反比例函数的图象及其性质同步练习
专题01 反比例函数的概念、图像和性质(课后小练)-解析版

专题01 反比例函数的概念、图像和性质(课后小练)满分100分 时间:45分钟 姓名:注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(共24分)1.(本题4分)(2022·河南三门峡·九年级期末)下列四个关系式中,y 是x 的反比例函数的是( )A .yx =B .21y x =C .6y x =+D 1y=2.(本题4分)(2022·安徽·九年级期末)下列四个点中,不在反比例函数2y x=图象上的是( )A .()1,2--B .()2,1C .1,42æö--ç÷D .33,2æöç÷3.(本题4分)(2022·重庆市育才中学二模)按如图所示的运算程序,能使输出y 值为3的是( )A .1x =B .2x =C .3x =D .4x =4.(本题4分)(2021·江苏淮安·一模)定义运算:a ⊕b =(0)(0)ab ba b b ì>ïïíï<ï-î,例如:4⊕5=45,4⊕(-5)=45,那么函数y =2⊕x (x ≠0)的图象大致是( )A .B .C .D .【答案】D【分析】根据题干中新运算定义,分两种情况分别求出y =2⊕x 的解析式,进而求解.5.(本题4分)(2022·全国·九年级单元测试)在平面直角坐标系中,点A (1,2)-、B (2,3)、C (6,)m -分别在三个不同的象限,若反比例函数(0)ky k x=¹的图象经过其中两点,则k 的值为( )A .2-B .6C .2-或6D .6-6.(本题4分)(2022·全国·九年级课时练习)反比例函数的图象如图所示,则这个反比例函数的表达式可能是( )A .2y x=-B .83y x=-C .3y x=-D .5y x=-【答案】B【分析】根据点A 、B 的坐标结合函数图象以及反比例函数图象上点的坐标特征,即可得出32k -<<-,再对照四个选项即可得出结论.【详解】解:观察函数图象可知:3(1)21k ´-<<-´,即32k -<<-.故选:B .【点睛】本题考查了反比例函数的图象以及反比例函数图象上点的坐标特征,观察函数图象利用反比例函数图象上点的坐标特征找出k 的取值范围是解题的关键.第II 卷(非选择题)二、填空题(共20分)7.(本题5分)(2022·浙江宁波·八年级期末)已知反比例函1k y x-=,在每个象限内y 随x 的增大而增大,则k 的取值范围为______.【答案】k <1##1>k8.(本题5分)(2022·河南·辉县市城北初级中学一模)从-1,2,-3,4这四个数中任取两个不同的数分别作为a ,b 的值,得到反比例函数aby x=,则这些反比例函数中,其图像在第二,四象限的概率是________.9.(本题5分)(2022·湖南·长沙市开福区青竹湖湘一外国语学校三模)若点M (3m -,1y )、N (2m +,2y )在双曲线ky x=(0k >)上,且12y y <,则m 的取值范围是________.【点睛】本题考查了反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题关键.10.(本题5分)(2022·江苏泰州·八年级期末)如图,在平面直角坐标系xOy中,点A为反比例函数y=-4 x(x>0)的图象上一动点,AB⊥y轴,垂足为B,以AB为边作正方形ABCD,其中CD在AB上方,连接OA,则OA2-OC2=_______.三、解答题(共56分)11.(本题10分)(2021·广东·广州市黄埔区华实初级中学二模)如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边OB在x轴的正半轴上,点A的坐标为(6,4),斜边OA的中点D在反比例函数ykx=(x>0)的图象上,AB交该图象于点C,连接OC.(1)求k的值;(2)求△OAC的面积.12.(本题10分)(2022·江苏·苏州市吴江区铜罗中学八年级期中)已知y是x的反比例函数,并且当x=2时,y=6.(1)求y关于x的函数解析式;(2)当x=4时,求y的值.13.(本题12分)(2022·河南南阳·八年级期中)如图,一次函数y=﹣x+b的图象与x轴交于A点,与y轴交于B点,与反比例函数kyx=的图象交于点E(1,5)和点F(5,1).(1)求k,b的值;(2)求△EOF的面积;(3)请根据函数图象直接写出反比例函数值大于一次函数值时x的范围.反比例函数值大于一次函数值时x的范围为:【点睛】本题考查了反比例函数与一次函数综合,待定系数法求解析式,求直线围成的三角形面积,根据函数图象交点求不等式的解集,数形结合是解题的关键.14.(本题12分)(2022·河北唐山·一模)已知反比例函数y=3mx-(m为常数,且m≠3)(1)若在其图象的每一个分支上,y随x增大而减小,求m的取值范围;(2)若点A(2,32)在该反比例函数的图象上;①求m的值;②当x<﹣1时,直接写出y的取值范围.15.(本题12分)(2022·江苏扬州·八年级期末)如图,某养鸡场利用一面长为11m 的墙,其他三面用栅栏围成矩形,面积为260m ,设与墙垂直的边长为x m ,与墙平行的边长为y m .(1)直接写出y 与x 的函数关系式为______;(2)现有两种方案5x =或6x =,试选择合理的设计方案,并求此栅栏总长.。
专题2.9反比例函数的图象与性质大题专练(分层培优强化40题)

