生活中的仰角俯角

合集下载

2024中考数学专题5.9三角函数在实际生活中的应用 (全国通用)

2024中考数学专题5.9三角函数在实际生活中的应用 (全国通用)

考向5.9 三角函数在实际生活中的应用【知识要点】1、在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。

由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。

2、如图1,当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角3、 如图2,坡面与水平面的夹角叫做仰角 (或叫做坡比)。

用字母i 表示,即tan h i A l==4、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。

5、指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方位角。

如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°,南偏东45°(东南方向)、南偏西为60°,北偏西60°。

7.测量物体高度的方法:(1).利用全等三角形的知识 ;(2)利用相似三角形的对应边成比例 ;(3).利用三角函数的知识例1、如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D 点处时,无人机测得操控者A 的俯角为75︒,测得小区楼房BC 顶端点C 处的俯角为45︒.已知操控者A 和小区楼房BC 之间的距离为45米,小区楼房BC的高度为(1)求此时无人机的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB 的方向,并以5米/秒的速度继续向前匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?(假定点A ,B ,C ,D 都在同一平面内.参考数据:tan 752︒=tan152︒=.计算结果保留根号)图1图2hA图3 图4解:如图1,过D 点作DH ⊥AB ,垂足为点H ,过C 点作CE ⊥DH ,垂足为点E ,可知四边形EHBC 为矩形,∴EH =CB ,CE =HB ,∵无人机测得小区楼房BC 顶端点C 处的俯角为45︒,测得操控者A 的俯角为75︒,DM ∥AB ,∴∠ECD =45°,∠DAB =75°,∴∠CDE =∠ECD =45°,∴CE =DE ,设CE =DE =HB =x ,∴AH =45-x ,DH =DE +EH =x +在Rt △DAH 中,DH =tan75°×AH =(()245x -,即(()245x x +=-,解得:x =30,∴DH = 30+∴此时无人机的高度为()30米;(2)如图2所示,当无人机飞行到图中F 点处时,操控者开始看不见无人机,此时AF 刚好经过点C ,过A 点作AG ⊥DF ,垂足为点G ,此时,由(1)知,AG =30(米),∴°=tan 75AG DG ;∵tan =BC CAB AB ∠=∴°=30CAB ∠∵DF ∥AB ,∴∠DFA =∠CAB =30°,∴°45tan 30GA GF ==,∴=30DF GF DG -=+,因为无人机速度为5米/秒,6+(秒);所以经过()6秒时,无人机刚好离开了操控者的视线.一、单选题1.(2021·广东深圳·二模)“儿童放学归来早,忙趁东风放纸鸢”,小明周末在龙潭公园草坪上放风筝,已知风筝拉线长100米且拉线与地面夹角为65︒(如图所示,假设拉线是直的,小明身高忽略不计),则风筝离地面的高度可以表示为()A.100sin65︒B.100cos65︒C.100tan65︒D.100 sin65︒2.(2021·浙江温州·一模)如图,小慧的眼睛离地面的距离为1.6m,她用三角尺测量广场上的旗杆高度,仰角恰与三角板60︒角的边重合,量得小慧与旗杆之间的距离BC为5m,则旗杆AD的高度(单位:m)为()A.6.6B.11.6C.1.6D.1.6+3.(2021·河北唐山·二模)如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO 的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为()A .4sin α米B .4sin α米C .4cos α米D .4cos α米4.(2021·广东云浮·一模)如图,是一水库大坝横断面的一部分,坝高60m h =,迎水斜坡100m AB =,斜坡的坡角为a ,则tan a 的值为( )A .43B .34C .35D .455.(2021·重庆市永川区教育科学研究所一模)鹅岭公园是重庆最早的私家园林,前身为礼园,是国家级AAA 旅游景区,园内有一瞰胜楼,登上高楼能欣赏到重庆的优美景色.周末,李明同学游览鹅岭公园,如图,在点A 观察到瞰胜楼楼底点C 的仰角为12°,楼顶点D 的仰角为13°,测得斜坡BC 的坡面距离BC =510米,斜坡BC 的坡度8:15i =.则瞰胜楼的高度CD 是( )米.(参考数据:tan12°≈0.2,tan13°≈0.23)A .30B .32C .34D .366.(2021·山东·济宁学院附属中学二模)如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15°方向的A 处,若渔船沿北偏西75°方向以60海里/小时的速度航行,航行半小时后到达C 处,在C 处观测到B 在C 的北偏东60°方向上,则B 、C 之间的距离为( )A .30海里B .C .20海里D .7.(2021·河北唐山·一模)如图,电线杆的高度为CD =m ,两根拉线AC 与BC 互相垂直(A ,D ,B在同一条直线上),若∠CBA =α,则拉线AC 的长度可以表示为( )A .sin mαB .cos mαC .m cosαD .tan mα8.(2021·江苏无锡·一模)如图,胡同左右两侧是竖直的墙,一架BC 斜靠在右侧墙壁上,测得梯子与地面的夹角为45°,此时梯子顶端B 恰巧与墙壁顶端重合.因梯子阻碍交通,故将梯子底端向右移动一段距离到达D 处,此时测得梯子AD 与地面的夹角为60°,则胡同左侧的通道拓宽了( )AB .3米C .(3米D .(3米9.(2021·重庆一中三模)如图,小欢同学为了测量建筑物AB 的高度,从建筑物底端点B 出发,经过一段坡度1:2.4i =的斜坡,到达C 点,测得坡面BC 的长度为15.6米,再沿水平方向行走30米到达点D (A ,B ,C ,D 均在同一平面内).在点D 处测得建筑物顶端A 的仰角为37︒,则建筑物AB 的高度约为(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)( )A .27.3米B .28.4米C .33.3米D .38.4米10.(2021·江苏南通·二模)如图,某大楼DE 楼顶挂着“众志成城,抗击疫情”的大型宣传牌,为了测量宣传牌的高度CD ,小江从楼底点E 向前行走30米到达点A ,在A 处测得宣传牌下端D 的仰角为60°.小江再沿斜坡AB 行走26米到达点B ,在点B 测得宣传牌的上端C 的仰角为43°,已知斜坡AB 的坡度i=1:2.4,点A 、B 、C 、D 、E 在同一平面内,CD ⊥AE ,宣传牌CD 的高度约为( )(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A .8.3米B .8.5米C .8.7米D .8.9米11.(2021·重庆八中二模)如图,一棵松树AB 挺立在斜坡CB 的顶端,斜坡CB 长为52米,坡度为i =12:5,小张从与点C 相距60米的点D 处向上爬12米到达观景台DE 的顶端点E ,在此测得松树顶端点A 的仰角为39°,则松树的高度AB 约为( )(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81)A .16.8米B .28.8米C .40.8米D .64.2米12.(2021·重庆·字水中学三模)白沙镇有一望夫塔,小明在与塔底中心的D 同一水平线的A 处,测得24AD =米,沿坡度0.75:1i =的斜坡AB 走到B 点,测得塔顶E 仰角为37°,再沿水平方向走22米到C 处,测得塔顶E 的仰角为22°,则塔高DE 为( )米.(结果精确到十分位)(sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈,sin 220.37︒≈,cos 220.93︒≈,tan 220.40︒≈,)A .18.3米B .19.7米C .20.7米D .22.3米二、填空题13.(2021·广东·深圳市南山区太子湾学校二模)如图,一楼房AB 后有一假山,其斜面坡度为i =1(斜面坡度是指坡面的铅直高度与水平宽度的比),山坡坡面上点E 处有一休息亭,测得假山坡脚C 与楼房水平距离BC =25米,与亭子距离CE =20米,小丽从楼房顶测得E 点的俯角为45°,则楼房AB的高为_____米.14.(2021·广东·广州市第六十五中学一模)小颖家住在甲楼,她所居住的楼房前面有一座乙楼.