒈向量的加法: ⒉向量的减法: ⒊实数与向量的积: 实数λ与向量a的积 是一个向量,记作λa,其长度 和方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa 与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. [师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢? [生]向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb [师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本

空间向量及其运算练习题

空间向量及其运算练习题 一、选择题 1、在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.0 B.1 C.2 D.3 2、点(2,3,4)关于xoz 平面的对称点为( ) A 、(2,3,-4) B 、(-2,3,4) C 、(2,-3,4) D 、(-2,-3,4) 3、在空间直角坐标系中,设z 为任意实数,相应的点(3,1,)P z 的集合确定的图形为 ( )A .点 B .直线 C .圆 D .平面 4、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b , A A 1=c .则下列向量中与M B 1相等的向量是( ) A .c b a ++- 21 21 B . c b a ++21 21 C .c b a +-2 1 21 D .c b a +--2 1 21 5、在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A .OC O B OA OM --=2 B .O C OB OA OM 2 1 3151++= C .=++MC MB MA 0 D .=+++OC OB OA OM 0 5、已知平行六面体''' ' ABCD A B C D -中,AB=4,AD=3,' 5AA =,0 90BAD ∠=, ''060BAA DAA ∠=∠=,则'AC 等于 ( ) A .85 B .85 C .52 D .50 图

空间向量及其运算测试题

高二选修(2—1)第三章3.1空间向量及其运算测试 一、选择题 1 抛物线2 81x y - =的准线方程是 ( ) A . 321=x B . 2=y C . 32 1 =y D . 2-=y 2.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是 ( ) A . 22 1169x y += B . 22 11612x y += C .22 143x y += D .22 134 x y += 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( ) A .平行四边形 B .梯形 C .长方形 D .空间四边形

专题01 空间向量及其运算、空间向量基本定理(解析版)

专题01 空间向量及其运算、空间向量基本定理 一、单选题 1.(2019·全国高二课时练习)已知a ,b ,c 是不共面的三个向量,则能构成一个基底的一组向量是( ) A .2a ,a ﹣b ,a +2b B .2b ,b ﹣a ,b +2a C .a ,2b ,b ﹣c D .c ,a +c ,a ﹣c 【答案】C 【解析】 对于A ,因为2a = 43(a ﹣b )+2 3(a +2b ),得2a 、a ﹣b 、a +2b 三个向量共面,故它们不能构成一个基底,A 不正确; 对于B ,因为2b = 43(b ﹣a )+2 3 (b +2a ),得2b 、b ﹣a 、b +2a 三个向量共面,故它们不能构成一个基底,B 不正确; 对于C ,因为找不到实数λ、μ,使a =λ?2b +μ(b ﹣c )成立,故a 、2b 、b ﹣c 三个向量不共面, 它们能构成一个基底,C 正确; 对于D ,因为c =12(a +c )﹣1 2 (a ﹣c ),得c 、a +c 、a ﹣c 三个向量共面,故它们不能构成一个基底,D 不正确 故选:C . 2.(2020·贵州省铜仁第一中学高二开学考试)如图所示,在平行六面体1111ABCD A B C D -中,设1AA a =, AB b =,AD c =,N 是BC 的中点,试用a ,b ,c 表示1A N ( ) A .12 a b c -++ B .a b c -++ C .12 a b c --+ D .12 a b c -+ 【答案】A

【解析】 N 是BC 的中点, 11111 222 A N A A A B BN a b B C a b A D a b c ∴=++=-++=-++=-++. 故选:A. 3.(2020·山东省章丘四中高二月考)如图,在四面体OABC 中,D 是BC 的中点,G 是AD 的中点,则OG 等于( ) A .111 333OA OB OC ++ B .111 234OA OB OC ++ C .111244 OA OB OC ++ D .111446 OA OB OC ++ 【答案】C 【解析】 在四面体OABC 中,D 是BC 的中点,G 是AD 的中点 ∴1 2 OG OA AD =+ 11 ()22OA AB AC =+?+ 1 ()4OA OB OA OC OA =+?-+- 111 244 OA OB OC =++ 故选:C. 4.(2020·河南省高二期末)如图在平行六面体1111ABCD A B C D -中,E 为11A D 的中点,设AB a =, AD b =,1AA c =,则CE =( )