2022-2023学年八年级数学下学期复习备考高分秘籍【苏科版】专题2.9反比例函数的图象与性质大题专练(分层培优强化40题,八下苏科)【基础过关】(每题10分,满分100分,建议用时:60分钟)1.(2022春•镇平县期中)已知反比例函数y=的图象经过A(2,﹣4).①求k的值.②这个函数的图象在哪几个象限?y随x的增大怎样变化?③画出函数的图象.④点B(﹣2,4),C(﹣1,5)在这个函数的图象上吗?2.(2023•沭阳县模拟)如图,在平面直角坐标系中,反比例函数y1=(n≠0)的图象与一次函数y2=kx+b (k≠0)的图象交于点A(﹣2,4),B(a,﹣3).(1)求一次函数的解析式,并在网格中画出一次函数的图象;(2)结合图象,当y1>y2时直接写出自变量x的取值范围.3.(2022春•盐都区期中)已知函数经过点(1,4).(1)求k的值;(2)完成下列表格,并在平面直角坐标系中画出该函数图象;x… ﹣2﹣1124…y…﹣1﹣2﹣44 1…(3)利用图象直接求出当x>1时,y的取值范围是 .4.(2022秋•启东市月考)如图,反比例函数的图象经过点(2,4)和点A(a,2).(1)求该反比例函数的解析式和a的值;(2)若点A先向左平移m(m>0)个单位长度,再向下平移m个单位长度,仍落在该反比例函数的图象上,求m的值.5.(2022秋•如皋市期中)如图,矩形ABCD的两边AD,AB的长分别为3,8.边BC落在x轴上,E是AB的中点,连接DE,反比例函数y=的图象经过点E,与CD交于点F.(1)若B(3,0),求F点坐标;(2)若DF=DE,求反比例函数的解析式.6.(2022春•姑苏区校级期中)如图,在以O为原点的平面直角坐标系中,点A、C分别在x轴、y轴的正半轴上,点B(a,b)在第一象限,四边形OABC是矩形,反比例函数的图象与AB相交于点D,与BC相交于点E,且BE=2CE.(1)求证:BD=2AD;(2)若四边形ODBE的面积是6,求k的值.7.(2022春•淮安区期末)如图,A、B分别是x轴正半轴上和y轴正半轴上的点,以AB为边在第一象限内作正方形ABCD,反比例函数y=(k≠0)的图象经过点C.(1)若点C坐标为(2,3),则k的值为 ;(2)若A、B两点坐标分别A(2,0),B(0,2);①则k的值为 ;②此时点D (填“在”、“不在”或者“不一定在”)该反比例函数的图象上;(3)若C、D两点都在函数y=的图象上,直接写出点C的坐标为 .8.(2022秋•顺德区期末)反比例函数.(1)画出反比例函数的图象;(2)观察图象,当y≥﹣1时,写出x的取值范围.9.(2023•黔江区一模)设函数y1=,y2=﹣(k>0).(1)当1≤x≤2时,函数y1的最大值是a,函数y2的最小值是a﹣2,求a和k的值;(2)设m≠0且m≠1,当x=m时,y2=p;当x=m﹣1时,y2=q,芳芳说:“p一定大于q”.你认为芳芳的说法正确吗?为什么?10.(2021秋•神木市期末)已知反比例函数y=(k为常数).(1)若函数图象在第二、四象限,求k的取值范围;(2)若x>0时,y随x的增大而减小,求k的取值范围.【能力提升】(每题10分,满分100分,建议用时:60分钟)11.(2021秋•富平县期末)已知反比例函数y=,分别根据下列条件求出字母m的取值范围.(1)函数图象位于第一、三象限;(2)在每一象限内,y随x的增大而增大.12.(2021秋•遵化市期末)已知反比例函数y=(m﹣2)(1)若它的图象位于第一、三象限,求m的值;(2)若它的图象在每一象限内y的值随x值的增大而增大,求m的值.13.(2021秋•城固县期末)已知反比例函数图象的两个分支分别位于第一、第三象限.(1)求k的取值范围;(2)取一个你认为符合条件的K值,写出反比例函数的表达式,并求出当x=﹣6时反比例函数y的值.14.(2021秋•淮南月考)类比反比例函数的图象与性质的学习过程,小欣进一步研究了函数的图象与性质.其过程如下:(1)绘制函数图象①列表:x…﹣4﹣3﹣2012…y…﹣1﹣2﹣3321…②描点:根据表中的数值描点(x,y);③连线:用平滑的曲线顺次连接各点,请把图象补充完整.(2)探究函数性质判断下列说法是否正确(正确的填“√”,错误的填“×”)①函数值y随x的增大而减小: .②函数图象关于原点对称: .③函数图象与直线x=﹣1没有交点: .15.(2022春•封丘县期中)阅读下列材料,完成任务:我们知道,用描点法可以画出反比例函数的图象,其图象是双曲线,那么如何画出函数的图象呢?其图象与函数的图象有何关系吗?下面是小明同学对函数的图象画法的部分探究过程:解:(1)列表、取值(这里自变量x的取值范围是x﹣1≠0,即x≠1):x……﹣7﹣5﹣3﹣1023579……y……﹣1﹣2﹣4﹣88421……(2)描点连线.任务:Ⅰ请在下面的平面直角坐标系中将函数图象补充完整.Ⅱ联想函数的图象和性质,根据下列要求,回答问题:①函数的图象是由函数的图象向 平移 个单位长度得到的;②仔细观察图象,归纳函数的函数值y随自变量x的增减变化情况.16.(2021秋•潍坊期末)某校九年级数学兴趣小组对函数的图象和性质进行探究,通过描点、连线的方式画出了该函数的图象如图所示.请结合图象回答下列问题:(1)①函数的自变量x的取值范围是 ;②请尝试写出函数的一条性质: .(2)经观察发现,将函数的图象平移后可以得到函数的图象,请写出一种平移方法.(3)在上述平面直角坐标系中,画出y=x+2的图象,并结合图象直接写出不等式的解集.17.(2021秋•景德镇期末)探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数性质及其应用的部分过程:(1)画函数图象:列表:x…﹣3﹣2﹣10…2345…y…﹣1﹣2a…42b1…直接写出上表中a,b的值:a= ;b= ;并描点、连线得到函数图象:(2)观察函数的图象,判断下列关于该函数性质的命题:①该函数图象由两支曲线组成,两支曲线分别位于第一、三象限内;②该函数图象既是中心对称图形,又是轴对称图形;③y的值随x值的增大而减小;④该函数最小值为﹣4,最大值为4.其中错误的是 ;(请写出所有错误命题的序号)(3)结合图象,直接写出不等式的解集: .18.(2022•兰考县模拟)若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数,下面我们参照学习函数的过程与方法,探究分段函数y=的图象与性质,探究过程如下,请补充完整.(1)列表:x…﹣3﹣2﹣10123…y…m12101n…其中,m= ,n= .(2)描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示,请画出函数的图象.(3)研究函数并结合图象与表格,回答下列问题:①点,在函数图象上,则y1 y2,x1 x2;(填“>”,“=”或“<”)②当函数值时y=1,求自变量x的值.19.(2021秋•西华县期末)若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数,下面我们参照学习函数的过程与方法,探究分段函数的图象与性质.列表:x…﹣3﹣2﹣10123…y…121012…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:①点A(﹣5,y1),,,D(x2,6)在函数图象上,则y1 y2,x1 x2.