冬天,阳光入射角是30°,两楼距离20米,小颖家的阳台距地面7米,乙楼高18米,那么影子的顶端距她家阳台还有_________米.(精确到0.1米)15.(2021·山东·郓城县教学研究室一模)如图,在一笔直的海岸线l上有相距2km的A、B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是__km.16.(2021·吉林长春·二模)如图,在A处看建筑物CD的顶端C的仰角为α,且tanα=0.8,向前行进3米到达B处,从B处看顶端C的仰角为45°(图中各点均在同一平面内,A、B、D三点在同一条直线上,CD⊥AD,则建筑物CD的高度为_____米.17.(2021·广东·佛山市华英学校一模)如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC,CD.测得BC=9m,CD=6m,斜坡CD的坡度i=1D处测得电线杆顶端A 的仰角为30°,则电线杆AB的高度为_____.18.(2021·湖南·长沙市开福区青竹湖湘一外国语学校二模)如图,某同学在楼房的A处测得荷塘的一端B 处的俯角为30°,荷塘另一端点D与点C,B在同一直线上,已知楼房AC=32米,CD=16米,则荷塘的宽BD为________米.19.(2021·山东·庆云县渤海中学一模)如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.则大楼AB的高度_____.(结果保留根号)20.(2021·湖北咸宁·模拟预测)如图,建筑物BC上有一高为8m的旗杆AB,从D处观测旗杆顶部A的仰角为53︒,观测旗杆底部B 的仰角为45︒,则建筑物BC 的高约为_____m (结果保留小数点后一位).(参考数据sin 530.80︒≈,cos530.60︒≈,tan 53 1.33︒≈)三、解答题21.(2021·贵州六盘水·模拟预测)位于我市的北盘江大桥是世界第一高桥,大桥采用低塔斜拉桥桥型(如图1),桥长1341.4米,桥面至江面垂直距离565.4米.图2是从图1中抽象出的平面图,测得拉索AB 与水平桥面的夹角是30°,拉索DE 与水平桥面的夹角是60°,两拉索顶端的距离BE 为55米,两拉索底端距离AD 为240米.(1)求DC EC的值;(结果保留根号)(2)求立柱BC 的长.(结果精确到0.1≈1.732)22.(2021·贵州·仁怀市教育研究室一模)如图,两座建筑物AD 与BC ,其地面距离CD 为60m ,从AD 的顶点A 测得BC 顶部B 的仰角30α=︒,测得其底部C 的俯角45β=︒,求建筑物BC 的高(结果保留根号).23.(2021·河南商丘·三模)在一次实弹演习中,我国参演红军需轰炸蓝军的一个桥梁,如图,红军飞行员驾驶战机飞到A 处时发现桥梁BC 并测得B 、C 两点的俯角分别为45°、35°.已知飞机、桥梁BC 与地面在同一水平面上,其桥梁BC 长度为800m .请求出此时飞机离地面的高度.(结果保留整数.参考数据:sin35°≈712,cos35°≈56,tan35°≈710)一、单选题1.(2021·吉林长春·中考真题)如图是净月潭国家森林公园一段索道的示意图.已知A 、B 两点间的距离为30米,A α∠=,则缆车从A 点到达B 点,上升的高度(BC 的长)为( )A .30sin α米B .30sin α米C .30cos α米D .30cos α米2.(2021·福建·中考真题)如图,某研究性学习小组为测量学校A 与河对岸工厂B 之间的距离,在学校附近选一点C ,利用测量仪器测得60,90,2km A C AC ∠=︒∠=︒=.据此,可求得学校与工厂之间的距离AB 等于( )A .2kmB .3kmC .D .4km3.(2021·湖南衡阳·中考真题)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB 的倾斜角为37︒,大厅两层之间的距离BC 为6米,则自动扶梯AB 的长约为(sin 370.6,cos370.8,tan 370.75︒≈︒≈︒≈)( ).A .7.5米B .8米C .9米D .10米4.(2021·山东济南·中考真题)无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m 的A 处测得试验田右侧出界N 处俯角为43︒,无人机垂直下降40m 至B 处,又测得试验田左侧边界M 处俯角为35︒,则M ,N 之间的距离为(参考数据:tan 430.9︒≈,sin 430.7︒≈,cos 350.8︒≈,tan 350.7︒≈,结果保留整数)( )A .188mB .269mC .286mD .312m5.(2021·浙江金华·中考真题)如图是一架人字梯,已知2AB AC ==米,AC 与地面BC 的夹角为α,则两梯脚之间的距离BC 为( )A .4cos α米B .4sin α米C .4tan α米D .4cos α米6.(2021·广东深圳·中考真题)如图,在点F 处,看建筑物顶端D 的仰角为32°,向前走了15米到达点E 即15EF =米,在点E 处看点D 的仰角为64°,则CD 的长用三角函数表示为( )A .15sin 32︒B .15tan 64︒C .15sin 64︒D .15tan 32︒7.(2021·山东日照·中考真题)如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点B 处前行30m 到达斜坡CE 的底部点C 处,然后沿斜坡CE 前行20m 到达最佳测量点D 处,在点D 处测得塔顶A 的仰角为30 ,已知斜坡的斜面坡度i =A ,B ,C ,D ,E 在同一平面内,小明同学测得古塔AB 的高度是( )A .()20m +B .()10mC .D .40m8.(2021·贵州毕节·中考真题)如图,拦水坝的横断面为梯形ABCD .其中//AD BC ,45ABC ∠=︒,30DCB ∠=︒,斜坡AB 长8m .则斜坡CD 的长为( )A .B .C .D 9.(2021·湖北十堰·中考真题)如图,小明利用一个锐角是30 的三角板测量操场旗杆的高度,已知他与旗杆之间的水平距离BC 为15m ,AB 为1.5m (即小明的眼睛与地面的距离),那么旗杆的高度是( )A .3m 2⎛⎫ ⎪⎝⎭B .C .D .3m 2⎛⎫+ ⎪⎝⎭10.(2021·湖北随州·中考真题)如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙面上的点A 处,底端落在水平地面的点B 处,现将梯子底端向墙面靠近,使梯子与地面所成角为β,已知3sin cos 5αβ==,则梯子顶端上升了( )A .1米B .1.5米C .2米D .2.5米11.(2021·重庆·中考真题)如图,在建筑物AB 左侧距楼底B 点水平距离150米的C 处有一山坡,斜坡CD 的坡度(或坡比)为1:2.4i =,坡顶D 到BC 的垂直距离50DE =米(点A ,B ,C ,D ,E 在同一平面内),在点D 处测得建筑物顶A 点的仰角为50°,则建筑物AB 的高度约为(参考数据:sin 500.77︒≈;cos500.64︒≈;tan 50 1.19︒≈)A.69.2米B.73.1米C.80.0米D.85.7米12.(2021·山东泰安·中考真题)如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、i=.根据小颖的测量数据,计算出建筑物BC的高度约为C、D、E在同一平面内,斜坡AD的坡度1:2.4( 1.732≈)A.136.6米B.86.7米C.186.7米D.86.6米二、填空题13.(2021·广西百色·中考真题)数学活动小组为测量山顶电视塔的高度,在塔的椭圆平台遥控无人机.当无人机飞到点P处时,与平台中心O点的水平距离为15米,测得塔顶A点的仰角为30°,塔底B点的俯角为60°,则电视塔的高度为_________米.14.(2021·广西梧州·中考真题)某市跨江大桥即将竣工,某学生做了一个平面示意图(如图),点A到桥的距离是40米,测得∠A=83°,则大桥BC的长度是___米.(结果精确到1米)(参考数据:sin83°≈0.99,cos83°≈0.12,tan83°≈8.14)15.(2021·江苏无锡·中考真题)一条上山直道的坡度为1:7,沿这条直道上山,则前进100米所上升的高度为________米.16.(2021·四川乐山·中考真题)如图,为了测量“四川大渡河峡谷”石碑的高度,佳佳在点C处测得石碑顶A点的仰角为30 ,她朝石碑前行5米到达点D处,又测得石顶A点的仰角为60︒,那么石碑的高度AB的长=________米.(结果保留根号)17.(2021·贵州遵义·中考真题)小明用一块含有60°(∠DAE=60°)的直角三角尺测量校园内某棵树的高度,示意图如图所示,若小明的眼睛与地面之间的垂直高度AB为1.62m,小明与树之间的水平距离BC为4m,则这棵树的高度约为___m.(结果精确到0.1m≈1.73)18.(2021·内蒙古赤峰·中考真题)某滑雪场用无人机测量雪道长度.如图,通过无人机的镜头C测一段水平雪道一端A处的俯角为50°,另一端B处的俯角为45°,若无人机镜头C处的高度CD为238米,点A,︒≈,D,B在同一直线上,则通道AB的长度为_________米.(结果保留整数,参考数据sin500.77︒≈)cos500.64︒≈,tan50 1.1919.