最新空间向量运算的坐标表示练习题

课时作业(十七) [学业水平层次] 一、选择题 1.已知a =(1,-2,1),a -b =(-1,2,-1),则b =( ) A .(2,-4,2) B .(-2,4,-2) C .(-2,0,-2) D .(2,1,-3) 【解析】 b =a -(-1,2,-1)=(1,-2,1)-(-1,2,-1)=(2,-4,2). 【答案】 A 2.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |的值为( ) A.534 B.532 C.532 D.132 【解析】 ∵AB 的中点M ? ? ???2,32,3,∴CM →=? ????2,12,3,故|CM | =|CM → |= 22+? ?? ??122+32=532. 【答案】 C 3.(2014·德州高二检测)已知向量a =(2,3),b =(k,1),若a +2b 与a -b 平行,则k 的值是( ) A .-6 B .-23 C.2 3 D .14 【解析】 由题意得a +2b =(2+2k,5),且a -b =(2-k,2),又因为a +2b 和a -b 平行,则2(2+2k )-5(2-k )=0,解得k =2 3.

【答案】 C 4. (2014·河南省开封高中月考)如图3-1-32,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=2,E ,F 分别是面A 1B 1C 1D 1、面BCC 1B 1的中心,则E ,F 两点间的距离为( ) 图3-1-32 A .1 B.52 C.62 D.32 【解析】 以点A 为原点,建立如图所示的空间直角坐标系,则 E (1,1,2), F ? ???? 2,1,22,所以|EF |= (1-2)2 +(1-1)2 +? ??? ?2-222 =6 2,故选C. 【答案】 C 二、填空题 5.(2014·青岛高二检测)已知点A (1,2,3),B (2,1,2),P (1,1,2),O (0,0,0),点Q 在直线OP 上运动,当QA →·QB →取得最小值时,点Q 的坐标为________. 【解析】 设OQ →=λOP →=(λ,λ,2λ),故Q (λ,λ,2λ),故QA → =

(教案)空间向量及其运算

空间向量及其运算 【高考导航】 本节内容是高中教材新增加的内容,在近两年的高考考查中多作为解题的方法进行考查,主要是解题的方法上因引入向量得以扩展.例如2001上海5分,2002上海5分. 【学法点拨】 本节共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积.这一节是空间向量的重点,在学习本节内容时要与平面向量的知识结合起来,认识到研究的范围已由平面扩大到空间.一个向量是空间的一个平移,两个不平行向量确定的是一个平行平面集,在此基础上,把平行向量基本定理和平面向量基本定理推广到空间,得出空间直线与平面的表达式,有了这两个表达式,我们可以很方便地解决空间的共线和共面问题.空间向量基本定理是空间几何研究代数化的基础,有了这个定理,整个空间被3个不共面的基向量所确定,空间一个点或一个向量和实数组(x ,y ,z )建立起一一对应关系,空间向量的数量积一节中,由于空间任一向量都可以转化为共面向量,所以空间两个向量的夹角的定义、取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同. 【基础知识必备】 一、必记知识精选 1.空间向量的定义 (1)向量:在空间中具有大小和方向的量叫作向量,同向且等长的有向线段表示同一向量或相等向量. (2)向量的表示有三种形式:a ,AB ,有向线段. 2.空间向量的加法、减法及数乘运算. (1)空间向量的加法.满足三角形法则和平行四边形法则,可简记为:首尾相连,由首到尾.求空间若干个向量之和时,可通过平移将它们转化为首尾相接的向量.首尾相接的若干个向量若构成一个封闭图形,则它们的和为0,即21A A +32A A +…1A A n =0. (2)空间向量的减法.减法满足三角形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向一定”,另外要注意 -=的逆应用. (3)空间向量的数量积.注意其结果仍为一向量. 3.共线向量与共面向量的定义. (1)如果表示空间向量的有向线段在直线互相平行或重合,那么这些向量叫做共线向量或平行向量.对于空间任意两个向量a,b(b≠0),a∥b ?a=λb ,若A 、B 、P 三点共线,则对空间任意一点O ,存在实数t,使得OP =(1-t)OA +t OB ,当t=2 1 时,P 是线段AB 的中点,则中点公式为OP = 2 1 (OA +OB ). (2)如果向量a 所在直线O A 平行于平面α或a 在α内,则记为a ∥α,平行于同一个平面的

空间向量及其运算

空间向量及其运算 1.空间向量的有关概念 2.空间向量中的有关定理 (1)共线向量定理 空间两个向量a与b(b≠0)共线的充要条件是存在实数λ,使得a=λb. (2)共面向量定理 共面向量定理的向量表达式:p=x a+y b,其中x,y∈R,a,b为不共线向量. (3)空间向量基本定理 如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p =x a+y b+z c,{a,b,c}叫作空间的一个基底.