(填“>”“<”或“=”)②当函数值y=2时,求自变量x的值;③在直线x=﹣1右侧的函数图象上有两个不同的点P(x3,y3),Q(x4,y4),且y3﹣y4,求x3+x4的值.20.(2021春•卧龙区期中)在函数的学习过程中,我们经历了“确定函数表达式﹣画函数图象﹣利用函数图象研究函数性质﹣利用图象和性质解决问题”的学习过程我们可以借鉴这种方法探究函数的图象性质.(1)根据题意,列表如下:x…﹣3﹣10235…y…﹣1﹣2﹣4421…在所给平面直角坐标系中描点并连线,画出该函数的图象;(2)观察图象,写出该函数的增减性: ;(3)函数的图象可由函数的图象得到,其对称中心的坐标为 ;(4)根据上述经验回答:函数的图象可由函数的图象得到(不必画图),想象平移后得到的函数图象,直接写出当y≤1时,x的取值范围是 .【培优拔高】(每题10分,满分100分,建议用时:60分钟)21.(2021春•海淀区校级期中)已知函数y=﹣3,对该函数及图象进行如下探究:(1)写出函数的自变量取值范围: ;(2)请把表格补充完整:x…﹣101 1.5 2.5345…y…﹣﹣ ﹣1﹣1﹣2﹣ …(3)在如图的平面直角坐标系中画出该函数的图象;结合函数图象,写出该函数的一条性质: .(4)结合上述函数的图象,直接写出方程﹣3=x﹣1的一个近似解 (保留一位小数).22.(2021•沙坪坝区校级三模)学习函数时,我们经历“确定函数表达式、画函数图象、利用函数图象研究函数性质、利用图象解决问题”的学习过程.以下是我们研究函数y1=性质及其应用的部分过程,请你按要求完成下列问题.(1)列表,y1与x的几组对应值列表如下:m= ;n= ;x…﹣101234567……m﹣22631n﹣﹣﹣﹣…(2)描点、连线,在如图所示的平面直角坐标系中,根据上表中的数据绘制该函数图象,并写出该函数的一条性质: .(3)已知函数图象如图所示,结合你所画的函数图象,直接写出当y1≤y2时,自变量x的取值范围是 .(结果保留1位小数,误差不超0.2)23.(2021秋•襄州区期末)问题呈现:我们知道反比例函数的图象是双曲线,那么函数(k、m、n为常数且k≠0)的图象还是双曲线吗?它与反比例函数的图象有怎样的关系呢?让我们一起开启探索之旅……探索思考:我们可以借鉴以前研究函数的方法,首先探索函数的图象.(1)画出函数图象.①列表:x…﹣6﹣5﹣4﹣3﹣201234…y…﹣1﹣2﹣4421…②描点并连线.(2)观察图象,写出该函数图象的两条不同类型的特征:① ,② ;(3)理解运用:函数的图象是由函数的图象向 平移 个单位,其对称中心的坐标为 .(4)灵活应用:根据上述画函数图象的经验,想一想函数的图象大致位置,并根据图象指出,当x 满足 时,y ≥3.24.(2022春•晋安区期末)已知函数y =x +,它的图象犹如老师的打钩,因此人们称它为对钩函数(的一支).下表是y 与x 的几组对应值:x …1234…y…432m234…请你根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与性质进行探究.(1)其中m = .(2)如图,在平面直角坐标系xOy 中,已描出了上表中各对对应值为坐标的点,请根据描出的点,画出该函数的图象;(3)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律.序号函数图象的特征函数变化规律示例1在直线x =1右侧,函数图象是呈上升状态当x >1时,y 随x 的增大而增大示例2函数预想经过点当x =2时,y =2①函数图象的最低点是(1,2) ②在直线x =1左侧,函数图象呈下降状态25.(2021秋•汤阴县期末)请根据学习函数的经验,将下列探究函数y =图象与性质的过程补充完整:(1)函数y =的自变量x 的取值范围是 ;(2)下表列出了y 与x 的几组对应值,请写出其中m 、n 的值;m = ,n = ;x …﹣2﹣10n 234…y…﹣m﹣1﹣221…(3)在如图所示的平面直角坐标系中,描全表中以各对对应值为坐标的点,并画出该函数的图象.(4)结合函数的图象,写出该函数的一条性质: ;(5)根据图象直接写出>﹣1时x 的取值范围: .26.(2022•靖江市二模)反比例函数,(n <0)的图象如图所示,点P 为x 轴上不与原点重合的一动点,过点P 作AB ∥y 轴,分别与y 1、y 2交于A 、B 两点.(1)当n =﹣10时,求S △OAB ;(2)延长BA 到点D ,使得DA =AB ,求在点P 整个运动过程中,点D 所形成的函数图象的表达式.(用含有n的代数式表示).27.(2021秋•长安区校级期末)反比例函数y=(x<0,k<0)和y=(x<0)的图象如图所示,点P (m,0)是x轴上一动点,过点P作直线AB⊥x轴,交两图象分别于A、B两点.(1)若m=﹣1,线段AB=9时,求点A、B的坐标及k值;(2)雯雯同学提出一个大胆的猜想:“当k一定时,△OAB的面积随m值的增大而增大.”你认为她的猜想对吗?说明理由.28.(2021•老河口市模拟)函数揭示了两个变量之间的关系,它的表示方法有三种:表格法、图象法、解析式法.请你根据学习函数的经验,完成对函数y=+m的探究.下表是函数y与自变量x的几组对应值:x…﹣3﹣2﹣102345…y…﹣0.5﹣1﹣2﹣5743 2.5…(1)函数y=+m自变量x的取值范围为 .(2)根据表格中的数据,得k= ,m= .并在右面平面直角坐标系xOy中,画出该函数的图象.(3)请根据画出的函数图象,直接写出该函数的一条性质: .(4)利用所学函数知识,仔细观察上面表格和函数图象,直接写出不等式>﹣m+2x﹣5的解集.29.(2021•碑林区校级模拟)小明在学习过程中遇到了一个函数y=+1,小明根据学习反比例函数y=的经验,对函数y=+1的图象和性质进行了探究.(1)画函数图象:[问题1]函数y=+1的自变量x的取值范围是 ;①列表:如表.x…﹣6﹣21034610…y…0﹣3﹣1﹣79532…②描点:点已描出,如图所示.③连线:[问题2]请你根据描出的点,画出该函数的图象.