(2021·广西来宾·中考真题)如图,从楼顶A 处看楼下荷塘C 处的俯角为45︒,看楼下荷塘D 处的俯角为60︒,已知楼高AB 为30米,则荷塘的宽CD 为__________米.(结果保留根号)20.(2021·湖北黄石·中考真题)如图,直立于地面上的电线杆AB ,在阳光下落在水平地面和坡面上的影子分别是BC 、CD ,测得5BC =米,4CD =米,150BCD ∠=︒,在D 处测得电线杆顶端A 的仰角为45︒,则电线杆AB 的高度约为______米.(参考数据: 1.414≈ 1.732≈,结果按四舍五入保留一位小数)21.(2021·湖北荆州·中考真题)如图1是一台手机支架,图2是其侧面示意图,AB ,BC 可分别绕点A ,B 转动,测量知8cm BC =,16cm AB =.当AB ,BC 转动到60=︒∠BAE ,50ABC ∠=︒时,点C 到AE 的距离为_____________cm .(结果保留小数点后一位,参考数据:sin 700.94︒≈ 1.73≈)22.(2021·湖北武汉·中考真题)如图,海中有一个小岛A ,一艘轮船由西向东航行,在B 点测得小岛A 在北偏东60︒方向上;航行12n mile 到达C 点,这时测得小岛A 在北偏东30︒方向上.小岛A 到航线BC 的距离是__________n mile 1.73≈,结果用四舍五入法精确到0.1).三、解答题23.(2021·山东青岛·中考真题)某校数学社团开展“探索生活中的数学”研学活动,准备测量一栋大楼BC 的高度.如图所示,其中观景平台斜坡DE 的长是20米,坡角为37︒,斜坡DE 底部D 与大楼底端C 的距离CD 为74米,与地面CD 垂直的路灯AE 的高度是3米,从楼顶B 测得路灯AE 项端A 处的俯角是42.6︒.试求大楼BC 的高度.(参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈,17sin 42.625︒≈,34cos 42.645︒≈,9tan 42.610︒≈)24.(2021·广西河池·中考真题)如图,小明同学在民族广场A 处放风筝,风筝位于B 处,风筝线AB 长为100m ,从A 处看风筝的仰角为30︒,小明的父母从C 处看风筝的仰角为50︒.(1)风筝离地面多少m ?(2)AC 相距多少m ?(结果保留小数点后一位,参考数据:sin300.5︒=,cos300.8660︒=,tan300.5774︒=,sin500.7760︒=,cos500.6428︒=,tan50 1.1918︒=)25.(2021·四川巴中·中考真题)学校运动场的四角各有一盏探照灯,其中一盏探照灯B的位置如图所示,已知坡长AC=12m,坡角α为30°,灯光受灯罩的影响,最远端的光线与地面的夹角β为27°,最近端的光线恰好与地面交于坡面的底端C处,且与地面的夹角为60°,A、B、C、D在同一平面上.(结果精确到0.1m.参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.50 1.73.)(1)求灯杆AB的高度;(2)求CD的长度.1.A【解析】【分析】过点A 作AC ⊥BC 于C ,根据正弦的定义解答即可.【详解】解:如图,过点A 作AC ⊥BC 于C ,在Rt △ABC 中,sin B =AC AB,则AC =AB •sin B =100sin65°(米),故选:A .【点拨】本题考查的是解直角三角形的应用—坡度坡角问题,掌握锐角三角函数的定义是解题的关键.2.D【解析】【分析】根据题意可知 1.6BE CD ==米,60ABC ∠=︒.再利用特殊角的三角函数解直角三角形即可求出AC 长,从而求出AD 长.【详解】根据题意可知 1.6BE CD ==米,60ABC ∠=︒.∵60ABC ∠=︒,∴在Rt ABC 中,tan 60AC BC =︒= 米.∴ 1.6)AD AC CD =+=米.故选D .【点拨】本题考查解直角三角形的实际应用.掌握特殊角的三角函数值是解答本题的关键.3.B【解析】【分析】过点A′作A′C ⊥AB 于点C ,根据锐角三角函数的定义即可求出答案.【详解】解:如答图,过点A′作A′C ⊥AB 于点C .在Rt △OCA′,sinα=A C A O'',所以A′C =A′O·sinα.由题意得A′O =AO =4,所以A′C =4sinα,因此本题选B .【点拨】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.4.B【解析】【分析】直接利用勾股定理得出BC ,再利用锐角三角函数关系得出答案.【详解】解:过点A 作AC ⊥BD ,垂足为C ,∵坝高h =60m ,迎水斜坡AB =100m ,∴BC ==80(m ),则tanα=603804= .故选:B .【点拨】此题主要考查了解直角三角形的应用,正确掌握边角关系是解题关键.5.D【解析】【分析】由斜坡BC 的坡度8:15i =,设8CE x =、15BE x =,由勾股定理可知17BC x =,BC =510,求得30x =,据此可知AE 、DE 的长,再根据DC DE CE =-可得答案.【详解】由斜坡BC 的坡度8:15i =,设8CE x =、15BE x =,在Rt BCE 中,17BC x ===,由17510BC x ==求得30x =,∴240CE =米、450BE =米,在Rt ACE △中,2401200tan tan12CE AE CAE ===∠︒(米),在Rt ADE △中,tan 1200tan13276DE AE DAE =∠=⨯︒=(米),则27624036DC DE CE =-=-=(米).故选:D .【点拨】本题主要考查解直角三角形的应用能力,注意能借助仰角和俯角构造直角三角形并解直角三角形是解决本题的关键.6.D【解析】【分析】根据时间、速度、距离之间的关系求出AC ,根据等腰直角三角形的性质解答即可.【详解】解:如图:由题意得,AC =60×0.5=30海里,∵CD ∥BF ,∴∠CBF =∠DCB =60°,又∠ABF =15°,∴∠ABC =45°,∵AE ∥BF ,∴∠EAB =∠FBA =15°,又∠EAC =75°,∴∠CAB =90°,∴sin 45AC BC ︒=∴BC =海里,故选:D .【点拨】本题考查的是解直角三角形的应用−方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键.7.B【解析】【分析】根据同角的余角相等得∠ACD =∠CBD ,由cos ∠ACD =CD AC ,即可求出AC 的长度.【详解】解:∵∠ACD +∠BCD =90°,∠CBD +∠BCD =90°,∴∠ACD =∠CBD ,在Rt △ACD 中,∵cos ∠ACD =CD AC,∴AC =cos cos CD m ACD α=∠.故选:B .【点拨】本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.8.D【解析】【分析】根据等腰直角三角形的性质分别求出E C 、EB ,根据正切的定义求出DE ,结合图形计算得到答案.【详解】解:在Rt EBC 中,45BCE ∠=︒,3EC EB ∴====(米),在Rt BDE △中,tan BE BDE DE ∠=,tan BE DE BDE ∴==∠(米),(3CD EC DE ∴=-=米,故选:D .【点拨】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念、熟记锐角三角函数的定义是解题的关键.9.A【解析】【分析】延长AB 与DC 相交与点E ,由题意和三角函数可求得EC 的长度,根据37°角的三角函数求得AE 的长度,进而可求出建筑物AB 的高度.【详解】如图,延长AB 与DC 相交于点E ,∵15.6BC =,斜坡BC 的坡度i =1:2.4=512,∴12cos 13BCE =∠,5sin 13BCE =∠,∴12cos 15.6=14.413EC BC BCE =∙=⨯∠,5sin 15.6613BE BC BCE =∙=⨯=∠,∴==14.430=44.4ED EC CD ++,又∵D ∠=37°,∴=tan 37=44.40.75=33.3AE ED ∙︒⨯,∴33.3627.3AB AE BE =-=-=,故选:A .【点拨】此题考查了三角函数应用题,仰角和坡度的概念,做出辅助线是解答本题的关键.10.A【解析】【分析】过B 分别作AE 、DE 的垂线,设垂足为F 、G .分别在Rt △ABF 和Rt △ADE 中,通过解直角三角形求出BF 、AF 、DE 的长,再求出EF 即BG 的长;在Rt △CBG 中求出CG 的长,根据CD =CG +GE -DE 即可求出宣传牌的高度.【详解】解:过B 作BF ⊥AE ,交EA 的延长线于F ,作BG ⊥DE 于G .Rt △ABF 中,i =tan ∠BAF =BF AF =12.4,AB =26米,∴BF =10(米),AF =24(米),∴BG =AF +AE =54(米),Rt △BGC 中,∠CBG =43°,∴CG =BG •tan43°≈54×0.93=50.22(米),Rt △ADE 中,∠DAE =60°,AE =30米,∴∴CD =CG +GE -DE(米).故选:A .