3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB → =b ,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π 2,则称a 与b 互相垂直, 记作a ⊥b . ②两向量的数量积 已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫作向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ; ③分配律:a ·(b +c )=a ·b +a ·c . 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). 概念方法微思考 1.共线向量与共面向量相同吗? 提示 不相同.平行于同一平面的向量就为共面向量. 2.零向量能作为基向量吗? 提示 不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量. 3.空间向量的坐标运算与坐标原点的位置选取有关吗? 提示 无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.

3.1空间向量及其运算测试题(答案)

1 A.-a+b+c B.a+b+c C.a-b+c D.-a-b+c A.OM=2OA-OB-OC B.O M=OA+OB+OC 1 C.(-,,-1)D.(2,-3,-22) 2 C.π N A.a-b+c B.-a+b+c C.a+b-c D.a+b-c 精心整理 新课标高二数学同步测试(2-1第三章3.1) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填 在题后的括号内(每小题5分,共50分). 1.在平行六面体ABCD—A B C D中,M为AC与BD的交点,若A B=a, 1111 A D=b,A A=c.则下列向量中与 B M相等的向量是() 1111 1111 2222 1111 2222 图 2.在下列条件中,使M与A、B、C一定共面的是() 111 532 C.MA+MB+MC=0D.OM+OA+OB+OC=0 3.已知平行六面体ABCD-A'B'C'D'中,AB=4,AD=3,AA'=5,∠BAD=900, ∠BAA'=∠DAA'=600,则AC'等于() A.85B.85C.52D.50 4.与向量a=(1,-3,2)平行的一个向量的坐标是() A.(,1,1)B.(-1,-3,2) 3 13 22 5.已知A(-1,-2,6),B(1,2,-6)O为坐标原点,则向量OA,与OB的夹角是() A.0B.πD.3π2 6.已知空间四边形ABCD中,OA=a,OB=b,OC=c,点M在OA上,且OM=2MA,为BC中点,则MN=() 121 232 111 222 211 322 221 332 7.设A、B、C、D是空间不共面的四点,且满足AB?AC=0,AC?AD=0,AB?AD=0,则?BCD是 () A.钝角三角形B.锐角三角形C.直角三角形D.不确定 8.空间四边形OABC中,OB=OC,?AOB=?AOC=600,则cos O A,BC=()

空间向量运算的坐标公式

空间向量运算的坐标公式 如果三个向量不共面那么对空间任一向量存在一个唯一的 有序实数组x、y、z使得cbapczbyaxpcba叫做空间的一个 ______基底空间任意三个不共面向量都可以构成空间的一 个基底一、空间直角坐标系单位正交基底如果空间的一个基底的三个基向量互相垂直且长都为1则这个基底叫做单位正交基底常用i j k 来表示.点O叫做原点向量i、j、k都叫做坐标向量.通过每两个坐标轴的平面叫做坐标平面。分别称为xOy平面yOz平面xOz平面.空间直角坐标系在空间选定一 点O和一个单位正交基底i、j、k 。以点O为原点分别以i、j、k的正方向建立三条数轴x轴、y轴、z轴它们都叫做坐 标轴.这样就建立了一个空间直角坐标系O--xyzOxyzijk二、 向量的直角坐标aaaa 1 2 3给定一个空间坐标系和向量且设i、j、k为坐标向量由空间向量基本定理存在唯一的有序实数组1 2 3使1i 2j 3k 有序数组1 2 3叫做在空间直角坐标系 O--xyz中的坐标记作.aaaaaaaaaaaaxyzOAa1a2a3ijka在空间直角坐标系O--xyz中对空间任一点A对应一个向量OA于是 存在唯一的有序实数组xyz使OAxiyjzk在单位正交基底i j k 中与向量OA对应的有序实数组xyz叫做点A在此空间直角坐标系中的坐标记作Axyz其中x叫做点A的横坐标y叫做点A的纵坐标z叫做点A的竖坐标.xyzOAxyzijka三、向量 的直角坐标运算.111222axyzbxyz设则 121212abxxyyzz111axyzR121212abxxyyzz121212abxxyyzz例