(2)探究性质:根据反比例函数y=的图象和性质,结合画出的函数y=+1图象,回答下列问题:[问题3]①该函数的图象是具有轴对称性和中心对称性,其对称中心的坐标是 ;[问题4]②该函数图象可以看成是由y=的图象平移得到的,其平移方式为 ;[问题5]③结合函数图象,请直接写出+1≥﹣1时x的取值范围 .30.(2021春•巢湖市期末)让我们一起用描点法探究函数y=的图象性质,下面是探究过程,请将其补充完整:(1)函数y=的自变量x的取值范围是 ;根据取值范围写出y与x的几组对应值,补全下面列表:x…﹣6﹣4﹣2﹣1.5﹣11 1.5246…y…1 1.53 664 1.51…(2)如图,在平面直角坐标系中,描出了上表中各组对应值为坐标的点.请你根据描出的点,画出该函数的图象;(3)观察画出的函数图象,写出:①y=5时,对应的自变量x值约为 ;②函数y=的一条性质: .【满分冲刺】(每题10分,满分100分,建议用时:60分钟)31.(2020•渝中区校级开学)启航同学根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是他的探究过程,请补充完成:(1)函数y=的自变量x的取值范围是 .(2)列表,找出y与x的几组对应值,列表如下:x…﹣2﹣1023…y…a1221…其中,a= .(3)在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象并写出该函数的一条性质: .32.(2020春•北仑区期末)小王为探究函数y=(x>3)的图象经历了如下过程.(1)列表,根据表中x的取值,求出对应的y值,将空白处填写完整;x… 3.54 4.55 5.56…y… 32 1…(2)以表中各组对应值为点的坐标,在平面直角坐标系中描点并画出函数图象;(3)结合由y=(x>0)图象到y=图象的变化,猜想由y=的图象经过向 的平移变化可以得到y=(x≠﹣3)图象.y=(x≠﹣3)的对称轴是 .33.(2023•深圳模拟)小欣研究了函数的图象与性质.其研究过程如下:(1)绘制函数图象①列表:下表是x与y的几组对应值,其中m= ;x…﹣4﹣3﹣2﹣﹣﹣﹣012…y…﹣﹣﹣1﹣2﹣332m…②描点:根据表中的数值描点(x,y);③连线:用平滑的曲线顺次连接各点,请把图象补充完整.(2)探究函数性质:下列说法不正确的是 A.函数值y随x的增大而减小B.函数图象不经过第四象限C.函数图象与直线x=﹣1没有交点D.函数图象对称中心(﹣1,0)(3)如果点A(x1,y1)、B(x2,y2)在函数图象上,如果x1+x2=﹣2,则y1+y2= .34.(2022秋•荥阳市校级期末)小吕在学习了反比例函数知识后,结合探究反比例函数图象与性质的方法,对新函数y=﹣1及其图象进行如下探究.(1)自变量x的取值范围是 ,x与y的几组对应值如表:x…12345…y…10.730.410﹣0.29m﹣﹣0.55…其中m= .(结果保留根号)(2)请在给出的平面直角坐标系中画出该函数的图象,并结合图象写出该函数的一条性质: .(3)当﹣1<4x时,x的取值范围为 .35.(2022秋•高新区校级期末)问题,我们已经知道反比例函数的图象是双曲线,那么函数y=的图象是怎样的呢?【探索】(1)该函数的自变量的取值范围为 ;(2)描点画图:①列表:如表是x与y的几组对应值;x…﹣7﹣6﹣5﹣4﹣2﹣10124567…y…236﹣6﹣3﹣2﹣3﹣6632…②描点:根据表中各组对应值(x,y),在平面直角坐标系中描出各点.③连线:用平滑的曲线顺次连接各点,请你把图象补充完整.【应用】观察你所画的图象,解答下列问题:(3)若点A(a,c),B(b,c)为该函数图象上不同的两点,则a+b= ;(4)直接写出当≥﹣2时,x的取值范围为 .36.(2022秋•广平县期末)规定:在平面直角坐标系中,横坐标与纵坐标均为整数的点,叫做整点,点A (2,2),B(m,1)在反比例函数y=(x>0)的图象上;(1)m= ;(2)已知b>0,过点C(﹣4b,0)、D点(0,b)作直线交双曲线y=(x>0)于E点,连接OB,若阴影区域(不包括边界)内有4个整点,求b的取值范围.37.(2020秋•荆州期末)九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数的图象与性质,其探究过程如下:(1)绘制函数图象,如图.列表:下表是x与y的几组对应值,其中m= ;x…﹣4﹣3﹣2﹣11234…y…﹣2﹣3﹣531m…描点:根据表中各组对应值(x,y),在平面直角坐标系中描出了各点;连线:用平滑的曲线顺次连接各点,画出了部分图象.请你把图象补充完整;(2)观察图象并分析表格,回答下列问题;①当x<0时,y随x增大而 ;(填“增大”或“减小”)②函数的图象是由函数的图象向 平移 个单位长度而得到;③函数的图象关于点 成中心对称;(填点的坐标)(3)设A(x1,y1)、B(x2,y2)是函数的图象上的两点,且x1+x2=0,试求y1+y2+3的值.38.(2022•襄城区模拟)探究函数y=的图象与性质并解决问题.小明根据学习函数的经验,对问题进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是 .(2)取几组y与x的对应值,填写在下表中.则m的值为 .x…﹣4﹣2﹣101 1.2 1.25y…1 1.52367.58x 2.75 2.834568…y87.563m 1.51…(3)如图,在平面直角坐标系中,描出补全后的表中各组对应值所对应的点,并画出该函数的图象;(4)获得性质,解决问题:通过观察、分析、证明,可知函数y=的图象是轴对称图形,它的对称轴是 ;它的另一个性质是 .39.(2021秋•威县期末)如图,矩形ABCD的AB边长为8,点B的坐标为(﹣4,0),点C的坐标为(﹣1,0),E点是DC的中点,反比例函数y=(x<0)的图象经过点E,与AB边交于F点.(1)求k的值;(2)求F点坐标;(3)连接矩形ABCD两对边AD与BC的中点M、N,设线段MN与反比例函数图象交于点P,将线段MN沿x轴向右平移n个单位,若MP<NP,求n的取值范围.40.(2022•南京模拟)阅读下面的材料:如果函数y=f(x)满足:对于自变量x取值范围内的任意x1,x2,①若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;②若x1<x2,都有f(x1)<f(x2),则称f(x)是减函数.例题:证明函数f(x)=x2(x>0)是增函数.证明:任取x1<x2,且x1>0,x2>0.则.∵x1<x2且x1>0,x2>0,∴x1+x2>0,x1﹣x2<0,.∴(x1+x2)(x1﹣|x2)<0,即f(x1)﹣f(x2)<0,f(x1)<f(x2).∴函数f(x)=x2(x>0)是增函数.根据以上材料解答下列问题:(1)函数,…f(10)= ;(2)猜想是 函数(填“增”或“减”),并证明你的猜想.。