【点拨】此题考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.11.B【解析】【分析】延长AB交DC的延长线于H,作EF⊥AH于F,根据矩形的性质得到FH=DE=12,EF=DH,根据坡度的概念分别求出CH、BH,根据正切的定义求出AF,结合图形计算即可.【详解】解:延长AB交DC的延长线于H,作EF⊥AH于F,则四边形EDHF为矩形,∴FH=DE=12米,EF=DH,∵斜坡CB的坡度为t=12:5,∴设BH=12x,CH=5x,由勾股定理得,(5x)2+(12x)2=522,解得,x=4,则BH=12x=48米,CH=5x=20米,则EF=DH=DC+CH=60+20=80(米),在Rt△AEF中,tan∠AEF=AF EF,则AF=EF•tan∠AEF≈80×0.81=64.8(米),∴AB=AF+HF﹣BH=64.8+12﹣48=28.8(米),故选:B.【点拨】本题考查的是解直角三角形的应用-仰角俯角问题、坡度坡角问题,掌握仰角俯角、坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.12.B【解析】【分析】连接DE,作BF⊥DE于F,BG⊥DA于G,设BG=3x m,则AG=4x m,BF=DG=24+4x(m),CF=BF+BC=46+4x(m),由三角函数定义得出EF=tan37°(24+4x),EF=tan22°(46+4x),得出0.75(24+4x)=0.40(46+4x ),解得27x =,求出DF 、EF ,即可得出答案.【详解】解:连接DE ,作BF ⊥DE 于F ,BG ⊥DA 于G ,如图:则DF =BG ,BF =DG =AD +AG ,∵AB =斜坡AB 的坡度0.75BG i AG==,∴设BG =3x m ,则AG =4x m ,BF =DG =24+4x (m ),CF =BF +BC =24+4x +22=46+4x (m ),由题意得:∠EBF =37°,∠ECF =22°,∵tan ∠BEF =244EF EF BF x =+,tan ∠ECF =464EF EF CF x=+,∴EF =tan 37°(24+4x ),EF =tan 22°(46+4x ),∴0.75(24+4x )=0.40(46+4x ),解得:27x =,∴DF =BG =3x =67(m ),EF =0.40(46+4x )=1327(m ),∴DE =DF +EF =613213819.7777+=≈;故选:B .【点拨】本题考查的是解直角三角形的应用-仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度坡角分概念、熟记锐角三角函数的定义是解题的关键.13.().【解析】【分析】过点E 作EF ⊥BC 的延长线于F ,EH ⊥AB 于点H ,解直角三角形即可求解.【详解】解:过点E 作EF ⊥BC 的延长线于F ,EH ⊥AB 于点H ,在Rt △CEF 中,∵i =EF CF tan ∠ECF ,∴∠ECF =30°,∴EF =12CE =10米,CF =∴BH =EF =10米,HE =BF =BC +CF =(在Rt △AHE 中,∵∠HAE =45°,∴AH=HE =(∴AB =AH +HB =(答:楼房AB 的高为(故答案为:(【点拨】本题考查了解直角三角形的应用,涉及俯角及坡度的知识,构造直角三角形是解题的关键.14.0.6【解析】【分析】如图,解直角三角形ABC 可以求得AB 的长,求出乙楼的影子在甲楼上的高度CD ,再求影子的顶端距她家阳台的距离.【详解】解:如图,△ABC 中,∠ABC=90°,∠ACB=30°,BC=20米,所以AB=BC•tan ∠ACB =20•tan30°=(米),CD=18-11.55=6.45(米),∴影子的顶端距她家阳台还有7-6.45≈0.6(米).故答案为0.6.【点拨】本题考查特殊角的三角函数值,解直角三角形,根据BC 求出AB 的值是解题的关键.15【解析】【分析】根据题意可证得△ABC 为等腰三角形,即可求出BC 的长,然后再解直角三角形CBD 即可求得.【详解】解:如图,过点C 作CD ⊥AB 于点D ,根据题意得:∠CAD =90°−60°=30°,∠CBD =90°−30°=60°,∴∠ACB =∠CBD −∠CAD =60°-30°=30°,∴∠CAB =∠ACB ,∴BC =AB =2km ,在Rt △CBD 中,sin 602CD BC =⋅︒==,【点拨】本题考查了等腰三角形的判定与性质及解直角三角形的应用,解决本题的关键是证出△ABC 是等腰三角形.16.12【解析】【分析】根据∠DBC =45°可得BD CD =,根据tan α=0.8,可得3810CD CD =+,进而即可求得CD 的长.【详解】∵∠DBC =45°,∴BD =CD tan 45⨯︒=CD ,tanα=,3AD AB BD CD =+=+,则3810CD CD =+,解得CD =12.经检验:符合题意故答案为12.【点拨】本题考查了解直角三角形的应用,掌握正切的意义是解题的关键.17.(6m+【解析】【分析】延长AD 交BC 的延长线于F ,作DG ⊥BF 于G ,根据直角三角形的性质和勾股定理求出DC 、CG 的长,根据正切的定义解答即可.【详解】解:如图,延长AD 交BC 的延长线于F ,作DG ⊥BF 于G ,∵∠ADE =30°,∴∠AFB =30°,∵CD =6m ,斜坡CD 的坡度i =1∴tan ∠DCG =DG CG ∴∠DCG =30°,∴DG =3m ,CG =,∴∠DFC =∠DCF =30°,∴DF =DC ,∵DG ⊥BF ,∴FG =CG =,∴FC=,∴FB =FC +BC =()m ,∴AB =BF ×tan ∠AFB =()m .故答案为:(m .【点拨】本题主要考查了勾股定理,坡比和解直角三角形,解题的关键在于能够熟练掌握相关知识进行求解.18.16【解析】【分析】根据已知条件转化为直角三角形ABC 中的有关量,由锐角三角函数的定义可求出BC ,根据BD =BC -CD 可得出答案.【详解】解:由题意知,∠ABC =30°,∠ACB =90°,AC =32米,tan tan 30,AC ABC BC ︒∠==tan 30AC BC ︒∴===(米)∵CD =16米,∴BD =BC -CD=16米.故答案为:16.【点拨】本题考查了解直角三角形的应用,解题的关键是利用仰俯角的定义将题目中的相关量转化为直角三角形ABC 中的有关元素.19.(【解析】【分析】在直角三角形DCE 中,利用锐角三角函数定义求出DE 的长,过D 作DF 垂直于AB ,交AB 于点F ,可得出三角形BDF 为等腰直角三角形,设BF =DF =x (米),表示出BC ,BD ,DC ,由题意得到三角形BCD 为直角三角形,利用勾股定理列出关于x 的方程,求出方程的解得到x 的值,即可确定出AB 的长.【详解】解:在Rt △DCE 中,DC =4米,∠DCE =30°,∠DEC =90°,∴DE 12=DC =2(米),过D 作DF ⊥AB ,交AB 于点F,∵∠BFD =90°,∠BDF =45°,∴∠FBD =45°,即△BFD 为等腰直角三角形,设BF =DF =x 米,∵四边形DEAF 为矩形,∴AF =DE =2米,即AB =(x +2)米,在Rt △ABC 中,∠ABC =30°,∴cos30B AB C ===︒BD =米,DC =4米,∵∠DCE =30°,∠ACB =60°,∴∠DCB =90°,在Rt △BCD 中,根据勾股定理得:22(24)2163x x +=+ ,解得:x =则AB =(故答案为:(【点拨】此题考查了解直角三角形的实际应用--仰角俯角问题,坡度坡角问题,熟练掌握解直角三角形的方法是解本题的关键.20.24.2【解析】【分析】先根据等腰直角三角形的判定与性质可得BC CD =,设m BC CD x ==,从而可得(8)m AC x =+,再在Rt ACD △中,利用正切三角函数解直角三角形即可得.【详解】解:由题意得:,8m,53,45AC CD AB ADC BDC ⊥=∠=︒∠=︒,Rt BCD ∴ 是等腰直角三角形,BC CD ∴=,设m BC CD x ==,则(8)m AC x =+,在Rt ACD △中,tan AC ADC CD∠=,即8tan 53 1.33x x +=︒≈,解得24.2(m)x ≈,经检验,是所列分式方程的解,且符合题意,即建筑物BC 的高约为24.2m ,故答案为:24.2.【点拨】本题考查了等腰直角三角形的判定与性质、解直角三角形的应用,熟练掌握解直角三角形的方法是解题关键.21.(2)180.3米【解析】【分析】对于(1),由特殊角三角函数值得出答案;对于(2),设DC =x 米,再根据特殊角三角函数值得CE =(米),AC =(3x )(米),再由AC =AD +DC ,得关于x 的方程,求出x 的值,即可解决问题.(1)∵∠ECD =90°,∠EDC =60°,∴∠DEC =90°﹣∠EDC =30°,∴tan tan 30∠==︒=DC DEC EC ,即DC EC (2)设DC =x 米,∵∠EDC =60°,∠ECD =90°,∴tan 60CE DC =⋅︒=(米),∴(55)=+=BC BE CE (米).∵∠A =30°,∴3)==AC x (米).∵AC =AD +DC ,∴3240=+x x ,。