空间向量及其运算的坐标表示

1.3 空间向量及其运算的坐标表示 【学习目标】 1.空间直角坐标系 在空间选定一点O和一个单位正交基底{i,j,k},以O为原点,分别以i,j,k方向为正方向,以它们的长为单位长度建立三条数轴:x轴,y轴,z轴,它们都叫做坐标轴,这时我们就建立,O叫做,i,j,k都叫做。 对于空间任意一个向量p,存在有序实数组{x,y,z},使得p=x e1+y e2+z e3,则把x,y,z称作向量p在单位正交基底e1,e2,e3下的坐标,记作。 2.空间向量的坐标运算 空间向量a,b,其坐标形式为a=(a1,a2,a3),b=(b1,b2,b3). 3. 设a=(a1,a2,a3),b=(b1,b2,b3),则

夹角 cos 〈a ,b 〉=a ·b |a ||b | cos 〈a ,b 〉= a 1 b 1+a 2b 2+a 3b 3 a 21+a 22+a 2 3 b 21+b 22+b 2 3 1.已知i ,j ,k 分别是空间直角坐标系Oxyz 中x 轴,y 轴,z 轴的正方向上的单位向量,且AB → =-i +j -k ,则点B 的坐标是( ) A .(-1,1,-1) B .(-i ,j ,-k ) C .(1,-1,-1) D .不确定 2、判断对错。 (1)空间直角坐标系中,向量AB → 的坐标与终点B 的坐标相同.( ) (2)设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2)且b ≠0,则a ∥b ∥x 1x 2 =y 1y 2 =z 1 z 2 .( ) (3)四边形ABCD 是平行四边形,则向量AB →与DC → 的坐标相同.( ) (4)设A (0,1,-1),O 为坐标原点,则OA → =(0,1,-1).( ) 【经典例题】 题型一 空间直角坐标系 注意:建系时要充分利用图形的线面垂直关系,选择合适的基底,在写向量的坐标时,考虑图形的性质,充分利用向量的线性运算,将向量用基底表示. 例1已知P A 垂直于正方形ABCD 所在的平面,M 、N 分别是AB 、PC 的中点,并且P A =AD =1,建立适当坐标系,求向量MN → 的坐标.

专题01 空间向量及其运算、空间向量基本定理(原卷版)

专题01 空间向量及其运算、空间向量基本定理 一、单选题 1.(2019·全国高二课时练习)已知a ,b ,c 是不共面的三个向量,则能构成一个基底的一组向量是( ) A .2a ,a ﹣b ,a +2b B .2b ,b ﹣a ,b +2a C .a ,2b ,b ﹣c D .c ,a +c ,a ﹣c 2.(2020·贵州省铜仁第一中学高二开学考试)如图所示,在平行六面体1111ABCD A B C D -中,设1AA a =,AB b =,AD c =,N 是BC 的中点,试用a ,b ,c 表示1A N ( ) A .12a b c -++ B .a b c -++ C .12a b c --+ D .12 a b c -+ 3.(2020·山东省章丘四中高二月考)如图,在四面体OABC 中,D 是BC 的中点,G 是AD 的中点,则OG 等于( ) A .111 333 OA OB OC ++ B .111234OA OB OC ++ C .111244OA OB OC ++ D .111446OA OB OC ++ 4.(2020·河南省高二期末)如图在平行六面体1111ABCD A B C D -中, E 为11A D 的中点,设AB a =,AD b =,1AA c =,则CE =( )

A .12a b c --+ B .12a b c -+ C .12a b c -- D .12 a b c +- 5.(2020·广东省红岭中学高二期末) AB 与CD 共线是直线AB ∥CD 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 6.(2020·广东省红岭中学高二期末)O 为空间任意一点,,,A B C 三点不共线,若OP =111326 OA OB OC + +,则,,,A B C P 四点 A .一定不共面 B .不一定共面 C .一定共面 D .无法判断 7.(2019·随州市第一中学高二期中)空间A B C D 、、、四点共面,但任意三点不共线,若P 为该平面外一点且5133PA PB xPC PD = --,则实数x 的值为( ) A .13 B .13- C .23 D .23 - 8.(2020·甘肃省高二期末)如图,空间四边形OABC 中,OA a =,OB b =,OC c =,且2OM MA =,BN NC =,则MN 等于( ) A .221332 a b c ++ B . 122121a b c +- C .122132a b c -++ D .123122a b c -+