反比例函数的图象与性质练习

反比例函数的图象与性质练习目标导航1.会用描点的方法画反比例函数图象. 2.理解反比例函数的性质. 基础过关1.下列四个函数中,当x<0时,y 随x 的增大而减小的是( ) A y=3x B y=x-1 C y=x 3- D x3y = 2.已知反比例函数xmy 21-=的图像上两点A ()11,y x ,B ()22,y x ,当1x <0<2x 时,有1y <2y ,则m 的取值范围是( )A .m < 0B .m >0C .m <21 D .m >21 3.若点(3,4)是反比例函数x12m m y 2-+=图像上的一点,则此函数图像必经过( )A (2,6)B (2,-6)C (4,-3)D ( 3,-4) 4.点A (-3,1y ),B (-1,2y ),C (3,3y )在函数xky = (k<0),则下列结论正确的是( )A 321y y y << B 321y y y >> C 231y y y <= D 312y y y >> 5.正方形ABOC 的边长为2,反比例函数ky x=过点A ,则k 的值是( ) A .2B .2-C .±2D .4-6.已知反比例函数y=2x,下列结论中,不正确...的是( ) A .图象必经过点(1,2) B .y 随x 的增大而减少C .图象在第一、三象限内D .若x >1,则y <2 7.已知反比例函数)0(<=k xky 的图像上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y -的值是( )A. 正数B. 负数C. 非正数D. 不能确定 8.如图,函数y=k(x+1)与y=xk在同一坐标系中,图像只能是下图中的( )能力提升9.在平面直角坐标系中,直线向上平移1个单位长度得到直线.直线与反比例函数的图象的一个交点为,则的值等于 . 10.若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是11.在平面直角坐标系中,将点(53)P ,向左平移6个单位,再向下平移1个单位,恰好在函数ky x=的图象上,则此函数的图象分布在第 象限 12.若正方形AOBC 的边OA 、OB 在坐标轴上,顶点C 在第一象限且在反比例函数y=x1的图像上,则点C 的坐标是 13.已知反比例函数y =xa(a ≠0)的图象,在每一象限内,y 的值随x 值的增大而减少,则一次函数y =-a x +a 的图象不经过... 象限. 14.设有反比例函数xk y 1+=,A(x 1,y 1) B(x 2,y 2)为其图像上的两点,若x 1<0<x 2 、y 1>y 2,则k 的起值范围是 . 15.直线y=kx+b 过一、三、四象限,则函数kxby =的图象在 象限,并且在每一个象限内y 随x 的增大而 .16.过反比例函数)0x (x1y >=的图像上任意两点A,B分别作x轴的垂线,垂足分别为C,D,连接OA ,OB ,设AC 与OB 交点为E,△AOE 与梯形ECDB 的面积分别为21S ,S ,比较21S S 与的大小 ( )A 21S S > B 21S S = C 21S S < D 无法确定 聚沙成塔xoy y x =l l ky x=(2)A a ,k如图,已知一次函数b kx y +=的图象与反比例函数xy 8-=的图象交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是2-,求:(1)一次函数的解析式; (2)△AOB 的面积.yxBAOxy。
考点07 反比例函数及其应用-备战2022年中考数学一轮复习考点帮(浙江专用)(解析版)

考点07 反比例函数及其应用【命题趋势】反比例函数这个考点在浙江中考数学中,多注重考察反比例函数的图象与性质,常和一次函数的图象结合考察,题型以选择题为主;另外,在填空题中,对反比例函数点的坐标特征考察的比较多,而且难度逐渐增大,常结合其他规则几何图形的性质一起出题,多数题目的技巧性较强,复习中需要多加注意。
另外解答题中还会考察反比例函数的解析式的确定,也是常和一次函数结合,顺带也会考察其与不等式的关系。
【中考考查重点】一、反比例函数图象的性质 二、反比例函数与不等式间的关系 三、反比例函数点的坐标特征 四、反比例函数比例系数k 的几何意义 五、反比例函数的应用考向一:反比例函数图象的性质【易错警示】➢ 反比例函数增减性的描述,一定要有“在其每个象限内”这个前提;➢ 由图象去求k 值时,一定要注意其正负符号 【方法技巧】增减性的直接应用技巧:若点A (x 1,y 1),点B (x 2,y 2)在反比例函数的同一支上,则有 当k >0时,若x 1>x 2,则y 1<y 2; 当k <0时,若x 1>x 2,则y 1>y 2;【同步练习】解析式)为常数,且0(≠=k k xky 图象所在象限 第一、三象限(x 、y 同号) 第二、四象限(x 、y 异号) 增减性在其每个象限内,y 随x 的增大而减小在其每个象限内,y 随x 的增大而增大对称性 关于直线y=x ,y=-x 成轴对称;关于原点成中心对称1.对于反比例函数y=﹣,下列说法正确的是()A.图象分布在第一、三象限内B.图象经过点(1,2021)C.当x>0时,y随x的增大而增大D.若点A(x1、y1),B(x2,y2)都在该函数的图象上,且x1<x2,则y1>y2【分析】A:根据k的取值范围确定;B:根据k的值确定;C:根据k的取值范围确定;D:根据反比例函数的性质确定.【解答】解:A:k=﹣2021<0,图象分布在第二、四象限内,∴不符合题意;B:x=1时,y=﹣2021,∴不符合题意;C:∵k<0,图象分布在第二、四象限内,当x>0时,在第四象限,y随x的增大而增大,∴符合题意;D:当A,B在同一分支上时,x1<x2,则y1>y2成立,当不在同一分支不成立,∴不符合题意;故选:C.2.在下图中,反比例函数y=﹣(x>0)的图象大致是()A.B.C.D.