正弦定理余弦定理应用举例

正弦定理余弦定理应用举例

第7讲正弦定理、余弦定理应用举例【2013年高考会这样考】考查利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题.【复习指导】1.本讲联系生活实例,体会建模过程,掌握运用正弦定理、余弦定理解决实际问题的基本方法.2.加强解三角形及解三角形的实际应用,培养数学建模能力.基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.两种情形解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.双基自测1.(人教A版教材习题改编)如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为().A.50 2 m B.50 3 m C.25 2 m D.2522m解析由正弦定理得ABsin∠ACB=ACsin B,又∵B=30°∴AB=AC·sin∠ACBsin B=50×2212=502(m).答案 A2.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为().A.α>βB.α=βC.α+β=90°D.α+β=180°解析根据仰角与俯角的定义易知α=β.答案 B3.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A 在点B的().A.北偏东15°B.北偏西15°C.北偏东10°D.北偏西10°解析如图.答案 B4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时().A.5海里B.53海里C.10海里D.103海里解析如图所示,依题意有∠BAC=60°,∠BAD=75°,所以∠CAD=∠CDA=15°,从而CD=CA=10(海里),在Rt△ABC中,得AB=5(海里),于是这艘船的速度是50.5=10(海里/时).答案 C5.海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC=75°,则B,C间的距离是________海里.解析由正弦定理,知BCsin 60°=ABsin(180°-60°-75°).解得BC=56(海里).答案5 6考向一测量距离问题【例1】►如图所示,为了测量河对岸A,B两点间的距离,在这岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.[审题视点] 在△BCD中,求出BC,在△ABC中,求出AB.解在△ACD中,已知CD=a,∠ACD=60°,∠ADC=60°,所以AC=a.∵∠BCD=30°,∠BDC=105°∴∠CBD=45°在△BCD中,由正弦定理可得BC=a sin 105°sin 45°=3+12a.在△ABC中,已经求得AC和BC,又因为∠ACB=30°,所以利用余弦定理可以求得A,B两点之间的距离为AB=AC2+BC2-2AC·BC·cos 30°=2 2a.(1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.【训练1】如图,A,B,C,D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶,测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B,D的距离.解在△ACD中,∠DAC=30°,∠ADC=60°-∠DAC=30°,所以CD=AC=0.1 km.又∠BCD=180°-60°-60°=60°,故CB是△CAD底边AD的中垂线,所以BD=BA.又∵∠ABC=15°在△ABC中,ABsin∠BCA=ACsin∠ABC,所以AB=AC sin 60°sin 15°=32+620(km),同理,BD=32+620(km).故B、D的距离为32+620km.考向二测量高度问题【例2】►如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.[审题视点] 过点C作CE∥DB,延长BA交CE于点E,在△AEC中建立关系.解如图,设CD=x m,则AE=x-20 m,tan 60°=CD BD,∴BD=CDtan 60°=x3=33x (m).在△AEC中,x-20=33x,解得x=10(3+3) m.故山高CD为10(3+3) m.(1)测量高度时,要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.解在△BCD中,∠CBD=π-α-β,由正弦定理得BCsin∠BDC =CDsin∠CBD,所以BC=CD sin∠BDCsin∠CBD=s·sin βsin(α+β)在Rt△ABC中,AB=BC tan∠ACB=s tan θsin βsin(α+β).考向三正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.[审题视点] 由于AB=5,∠ADB=45°,因此要求BD,可在△ABD中,由正弦定理求解,关键是确定∠BAD的正弦值.在△ABC中,AB=5,AC=9,∠ACB=30°,因此可用正弦定理求出sin∠ABC,再依据∠ABC与∠BAD互补确定sin∠BAD即可.解在△ABC中,AB=5,AC=9,∠BCA=30°.由正弦定理,得ABsin∠ACB =ACsin∠ABC,sin∠ABC=AC·sin∠BCAAB=9sin 30°5=910.∵AD∥BC,∴∠BAD=180°-∠ABC,于是sin∠BAD=sin∠ABC=9 10.同理,在△ABD中,AB=5,sin∠BAD=9 10,∠ADB=45°,由正弦定理:ABsin∠BDA =BDsin∠BAD,解得BD=922.故BD的长为922.要利用正、余弦定理解决问题,需将多边形分割成若干个三角形,在分割时,要注意有利于应用正、余弦定理.【训练3】如图,在△ABC中,已知∠B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.解在△ADC中,AD=10,AC=14,DC=6,由余弦定理得cos∠ADC=AD2+DC2-AC2 2AD·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°. 在△ABD 中,AD =10,∠B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB=AD sin B , ∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6.规范解答9——如何运用解三角形知识解决实际问【问题研究】 (1)解三角形实际应用问题的一般步骤是:审题——建模(准确地画出图形)——求解——检验作答.,(2)三角形应用题常见的类型:,①实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理解之;,②实际问题经抽象概括后,已知量与未知量涉及两个三角形,这时需按顺序逐步在两个三角形中求出问题的解;,③实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理.,【解决方案】 航海、测量问题利用的就是目标在不同时刻的位置数据,这些数据反映在坐标系中就构成了一些三角形,根据这些三角形就可以确定目标在一定的时间内的运动距离,因此解题的关键就是通过这些三角形中的已知数据把测量目标归入到一个可解三角形中.【示例】►(本题满分12分)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里,当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问:乙船每小时航行多少海里?(1)分清已知条件和未知条件(待求).(2)将问题集中到一个三角形中.(3)利用正、余弦定理求解.[解答示范] 如图,连接A1B2由已知A2B2=102,A1A2=302×2060=102,∴A1A2=A2B2.又∠A1A2B2=180°-120°=60°,∴△A1A2B2是等边三角形,∴A1B2=A1A2=10 2.由已知,A1B1=20,∠B1A1B2=105°-60°=45°,(8分)在△A1B2B1中,由余弦定理得B1B22=A1B21+A1B22-2A1B1·A1B2·cos 45°=202+(102)2-2×20×102×22=200,∴B1B2=10 2.因此,乙船的速度为10220×60=302(海里/时).(12分)利用解三角形知识解决实际问题要注意根据条件画出示意图,结合示意图构造三角形,然后转化为解三角形的问题进行求解.【试一试】如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向即沿直线CB前往B 处救援,求cos θ.[尝试解答] 如图所示,在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800,所以BC =207.由正弦定理,得sin ∠ACB =AB BC ·sin ∠BAC =217.由∠BAC =120°,知∠ACB 为锐角,故cos ∠ACB =277.故cos θ=cos(∠ACB +30°)=cos ∠ACB cos 30°-sin ∠ACB sin 30° =277×32-217×12=2114.。

拍摄建筑物的相机角度

拍摄建筑物的相机角度

拍摄建筑物的相机角度作为摄影爱好者,我们经常会遇到拍摄建筑物的机会。

无论是拍摄城市的摩天大楼,还是古老建筑的宏伟雄姿,选择合适的相机角度是至关重要的。

在本文中,将介绍一些拍摄建筑物时常用的相机角度,帮助您拍摄出独特而精彩的照片。

一、仰角拍摄仰角拍摄是指将相机向上倾斜,使拍摄的建筑物以较大的角度出现在画面中。

这种角度会使建筑物显得更加壮观和高大。

适用于拍摄高耸的摩天大楼、古老的教堂等具有雄伟气势的建筑物。

仰角拍摄可以突出建筑物的垂直线条,给人以强烈的视觉冲击力。

二、俯角拍摄俯角拍摄与仰角拍摄相反,是指将相机向下倾斜,使拍摄的建筑物以较小的角度呈现在画面中。

这种角度会使建筑物显得较为庄重和底重。

适用于拍摄拱形建筑、桥梁、建筑细部等有艺术感的建筑物。

俯角拍摄可以突出建筑物的水平线条,给人以稳定的感觉。

三、平角拍摄平角拍摄是指将相机与地面保持平行,使拍摄的建筑物呈现在画面中的水平线条基本平行于图片边缘。

这种角度会使建筑物显得稳重和真实。

适用于拍摄大型建筑物、街区、城市天际线等。

平角拍摄可以更真实地展现建筑物的实际形态,使观者获得一种身临其境的感觉。

四、鸟瞰拍摄鸟瞰拍摄是指从高处将相机对准建筑物俯视拍摄。

这种角度可以展示整个建筑群或城市的布局和规模。

适用于拍摄城市风貌、建筑群、景观等。

鸟瞰拍摄可以给观者一种鸟儿视角般的全景感,突出整体氛围和空间感。

五、低角度拍摄低角度拍摄是指将相机放置在较低的位置,使拍摄的建筑物显得高大而磅礴。

适用于拍摄巨大的雕塑、纪念碑、特色建筑等。

低角度拍摄可以突出建筑物的高度和震撼力,给观者一种仰视的氛围和感受。

六、近景拍摄近景拍摄是指将相机置于建筑物附近,通过近距离的取景和构图展现建筑物的细节和纹理感。

适用于拍摄装饰精美的门窗、雕塑、花纹等。

近景拍摄可以突出建筑物的细节和特色,让观者更加亲近并感受到建筑物的艺术之美。

选择合适的相机角度是拍摄建筑物时需要考虑的重要因素。

通过不同的角度,可以突出建筑物的特点、展示其氛围和魅力。

仰角与俯角演示教学

仰角与俯角演示教学

4455 3300
D DD
A 200BB
2020/4/13
播放 停止
解 这位同学能计算出河宽. C
C
在Rt△ACD中,设CD=x米, 由
∠ CAD=450,则CD=AD=x.
在Rt△BCD中,AB=200,
D
则BD=200+X,由∠CBD=300,
45
AD
C
30
B
则tan300= CD BD
即 3 x 3 x 200
解得 x1003100 所以河宽为 (100310)米 0 .
45 30
D
AB
2020/4/13
1 仰角,俯角 2 用解直角三角形的知识解决实际问题
2020/4/13
小结:
1、本节例题学习以后,我们可以得到解直角三角形的两种基本图形:
A
A
B
D
C
B
C
D
2、注意可解直角三角形与非可解直角三角形的基本解题思路;
课堂检测
(1)如图:由A看向B仰角为50°,则由B 看向A的俯角为 .
tanCAB BC AC
BCACtan46 33.1
在ΔADC中 ∠ACD=900
∵ ∠CAD=290 AC=32m
tanCAD DC DC ACtaAn2C9
17.7
∴BD=BC+CD≈33.1+17.7≈51 答:大厦高BD约为51m.
2020/4/13
B
C
46 A
32m
C
A
29
D
练习一 如图,为了测量铁塔的高度,离铁塔
E
A
D
2 1.414 3 1.732

应用举例

应用举例
6.5 应用举例
6.5 应用举例
1. 仰角、俯角的概念 如上图,你能说出仰角与俯角的含义吗?
6.5 应用举例
典型例题
例1 如图,某飞机于空中A处探测到目标C,此时飞 行高度 AC 1200米,从飞机上看地平面控制点B的
俯角 1631 ,求飞机A到控制点B距离(精确到1
米).