空间向量及其坐标运算练习题

空间向量及其坐标运算 一.选择题 1.若a =(2x ,1,3),b =(1,-2y ,9),如果a 与b 为共线向量,则 A.x =1,y =1 B.x = 21,y =-21 C.x =61,y =-23 D.x =-61,y =2 3 2.在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.0 B.1 C.2 D.3 3.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 值是 A.1 B.51 C.53 D.5 7 4.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG = x OA +y OB +z OC ,则(x ,y ,z )为 A.( 41,41,41) B.(43,43,43) C.(31,31,31) D.(32,32,32 ) 5.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成的角为的余弦值 A D B C B C D 1 1 1 1 M N A. 2 3 B. 10 10 C. 5 3 D. 5 2 二.填空题 6.已知空间三点A (1,1,1)、B (-1,0,4)、C (2,-2,3),则AB 与CA 的夹角 θ的大小是_________. 7.已知点A (1,2,1)、B (-1,3,4)、D (1,1,1),若AP =2PB ,则|PD |的值是__________. 8.命题:①若a 与b 共线,b 与c 共线,则a 与c 共线;②向量a 、b 、c 共面,则它们所在的直线也共面;③若a 与b 共线,则存在唯一的实数λ,使b =λa ;④若A 、B 、C 三点不共线,O 是平面ABC 外一点,OM = 31OA + 31OB + 3 1 OC ,则点M 一定在平面ABC 上,且在△ABC 内部. 上述命题中的真命题是_____________.

专题02 空间向量及其运算的坐标表示(解析版)

专题02 空间向量及其运算的坐标表示 一、单选题 1.(2019·黑龙江省牡丹江一中高二期中)已知向量(1,2,1)a =-,(1,2,1)a b -=--,则向量b =( ) A .(2,4,2)- B .(2,4,2)-- C .(2,0,2)-- D .(2,1,3)- 【答案】A 【解析】 由已知可得()()()1,2,11,2,12,4,2b =----=-. 故选:A. 2.(2020·南京市秦淮中学高二期末)已知向量()3,2,a x =,向量()2,0,1b =,若a b ⊥,则实数x =( ) A .3 B .3- C .6 D .6- 【答案】D 【解析】 ()3,2,a x =,()2,0,1b =,a b ⊥,60a b x ∴?=+=,解得6x =-. 故选:D. 3.(2019·湖南省衡阳县江山学校高二月考)若向量(0,1,1),(1,1,0)a b =-=,且()a b a λ+⊥,则实数λ的值是( ) A .1- B .0 C .2- D .1 【答案】C 【解析】 由已知(0,1,1)(1,1,0)(,1,1)a b λλλλ+=-+=+-, 由()a b a λ+⊥得:()(,1,1)(0,1,1)110a b a λλλλ+?=+-?-=++=, 2λ∴=-, 故选:C. 4.(2019·浙江省宁波市鄞州中学高二月考)已知空间向量()1,,2a n =,()2,1,2b =-,若2a b -与b 垂直,

则a 等于( ) A B C . 2 D . 2 【答案】A 【解析】 由空间向量()1,,2a n =,()2,1,2b =-,若2a b -与b 垂直, 则(2)0a b b -?=, 即2 2a b b ?=, 即249n +=, 即52n = , 即51,,22 a ??= ??? , 即251a =+ = , 故选:A. 5.(2019·佛山市荣山中学高二期中)已知()2,1,2a =-,()4,2,b x =-,且//a b ,则x =( ) A .-4 B .-5 C .5 D .-2 【答案】A 【解析】 因为()2,1,2a =-,()4,2,b x =-,且//a b , 所以存在实数λ,使得b a λ=, 即4222x λ λλ -=?? =-??=? 解得24x λ=-??=-? 故选:A 6.(2019·湖北省沙市中学高二月考)若(1,21,0),(2,,)a m m b m m =--=,则b a -的最小值是( )

相关文档
最新文档