【分析】根据反比例函数的性质判断即可.【解答】解:∵k=﹣5<0,∴反比例函数y=﹣(x>0)的图象位于第四象限.故选:C.3.反比例函数y=﹣与一次函数y=x﹣2在同一坐标系中的大致图象可能是()A.B.C.D.【分析】根据反比例函数的性质、一次函数的性质即可判断反比例函数的图象和一次函数的图象所处的象限,据此即可选C.【解答】解:由反比例函数y=﹣与一次函数y=x﹣2可知,反比例函数的图象在二、四象限,一次函数的图象通过一、三、四象限,故选:C.4.若反比例函数y=的图象在其所在的每一象限内,y随x的增大而减小,则k的取值范围是()A.k<﹣2B.k>﹣2C.k<2D.k>2【分析】先根据反比例函数的性质得出关于k的不等式,求出k的取值范围即可.【解答】解:∵反比例比例函数y=的图象在其每一象限内,y随x的增大而减小,∴k+2>0,解得k>﹣2.故选:B.5.如图,已知直线y=mx与双曲线y=的一个交点坐标为(3,4),则它们的另一个交点坐标是.【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:因为直线y=mx过原点,双曲线y=的两个分支关于原点对称,所以其交点坐标关于原点对称,一个交点坐标为(3,4),另一个交点的坐标为(﹣3,﹣4).故答案是:(﹣3,﹣4).6.已知点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y=﹣的图象上,并且y1<y2<0<y3,则下列各式正确的是()A.x2<x1<x3B.x1<x2<x3C.x3<x1<x2D.x2<x3<x1【分析】根据反比例函数的图象,由y1<y2<0<y3,在图象上确定点A(x1,y1),B(x2,y2),C(x3,y3)的位置,进而得出答案.【解答】解:由图象法,由于y1<y2<0<y3,点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=﹣的图象上的位置大致如下:由图象可得,当y1<y2<0<y3时,x3<0<x1<x2,故选:C.考向二:反比例函数与不等式间的关系当反比例函数与一次函数的图象相交时,会产生如下两种图形,对应结论如下:1.如图①,若反比例函数与一次函数相交于反比例函数的两支于点A,B,则有若y1>y2,则自变量x的取值范围是:n<x<0或x>m若y1<y2,则自变量x的取值范围是:x<n或0<x<m①2.如图②,若反比例函数与一次函数相交于反比例函数的同一支于点A,B,则有若y1>y2,则自变量x的取值范围是:m<x<n或x<0若y1<y2,则自变量x的取值范围是:x>n或0<x<m②【方法技巧】反比例函数与不等式结合考察增减性时,答案的形式都是包含2部分的(即谁或谁),并且其中一部分肯定与0有关!(特定问题中已经说明应用范围的例外)【同步练习】1.如图,一次函数y=﹣2x+8与反比例函数y=(x>0)的图象交于A(1,6),B(3,2)两点.则使﹣2x+8<成立的x的取值范围是()A.x<1B.x>3C.1<x<3D.0<x<1或x>3【分析】观察函数图象得到当0<x<1或x>3,一次函数的图象在反比例函数图象下方.【解答】解:在第一象限内,一次函数值小于反比例函数值时自变量x的取值范围是0<x<1或x>3;故选:D.2.直线y=k1x+b与双曲线y=在同一平面直角坐标系中的图象如图所示,则关于x的不等式>k1x+b的解集为.【分析】先根据图象得出两函数的交点的横坐标,根据交点的横坐标结合图象即可得出答案.【解答】解:∵直线y=k1x+b与双曲线y=在同一平面直角坐标系中的图象的交点的横坐标是﹣2和3,∴关于x的不等式>k1x+b的解集是x<﹣2或0<x<3,故答案为:x<﹣2或0<x<3.3.如图,若反比例函数与一次函数y2=ax+b交于A、B两点,当y1<y2时,则x的取值范围是.【分析】写出反比例函数的图象在一次函数的图象下方的自变量的取值范围即可.【解答】解:观察图象可知,当y1<y2时,则x的取值范围是﹣1<x<0或x>2.故答案为:﹣1<x<0或x>2.4.如右图,一次函数y=kx+b的图象与反比例函数的图象交于点A(1,4)、B(4,n).(1)求这两个函数的表达式;(2)请结合图象直接写出不等式的解集;(3)连接OA,OB,求△OAB的面积.【分析】(1)将点A(1,4)代入可得m的值,求得反比例函数的解析式;根据反比例函数解析式求得点B坐标,再由A、B两点的坐标可得一次函数的解析式;(2)根据图象得出不等式的解集即可;(3)由直线解析式求得与x轴的交点,然后根据S△AOB=S△AOC﹣S△BOC求得即可.【解答】解:(1)把点A(1,4)代入,得:m=4,∴反比例函数的解析式为,∵B(4,n)在反比例函数图象上,∴,从而点B(4,1),把点A(1,4),点B(4,1)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=﹣x+5;(2)观察图象,得:当0<x≤1或x≥4时,,∴不等式的解集为0<x≤1或x≥4;(3)如图,连结OA,OB,设直线y=﹣x+5与x轴交于点C,当y=0时,x=5,∴点C(5,0),∴OC=5,∴S△AOB=S△AOC﹣S△BOC=﹣=.考向三:反比例函数点的坐标特征1.所有反比例函数上的点的横纵坐标相乘=比例系数k2.如果一个点在反比例函数的图象上,则该点的坐标符合其解析式,可以根据其解析式设出对应的点的坐标3.当反比例函数与其他图形结合考察时,多注意与反比例函数结合的图形的性质应用【同步练习】1.在平面直角坐标系xOy中,下列函数的图象过点(﹣1,1)的是()A.y=x﹣1B.y=﹣x+1C.y=D.y=x2【分析】将点(﹣1,1)分别代入4个解析式进行验证即可得出答案.【解答】解:把x=﹣1代入y=x﹣1得:﹣1﹣1=﹣2≠1,∴选项A不符合题意;把x=﹣1代入y=﹣x+1得:1+1=2≠1,∴选项B不符合题意;把x=﹣1代入y=得:=﹣1≠1,∴选项C不符合题意;把x=﹣1代入y=x2得:(﹣1)2=1,∴选项D符合题意;故选:D.2.如果A(2,y1),B(3,y2)两点都在反比例函数y=的图象上,那么y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.无法确定【分析】将A,B两点坐标代入解析式计算y1,y2的值,进而可比较大小.