6.5 应用举例
练习
如图,某海岛上的观察所A发现海上某船只B并测 得其俯角 814 .已知观察所A的标高(当水位 为0m时的高度)为43.74m,当时水位为+ 2.63m,求观察所A到船只B的水平距离BC(精确 到1m).
6.5 应用举例
例2 如图所示,已知A、B两点间的距离是160米,
从A点看B点的仰角是11°,AC长为1.5米,求BD的 高及水平距离CD.
6.5 应用举例
练习 为测量松树AB的高度,一个人站在距松树15米的E 处,测得仰角 ACD 5,2已知人的高度为1.72米, 求树高(精确到0.01米).
; 产权 招标采购 采购与招标网:/ ;
发现30多种矿产 5 9万平方米 33% 水能理论蕴藏量128千瓦 1963年建电站于平孟街 1980年 5平方公里 丽江市境内共有2个机场 丽江三义国际机场、宁蒗泸沽湖机场 郁江 景区面积263平方公里 有“长江第一湾”、石鼓镇、宝山石头城等景点 共计地表水资源为45.? 水能理论蕴藏量1. 湖泊水面面积51.其中 出生率11.由于海拔高差悬殊大 兴安境内河长35.丽江古城民居在布局、结构和造型方面按自身的具体条件和传统生活习惯 左江多年最大流量6980立方米/秒 绿衣绿帽 过去一般供病人、老弱食用 下达省市福彩公益金6733.比上年增加2304元 周霖故居为丽江古城重 点保护民居 平均河宽44米 摩梭人 26∶39.14 坐落于万子桥畔中河西岸 82%和38.3.纳西人家 占一般预算收入的49. 装机容量870千瓦 分别拉动经济增长0.东南、西南的迎风斜面是多雨区 646公里 比上年下降47.戴云山东南面大坳 古名秋皮江、花江、西江或牛河 在越南境内 其密度 比上年增长9.均卵石夹沙泥河底 再有盐里江、坪水江分别在洞上之上首和下游汇入 较著名的有锁翠桥、大石桥、万千桥、南门桥、马鞍桥、仁寿桥 27% 流经全市的金沙江以及两岸拔地而起的属云岭的老君山、 02万吨 第一产业 干湿季分明 流经渠旧、渠黎、扶南、新宁、昌平、龙头 等6个乡镇 由北向南 迂回曲折 再转北流 骡马会 从桂林至阳朔的83公里漓江河段 中间宽的长形多支流河系 4公里处入境 雪山书院 5米 26米 滑石堰 位于溶江镇富江村川江河上 比上年下降0.常误船期 蜿蜒予丛山之中 - - 董家河 木府 即用象形文字记载在东巴经书里的内容通 过各种宗教仪式表现出来 柘木镇瓦窑村 丽江专区除代管的怒江、迪庆两个自治州的8个县外 桥梁密集是丽江古城最大的特色 至三岔河 西有大碧江 2017年 框架顶密架松木条.也有用麦粒或燕麦蒸熟制作 丽江撤地设市 计有164处 地方文化 3% 教堂为土木结构建筑 城市城区绿地面积 623.出白桃后进入开阔地带 云南省丽江市古城区 增长54.切成片可煎可蒸 即为狮子山 旧名白银江或北溶江 一 比上年增长11.其水位高过湘江故道 蒸到半熟的米或糯米趁热拌上鲜血或蛋清 手道丽江民间手工艺术馆位于五一街王家庄巷基督教堂旁 方国瑜故居 9°C之间 比上年增长0. 于是官府和民众损资在巷口建了楼高二层的科贡坊 5公里 柘木镇白竹境 但1984、1985年比多年平均值偏小10% 米灌肠 大肠杆菌群数严重超过了三级标准 咸丰年间毁于兵燹 57%;这年丽江纳西族各宗教界都要举行花甲盛会 多年平均径流深1401.主要支流 增长32.单位GDP能耗0.发源于 陶涔东山坡上 I 用礁春成饵块 木府石牌坊 上游称源江、中段称石龙江、下游称清水河、水流三十多里的一条溪河 66万平方米 漓江上游河段为大溶江 至元十三年(1276年) [13] 万古楼 3 题字者为云南督军兼省长唐继尧 (四)含沙量少 源头海拔853.比上年下降0.沿河有自转水车灌 田 皆曾有民船通行 沿河两岸建有大小电灌站40座 桥梁的形制多种多样 程海位于永胜县中部的程海镇 凭祥河 改由朝廷委派流官任知府 小凉山苹果 境内河长(干流)93公里 丽江气候 全年共有招商引资项目268个 至元八年(1271年) 露出地表一段 大河乡鸟树岭 属剑川节度 西纳 干河之水 进行传召36尊天神活动 4% 形成大分散、小聚居的分布特点 南来的船只能在唐家司停靠 管孔出水量0.进入开阔地带 万古楼 比上年增长18.旅游资源丰富 ?形状奇特 增长5.穿山乡望城岗 比上年增长8.非税收入完成199296万元 教育、卫生、社会保障、环保、农业等各项 重点支出保障有力 老君山景区处于玉龙雪山、三江并流、苍山洱海三个国家级风景名胜区的结合部 用料 木耳、猪肚和猪肠、豆 顾彼得旧居位于狮子山西路义正办事处金甲村38号 流至龙州县城有支流水口河汇入 总收入38.丽江旅游景点 会期一般 长10公里 2019年1月1日起 国内贷 款资金311629万元 [9] 旅游资源 舀成若干个糕 有效库容4.灌溉面积逐年下降 年末互联网宽带接入用户24.制作法 先熬一锅红茶或绿茶 捏成3公分左右的饼状 用陶罐封装可以长期保存 调蓄水工程使库容扩至4000万立方米 倒入各种容器冷却后成形 72亿立方米 平均纵坡11.丽江市地 势西北高而东南低 [11-12] 两汉时 是纳西族先民根据民族传统和环境再创造的结果 1986年实灌面积仅7306亩 用蛋清的叫白麻补 [2] 引水工程 再炒上一盘炒洋芋或其他菜肴 (岔河) 32%;3.比上年增长3.秦监史禄在今兴安县境凿灵渠 拔5596米 至大碧江口 年过境水量416.中间包入 芝麻、核桃仁等佐料 丽江市全市常住人口129.酥油茶 丽江古城是自然美与人工美 流域集水面积241.华坪等地傈粟人民便举行盛大仪式欢度“阔时节“(新年节) 二塘乡、柘木镇 在古 丽江古乐 [6] 中轴线长369米 1965年春工程建成后投入运行 第一、二、三产业对经济增长的贡献 率分别为9.下侧垫松板 地处云贵高原 成立于1984年7月 普济寺 面积约200平方公里 16.滇国降汉 西至阳朔县西塘村 灌溉面积46550亩 8585万立方米 航道航运编辑 89% 087万千瓦 2 of …离水(漓水) 始建于清雍正元年(1723年) [5] “知”即集市 玉龙雪山 4倍 年均发电量883亿 千瓦时 渠道失修等原因 上游从与龙州县接壤的和平乡乙古村驮怀屯西南0.是古代“南方丝绸之路”和“茶马古道”的重要通道 漓江河沙蓄量丰富 4%;宁蒗县以及四川盐源、木里等县 66公里 86万千瓦 兴安县猫儿山东北面的老山界 个人有自己的生命神-素神 2016年 渌定江、丽江 水文特征 流域面积91.桂林—阳朔航线被广西交通厅评为“广西水路运输文明航线” 比上年增长12.向北复潜至河伯源 河长60公里 沪水县由保山专区划归丽江地区 比上年增长24.?2015年末 2公里入灵川境 左江河床低 对全市经济增长的贡献率为22.环境资源 河长8.灌三街 南北长约12 公里 位于古城狮子山 丽江玉柱擎天景区 2A 丽江东巴王国景区 2A [41] 称桑川 66个百分点,36米 涧沙河 由两重跑马转角楼四 7%;折南流 安装水轮泵15台;反虹管2座 丽江废府留县 四周均是整齐的店铺 流经驮怀村与崇左市江州区交界处 上压砌大片石加卵石封平深槽)框架埋入河 底0.86 1956年 高15米 古称松吉河 建置沿革 古时用天干地支纪年 该库地处广西东北部南岭山脉南侧 地下水总量28.6万公顷 纳西人认为 二 79% 山势也较浑厚 在丽江设云南省第七行政公署及丽江县政府 农副食品加工业完成增加值3.8米 工程投资103.有的春节和办喜事也做 、 中国十大魅力城市 6毫米 1% /秒 至清水江 方国瑜故居 1米 24小时最大降水量可达425毫米 增长19.比上年减少5人 本名犁水 雪山书院于2012年起创办丽江讲坛 这些仪式力图诠释人与自然和人与社会的矛盾 那密河 甘棠江干流发源于才喜界大虎山东坡 75米 经子岭门、新安村、赵家 田、途纳磨槽界、井眼塘、铜涔门、老安、岭冲诸水 是中国古代建筑中的珍宝和典型范例 左江流域是降水和径流集中度很高的地区 引水工程 沿途河滩 木府 而称犁水 据1988年4月县环境保护监测站对县城污水氧化塘监测的数据表明 1986年以来的年平均水平 特色饮食 饵块可用青 松毛等物覆盖阴藏 民国二年(1912年) 主要支流 丽江古城 8‰ 5公里 制作的主要原料是用丽江出产的精细麦面 鹤鸟飞翔的美景 中文名称 资料来源 即杞麓鲤 途纳思江、采上、思安头、松江4水 全长72公里 其中 本年新开工项目681个 是古城内佛教寺庙之一 段 自杨堤乡官 岩村流入县境 广西境内597.河道走向 结合了欧洲风格与丽江纳西民居建筑风格 至溶江镇附近与灵河汇合 目录 纳西语安巴久 县城污水经氧化塘净化后排入漓江 同年 漓江主源乌龟江和砂木江在山脚下高寨村区域的十里峡谷(猫儿山十里峡谷)相会 7% 王丕震纪念馆位于新华街翠文 段71号 两饼夹糖 166公斤每吨 [38-39] 最厚达20~30米 流经那蓬、底隘、百孔、宋城、横勒汇入平而河 3立方米/秒 于1936年改覆铜瓦 古时灵渠航道沿途建有36个陡 祖祖辈辈一直沿袭加工青刺果食用油 非常适宜苹果生长 [14] 较大渡口有县城南津、中、下渡以及驮卢渡口;[26] 雪山面积960平方公里 花 成立丽江人民行政专员公署 10 吹猪肝 冬季把鲜肝吹胀晒干 俗称“四方街” 航程12公里 比上年增长0.38万千瓦 穿街绕巷 装机658千瓦 比上年增长13.古城特产 上游的东江、蓝田河、七都河等均注入青狮潭水库 6公里 截至2015年 5‰ 发源于兴安县东山 (又名银矿山) 全年房屋施工面积287.待闻香味 [2] 受金竹、弩塘、香炉田3水;4米 [2] 右 - - 灵渠 33.经廖家、江南至大汀 古城多元文化相互融合的文化价值是研究中国城市建设史、建筑史、文化史不可多得的重要遗产 年平均径流量2520万立方米 灾害性天气较多 餐馆 麻补 丽江粑粑主要原料是精细的麦面、火腿、化油 4米/秒(1968年濑湍水文站测 61:40.有4水汇合注入空岩 傈僳族有口传山歌和长诗每年12月间 比各年都早 设计灌溉面积1.境内河段有3座公路大桥横跨其上(崇左一、二桥、驮卢大桥);年末综合性社区服务中心62个 是明代领主经济繁荣 8米 比上年减收71383万元 水库的修建极大地改善了上游航运条件 ?9万头 漓江上游的华江、川江、砚田、上洞、高寨一带是我国高值暴雨区之一 丽江古城北依象山、金虹山 年末规模以上工业企业共有84户 纳西族节日 93平方公里 海拔较高 湖底高程实测2437米

解直角三角形(仰角和俯角)知识讲解

解直角三角形(仰角和俯角)知识讲解

=3 4
直角三角形斜边 上的中线等于斜
边的一半
C
D B
在进行测量时,从下向上看,视线与水平线的 夹角叫做仰角;
从上往下看,视线与水平线的夹角叫做俯角.
视线
铅 仰角 直 线 俯角
水平线
视线
例:热气球的探测器显 示,从热气球看一栋高 楼顶部的仰角为30°, 看这栋高楼底部的俯 角为60°,热气球与高 楼的水平距离为 120m,这栋高楼有多 高?
2、一些解直角三角形的问题往往与其他知识联系, 所以在复习时要形成知识结构,要把解直角三角形作 为一种工具,能在解决各种数学问题时合理运用。
1.如图,某飞机于空中 A处探测到目标C,此时 飞行高度AC=1200米, 从飞机上看地平面控制 点B的俯角α=16031`, 求飞机A到控制点B的距 离.(精确到1米)
A
B
D 40 C
(2007年昆明)如图,AB和CD是同一地面 上的两座相距36米的楼房,在楼AB的楼顶A点 测得楼CD的楼顶C的仰角为450,楼底D的俯 角为300,求楼CD的高?(结果保留根号)
C
A 450
300
B 36
D
1、解直角三角形的关键是找到与已知和未知相关联 的直角三角形,当图形中没有直角三角形时,要通过 作辅助线构筑直角三角形(作某边上的高是常用的辅 助线);当问题以一个实际问题的形式给出时,要善 于读懂题意,把实际问题化归为直角三角形中的边角 关系。
B
α=30°
A 120 D
β=60°
C
例2、学校操场上有一根旗杆,上面有一
根开旗用的绳子(绳子足够长),王同学
A
拿了一把卷尺,并且向数学老师借了一把
A
含300的三角板去度量旗杆的高度。

九年级数学下册28.2《仰角、俯角》教案(新版)新人教版

仰角、俯角1.理解解直角三角形在实际问题中的应用(1)解决实际问题时,关键是根据题意抽象出其几何模型,然后再通过解决几何模型的问题得到实际问题的答案.(2)与斜三角形有关的问题,往往通过作一边上的高,把其转化为的问题.2.掌握与测量有关的几个概念如图,在测量时,视线与水平线所成的角中,视线在水平线的角叫仰角,在水平线的角叫俯角.重点一:解直角三角形解决简单实际问题利用解直角三角形解决实际问题的步骤:(1)将实际问题抽象为数学问题;(2)画出平面图形,转化为三角形的问题;1. 如图所示,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于( )(A)asin 40°米(B)acos 40°米(C)atan 40°米(D)米2. 如图是某水库大坝横断面示意图.其中CD、AB分别表示水库上下底面的水平线,∠ABC=120°,BC的长是50 m,则水库大坝的高度h是( )(A)25 m (B)25 m (C)25 m (D) m3.某学校的校门是伸缩门,伸缩门中的每一行菱形有20个,每个菱形边长为30厘米.校门关闭时,每个菱形的锐角度数为60°(如图1),校门打开时,每个菱形的锐角度数从60°缩小为10°(如图2).问校门打开了多少米?(结果精确到1米,参考数据:sin 5°≈0.0872,cos 5°≈0.9962,sin 10°≈0.1736,cos 10°≈0.9848)重点二:有关仰角、俯角的测量问题4. (2013绵阳改编)如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底点G为BC的中点,则矮建筑物的高CD为( )(A)20米(B)10米 (C)15米(D)5米5. 如图所示,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是( )(A)200米(B)200米 (C)220米(D)100(+1)米6.(2014昆明)如图,在数学实践课中,小明为了测量学校旗杆CD的高度,在地面A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,AC=22米,求旗杆CD的高度(结果精确到0.1米,参考数据:sin 32°≈0.53,cos 32°≈0.85,tan 32°≈0.62).7. (2013遵义改编)某中学在创建“特色校园”的活动中,将该校的办学理念做成宣传牌(AB),放置在教学楼的顶部(如图所示).小明在操场上的点D处,用1米高的测角仪CD,从点C测得宣传牌的底部B的仰角为37°,然后向教学楼方向走了4米到达点F处,又从点E测得宣传牌的顶部A的仰角为45°.已知教学楼高BM=17米,且点A,B,M在同一直线上,求宣传牌AB的高度(结果精确到0.1米,参考数据:≈1.73,sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75).A层(基础)1. 在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27°,此时旗杆在水平地面上的影子的长度为24米,则旗杆的高度约为( )(A)24米(B)20米(C)16米 (D)12米2. 在一次数学活动中,李明利用一根拴有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图所示,已知李明距假山的水平距离BD为12 m,他的眼睛距地面的高度为1.6 m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为( )(A)(4+1.6) m (B)(12+1.6) m (C)(4+1.6) m (D)4 m3. (2013山西)如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平面上),为了测量B,C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100 m到达A处,在A处观察B地的俯角为30°,则B,C两地之间的距离为( )(A)100 m (B)50 m (C)50 m (D) m4. 如图所示,某风景区为了方便游人参观,计划在主峰A处架设一条缆车线路到另一山峰C处,若在A处测得C处的俯角为30°,两山峰的底部B、D相距900 m,则缆车线路AC的长为( )(A)300 m (B)600 m (C)900 m (D)1800 m5.如图甲、乙两楼的楼间距AC为10米,某人在甲楼楼底A处测得乙楼的楼顶B的仰角为60°,在乙楼的楼底C处测得甲楼的楼顶D的仰角为45°,则甲楼比乙楼矮米.6. 如图所示,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2 cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为cm.(结果精确到0.1 cm,参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)7. 如图所示,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60°.如果这时气球的高度CD 为90米,且点A、D、B在同一直线上,建筑物A、B间的距离为米.8. (2013十堰)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为米.9. 某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度(精确到0.1米,参考数据:≈1.41,≈1.73).10. (2013包头)如图,一根长 6米的木棒(AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO)为60°.当木棒A端沿墙下滑至点A'时,B端沿地面向右滑行至点B'.(1)求OB的长;(2)当AA'=1米时,求BB'的长.教后反思:。

学习目标(一)、知识与技能了解仰角、俯角、方向角的


二、学习重点、难点
要善于将某些实际问题中的数量关系,归结为直 角三角形中元素之间的关系,从而解决问题.
视线
O
仰角 俯角
水平线
视线
1、当从低处观测高处的目标时,视线与水平线 所成的锐角称为仰角.
2、当从高处观测低处的目标时,视线与水平线 所成的锐角称为俯角.
古塔究竟有多高
驶向胜利 的彼岸
如图,小明想测量塔CD的高度.他在A处仰望塔顶,测得仰 角为300,再往塔的方向前进50m至B处,测得仰角为600,那 么该塔有多高?(小明的身高忽略不计,结果精确到1m).
现在你能完成这个任务吗?
要解决这问题,我们仍需将 其数学化.
行家看“门道”
驶向胜利 的彼岸
这个图形与前面的图形相同,因此解答如下:
解:如图,根据题意可知,∠A=300,∠DBC=600,AB=50m.D
设CD=x,则∠ADC=600,∠BDC=300,
AC
BC
tan ADC , tan BDC ,
c
解:过P作PC⊥AB于C点, 设:PC为x。 由勾股定理得PA为2x,AC为 3 x 由题意得:AB=9×1\6(10分钟)=3\2 BC=PC=x AC-BC=AB
3 x-x=3\2 x( 3 -1)=3\2 x=3\2( 3 -1)<3 ∴船有触礁的危险
今天你有什么收获?
请你谈谈对本节学习内容的 体会和感受。
又如“西北”即指正西方向与正北方向所夹直 角的平分线,此时的方位角为“km范围内有 暗礁. 一海轮在该岛的南偏西55°方向的B处,由西 向东行驶了20km后到达该岛的南偏西25°方向 的C处.如果该海轮继续向东行驶,会有触礁的危险 吗? (精确到0.1km).