【解答】解:将A(2,y1),B(3,y2)两点代入反比例函数y=中,y1=,y2=,∴y1>y2.故选:B.3.反比例函数y=(k≠0)的图象经过点A(﹣2,3),则此图象一定经过下列哪个点()A.(3,2)B.(﹣3,﹣2)C.(﹣3,2)D.(﹣2,﹣3)【分析】根据反比例函数图象上点的坐标特征即可求解.【解答】解:∵反比例函数y=(k≠0)的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,A.﹣3×2=6≠﹣6,图象不经过点(3,2);B.﹣3×(﹣2)=6≠﹣6,图象不经过点(﹣3,﹣2);C.﹣3×2=﹣6,图象经过点(﹣3,2);D.﹣2×(﹣3)=6≠﹣6,图象不经过点(﹣2,﹣3);∴C选项符合题意,故选:C.4.如图,函数y=﹣(x<0)的图象经过Rt△ABO斜边OB的中点C,连接AC.如果AC=3,那么△ABO的周长为()A.B.C.D.【分析】过点C作CD⊥OA于点D,由直角三角形的性质可得BO=6,由三角形中位线定理可得AB=2CD,AO=2OD,根据勾股定理可求得AB+AO,进而可得△ABO的周长.【解答】解:过点C作CD⊥OA于点D,∵点C是OB的中点,AC=3,∴AC=BC=OC=3,OB=6,∵△ABO是直角三角形,CD⊥OA∴AB∥CD,∴CD是△ABO的中位线,∴AB=2CD,AO=2OD,∵S△CDO=×CD×OD=×|﹣2|=1,∴CD×OD=2,∴AB×AO=2CD×2OD=8,∵AB2+AO2=OB2=36,∴(AB+AO)2﹣2×AB×AO=36,∴AB+AO=2,∴△ABO的周长=AO+BO+AB=6+2,故选:D.5.如图,正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=(x>0)的图象上,则:(1)点B的坐标是;(2)点E的坐标是.【分析】(1)设正方形ADEF的边长是a,则B(a,a),把B的坐标代入y=即可得到B的坐标;(2)设点E的纵坐标为y,则点E的横坐标为(1+y),代入反比例函数的解析式即可求得y的值,从而求得E的坐标.【解答】解:(1)设正方形ADEF的边长是a,则B(a,a),∵点B在反比例函数y=(x>0)的图象上,∴a2=1,∴a=1,∴点B的坐标为(1,1).(2)设点E的纵坐标为y,∴点E的横坐标为(1+y),∴y×(1+y)=1,即y2+y﹣1=0,即y=,∵y>0,∴y=,∴点E的横坐标为1+=.∴E(,).故答案为(1,1),E(,).6.若点A(﹣3,1)、B(m,2)都在反比例函数y=(k≠0)的图象上,则m的值是.【分析】由点A的坐标利用反比例函数图象上点的坐标特征即可得出k值,再结合点B 在反比例函数图象上,由此即可得出关于m的一元一次方程,解方程即可得出结论.【解答】解:∵点A(﹣3,1)在反比例函数y=(k≠0)的图象上,∴k=﹣3×1=﹣3.∵点B(m,2)在反比例函数y=(k≠0)的图象上,∴k=﹣3=2m,解得:m=﹣.故答案为:﹣.7.如图,边长为3的正方形OABC的顶点A,C分别在x轴、y轴的正半轴上,若反比例函数y=的图象与正方形OABC的边有公共点,则k的取值范围是.【分析】由图象可知,当反比例数y=的图象经过B点时,k取最大值,又图象位于第一象限才可能与正方形OABC的边有公共点,进而求出k的取值范围.【解答】解:由题意,可得B(3,3),当反比例数y =的图象经过B点时,k取最大值,此时k=3×3=9,又k>0,所以k的取值范围是0<k≤9.故答案为:0<k≤9.8.如图,在直角坐标系中,已知点B(8,0),等边三角形OAB的顶点A在反比例函数y =的图象上:如果把△OAB向右平移a个单位长度,对应得到△O'A'B',当这个函数图象经过△O'A'B'一边的中点时,则a =.【分析】过点A作AC⊥OB于点C,根据等边三角形的性质得出点A坐标,用待定系数法求得反比例函数的解析式即可,分两种情况讨论:①反比例函数图象过AB的中点;②反比例函数图象过AO的中点.分别过中点作x轴的垂线,再根据30°角所对的直角边是斜边的一半得出中点的纵坐标,代入反比例函数的解析式得出中点坐标,再根据平移的法则得出a的值即可.【解答】解:如图1,过点A作AC⊥OB于点C,∵△OAB是等边三角形,∴∠AOB=60°,OC=OB,∵B(8,0),∴OB=OA=8,∴OC=4,AC=4.把点A(4,4)代入y=,得k=16.∴反比例函数的解析式为y=;分两种情况讨论:①如图2,点D是A′B′的中点,过点D作DE⊥x轴于点E.由题意得A′B′=8,∠A′B′E=60°,在Rt△DEB′中,B′D=4,DE=2,B′E=2.C 图1∴O′E=6,把y=2代入y=,得x=8,∴OE=8,∴a=OO′=8﹣6=2;②如图3,点F是A′O′的中点,过点F作FH⊥x轴于点H.由题意得A′O′=8,∠A′O′B′=60°,在Rt△FO′H中,FH=2,O′H=2.把y=2代入y=,得x=8,∴OH=8,∴a=OO′=8﹣2=6,故答案为2或6.考向四:反比例函数k的几何意义反比例函数k与几何图形结合常见模型:【同步练习】1.如图,点P在反比例函数y=的图象上,P A⊥x轴于点A,若△P AO的面积为4,那么k的值为()A.2B.4C.8D.﹣4【分析】由△P AO的面积为4可得|k|=4,再结合图象经过的是第一、三象限,从而可以确定k值.【解答】解:∵S△P AO=4,∴|x•y|=4,即|k|=4,则|k|=8,∵图象经过第一、三象限,∴k>0,∴k=8,故选:C.2.反比例函数y=(x>0)的图象经过点A(2,m),过点A作y轴的垂线交y轴于点B.当点C在x轴正半轴上运动时△ABC的面积为()A.3B.6C.12D.先变大后减小【分析】将点A坐标代入函数解析式求出m,从而可得AB及BO的长,再由S△ABC=AB •OB求解.【解答】解:把x=2代入y=得y=3,∴A(2,3),∵AB⊥y轴,∴AB∥x轴,∴B(0,3),即OB=3,∴S△ABC=AB•OB=×2×3=3.故选:A.3.如图,点P,点Q都在反比例函数y=的图象上,过点P分别作x轴、y轴的垂线,两条垂线与两坐标轴围成的矩形面积为S1,过点Q作x轴的垂线,交x轴于点A,△OAQ 的面积为S2,若S1+S2=3,则k的值为()A.2B.1C.﹣1D.