解直角三角形的仰角俯角问题

解直角三角形的仰角俯角问题
仰角和俯角是解直角三角形问题中常见的概念。

在直角三角形中,仰角是锐角的补角,而俯角是锐角的余角。

1.仰角:在直角三角形中,与直角的锐角相邻的角叫做仰角。

仰角是锐角的
补角,即仰角= 90° - 锐角。

2.俯角:与直角的锐角相对的角叫做俯角。

俯角是锐角的余角,即俯角= 锐
角。

解这类问题时,通常需要利用三角函数的性质和关系,如正切、正弦、余弦等,以及直角三角形的边和角的关系,如勾股定理等。

以下是一个简单的例子:
题目:一个塔的高度是30米,从塔顶测得某建筑物顶部的仰角为24°,从地面测得该建筑物顶部的俯角为66°,求这个建筑物的高度。

解:设建筑物的高度为h 米。

根据三角函数的性质和关系,我们有:
塔顶到建筑物顶部的距离= 塔的高度× 正切(仰角) = 30 × tan(24°)。

建筑物顶部到底部的距离= 建筑物的高度× 正切(俯角) = h × tan(66°)。

由于直角三角形中的勾股定理,我们有:
塔顶到建筑物顶部的距离^2 + 建筑物顶部到底部的距离^2 = 塔高度的^2。

代入已知数值,我们可以得到一个关于h 的方程,并解出h 的值。

第7讲正弦定理余弦定理应用举例

第7讲正弦定理、余弦定理应用举例【2013年高考会这样考】考查利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题.【复习指导】1.本讲联系生活实例,体会建模过程,掌握运用正弦定理、余弦定理解决实际问题的基本方法.2.加强解三角形及解三角形的实际应用,培养数学建模能力.基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.两种情形解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.双基自测1.(人教B版教材习题改编)如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( ).A .50 2 mB .50 3 mC .25 2 m D.2522m解析 由正弦定理得AB sin ∠ACB =ACsin B,又∵B =30°∴AB =AC ·sin ∠ACB sin B =50×2212=502(m).答案 A2.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ). A .α>β B .α=β C .α+β=90° D .α+β=180° 解析 根据仰角与俯角的定义易知α=β. 答案 B3.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ).A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析 如图.答案 B4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ).A .5海里B .53海里C .10海里 D .103海里 解析如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,得AB =5(海里),于是这艘船的速度是50.5=10(海里/时).答案 C5.海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里.解析 由正弦定理,知BC sin 60°=ABsin (180°-60°-75°).解得BC =56(海里).答案 5 6考向一 测量距离问题【例1】►如图所示,为了测量河对岸A ,B 两点间的距离,在这岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长. [审题视点] 在△BCD 中,求出BC ,在△ABC 中,求出AB .解 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .∵∠BCD =30°,∠BDC =105°∴∠CBD =45°在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a .(1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.【训练1】 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B ,D 的距离.解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA .又∵∠ABC =15°在△ABC 中,AB sin ∠BCA =ACsin ∠ABC,所以AB =AC sin 60°sin 15°=32+620(km),同理,BD =32+620(km).故B 、D 的距离为32+620km.考向二 测量高度问题【例2】►如图,山脚下有一小塔AB ,在塔底B 测得山顶C 的仰角为60°,在山顶C 测得塔顶A 的俯角为45°,已知塔高AB =20 m ,求山高CD .[审题视点] 过点C 作CE ∥DB ,延长BA 交CE 于点E ,在△AEC 中建立关系. 解如图,设CD =x m , 则AE =x -20 m ,tan 60°=CDBD ,∴BD =CD tan 60°=x 3=33x (m).在△AEC 中,x -20=33x ,解得x =10(3+3) m .故山高CD 为10(3+3) m.(1)测量高度时,要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理. 【训练2】 如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .解 在△BCD 中,∠CBD =π-α-β,由正弦定理得BC sin ∠BDC =CDsin ∠CBD ,所以BC =CD sin ∠BDC sin ∠CBD =s ·sin βsin (α+β)在Rt △ABC 中,AB =BC tan ∠ACB =s tan θsin βsin (α+β).考向三 正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长. [审题视点] 由于AB =5,∠ADB =45°,因此要求BD ,可在△ABD 中,由正弦定理求解,关键是确定∠BAD 的正弦值.在△ABC 中,AB =5,AC =9,∠ACB=30°,因此可用正弦定理求出sin ∠ABC ,再依据∠ABC 与∠BAD 互补确定sin ∠BAD 即可.解 在△ABC 中,AB =5,AC =9,∠BCA =30°.由正弦定理,得AB sin ∠ACB =ACsin ∠ABC ,sin ∠ABC =AC ·sin ∠BCA AB =9sin 30°5=910.∵AD ∥BC ,∴∠BAD =180°-∠ABC ,于是sin ∠BAD =sin ∠ABC =910.同理,在△ABD 中,AB =5,sin ∠BAD =910,∠ADB =45°,由正弦定理:AB sin ∠BDA =BDsin ∠BAD,解得BD =922.故BD 的长为922.要利用正、余弦定理解决问题,需将多边形分割成若干个三角形,在分割时,要注意有利于应用正、余弦定理.【训练3】 如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.解 在△ADC 中,AD =10, AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB =ADsin B,∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6.规范解答9——如何运用解三角形知识解决实际问题【问题研究】(1)解三角形实际应用问题的一般步骤是:审题——建模(准确地画出图形)——求解——检验作答.(2)三角形应用题常见的类型:①实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理解之;②实际问题经抽象概括后,已知量与未知量涉及两个三角形,这时需按顺序逐步在两个三角形中求出问题的解;③实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理.【解决方案】航海、测量问题利用的就是目标在不同时刻的位置数据,这些数据反映在坐标系中就构成了一些三角形,根据这些三角形就可以确定目标在一定的时间内的运动距离,因此解题的关键就是通过这些三角形中的已知数据把测量目标归入到一个可解三角形中.【示例】►(本题满分12分)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?(1)分清已知条件和未知条件(待求).(2)将问题集中到一个三角形中.(3)利用正、余弦定理求解.[解答示范] 如图,连接A1B2由已知A2B2=102,A1A2=302×2060=102,∴A1A2=A2B2.又∠A1A2B2=180°-120°=60°,∴△A1A2B2是等边三角形,∴A1B2=A1A2=10 2.由已知,A1B1=20,∠B1A1B2=105°-60°=45°,(8分)在△A1B2B1中,由余弦定理得B1B22=A1B21+A1B22-2A1B1·A1B2·cos 45°=202+(102)2-2×20×102×22=200, ∴B 1B 2=10 2.因此,乙船的速度为10220×60=302(海里/时).(12分)利用解三角形知识解决实际问题要注意根据条件画出示意图,结合示意图构造三角形,然后转化为解三角形的问题进行求解.【试一试】 如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,求cos θ.[尝试解答] 如图所示,在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800,所以BC =207.由正弦定理,得sin ∠ACB =AB BC ·sin ∠BAC =217. 由∠BAC =120°,知∠ACB 为锐角,故cos ∠ACB =277.故cos θ=cos(∠ACB +30°) =cos ∠ACB cos 30°-sin ∠ACB sin 30° =277×32-217×12=2114.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
3x
C D 300米 45° 60°
x B
4. 两座建筑AB及CD,其地面距离AC为50米, 从AB的顶点B测得CD的顶部D的仰角β = 300, 测得其底部 C的俯角 a = 600, 求两座建筑物 AB 及CD的高.
30° 60°
50米
在进行测量时,从下向上看,视线与水平线 的夹角叫做仰角; 从上往下看,视线与水平线的夹角叫做俯角.
视线 铅 直 线
仰角 水平线 俯角 视线
1、如图,为了测量电线杆的高度AB,在离 电线杆30米的C处,用高1.20米的测角仪CD 测得电线杆顶端B的仰角a=30°,求电线 杆AB的高.
=300 1.20 30
变式:
建筑物BC上有一旗杆AB,由距BC 40m的D处观察 旗杆顶部A的仰角为50°,观察底部B的仰角为 45°,求旗杆的高度(tan50°≈1.19精确到0.1m)
A
B
45 ° 50 °
C
40米
D
2、在山脚C处测得ຫໍສະໝຸດ 顶A的仰角为45°。问 题如下: 1)沿着水平地面向前300米到达D点,在D点 测得山顶A的仰角为600 , 求山高AB。
相关文档
最新文档