﹣2【分析】根据反比例函数k的几何意义得到S1=|k|,,如何代入解方程,再根据图象在二、四象限确定k的值.【解答】解:由题意得S1=|k|,,则,解得|k|=2,∵图象在二、四象,∴k<0,∴k=﹣2.故选:D.4.如图,反比例函数y=﹣与y=的图象上分别有一点A,B,且AB∥x轴,AD⊥x轴于D,BC⊥x轴于C,若矩形ABCD的面积为8,则a=()A.﹣2B.﹣6C.2D.6【分析】根据反比例函数y=(k≠0)系数k的几何意义得到S矩形ADOE=|﹣a|,S矩形BCOE =6,进而得到|b|+|a|=8.【解答】解:∵AB∥x轴,AD⊥x轴于D,BC⊥x轴于C,∴S矩形ADOE=|﹣a|,S矩形BCOE=6,∵矩形ABCD的面积为8,∴S矩形ADOE+S矩形BCOE=S矩形ABCD=8,∴|﹣a|+6=8,∵反比例函数y=﹣在第二象限,∴a>0,∴a=2,故选:C.5.如图,A,B是反比例函数的图象上关于原点对称的两点,BC∥x轴,AC∥y轴,若△ABC的面积为6,则k的值是.【分析】先根据反比例函数的图象在一、三象限判断出k的符号,由反比例函数系数k 的几何意义得出S△AOD=S△BOE=k,根据反比例函数及正比例函数的特点得出A、B两点关于原点对称,故可得出S矩形OECD=2S△AOD=k,再由△ABC的面积是6即可得出k的值.【解答】解:∵反比例函数的图象在一、三象限,∴k>0,∵BC∥x轴,AC∥y轴,∴S△AOD=S△BOE=k,∵反比例函数及正比例函数的图象关于原点对称,∴A、B两点关于原点对称,∴S矩形OECD=2S△AOD=k,∴S△ABC=S△AOD+S△BOE+S矩形OECD=2k=6,解得k=3.故答案为:3.6.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数y=﹣(x<0)和y=(x>0)的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为.【分析】连接OA,OB,利用同底等高的两三角形面积相等得到三角形AOB面积等于三角形ACB面积,再利用反比例函数k的几何意义求出三角形AOP面积与三角形BOP面积,即可得到结果.【解答】解:如图,连接OA,OB,∵△AOB与△ACB同底等高,∴S△AOB=S△ACB,∵AB∥x轴,∴AB⊥y轴,∵A、B分别在反比例函数y=﹣(x<0)和y=(x>0)的图象上,∴S△AOP=3,S△BOP=4,∴S△ABC=S△AOB=S△AOP+S△BOP=3+4=7.故答案为:7.7.如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A、C、D在坐标轴上,BD⊥DC,▱ABCD的面积为8,则k=.【分析】由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.【解答】解:过点P作PE⊥y轴于点E,∵四边形ABCD为平行四边形,∴AB=CD,又∵BD⊥x轴,∴ABDO为矩形,∴AB=DO,∴S矩形ABDO=S▱ABCD=8,∵P为对角线交点,PE⊥y轴,∴四边形PDOE为矩形面积为4,∵反比例函数y=的图象经过▱ABCD对角线的交点P,∴|k|=S矩形PDOE=4,∵图象在第二象限,∴k<0,∴k=﹣4,故答案为﹣4.8.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=(x<0)的图象上,则k的值为.【分析】连接AC,交y轴于点D,由四边形ABCO为菱形,得到对角线垂直且互相平分,得到三角形CDO面积为菱形面积的四分之一,根据菱形面积求出三角形CDO面积,利用反比例函数k的几何意义确定出k的值即可.【解答】解:连接AC,交y轴于点D,∵四边形ABCO为菱形,∴AC⊥OB,且CD=AD,BD=OD,∵菱形OABC的面积为12,∴△CDO的面积为3,∴|k|=6,∵反比例函数图象位于第二象限,∴k<0,则k=﹣6.故答案为:﹣6.考向五:反比例函数的应用一.反比例函数的应用通常是先根据题意列出函数表达式,画出函数图象,再根据函数图象的性质解决相关问题,同时注意自变量的取值范围二.反比例函数与一次函数的结合问题应对策略:①确定解析式,由一次函数解析式确定反比例函数解析式,由反比例函数解析式确定一次函数解析式②求交点坐标,通常联立反比例函数解析式与一次函数解析式③利用函数图象求解对应的不等式,需要过交点坐标作x轴的垂线【同步练习】1.已知电压U、电流I、电阻R三者之间的关系为:U=IR.当其中一个量是常量时,另外两个变量之间的图象不可能是()A.B.C.D.【分析】①当I为常量时,可判断A;②当U为常量时,可判定B和C;③当R为常量时,其图象一条射线;综上即可得到结论.【解答】解:①当I为常量时,函数U=IR是正比例函数,其图象是A,故选项A不符合题意;②当U为常量时,函数U=IR化为I=或R=,是反比例函数,其图象是B或C,故选项B和C不符合题意;③当R为常量时,函数U=RI是反比例函数,其图象一条射线,图象不可能是D,故选项D符合题意;故选:D.2.某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地.当人和木板对湿地的压力一定时,人和木板对地面的压强P(Pa)是木板面积S(m2)的反比例函数,其图象如图,点A在反比例函数图象上,坐标是(8,30),当压强P(Pa)是4800Pa 时,木板面积为()m2.A.0.5B.2C.0.05D.20【分析】直接利用待定系数法求出反比例函数解析式,进而把P=4800代入得出答案.【解答】解:设P=,根据题已知可得图象经过(8,30),则k=P•S=8×30=240,故P=,当P=4800时,木板面积为:S==0.05(Pa).故选:C.3.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.当气体体积为2m3时,气压是kPa.【分析】设出反比例函数解析式,把点的坐标代入可得函数解析式,把V=2代入得到的函数解析式,可得P.【解答】解:设P=,由图象知100=,所以k=100,故P=,当V=2时,P==50;故答案为:50.4.我国自主研发多种新冠病毒有效用药已经用于临床救治.某新冠病毒研究团队测得成人注射一针某种药物后体内抗体浓度y(微克/ml)与注射时间x天之间的函数关系如图所示(当x≤20时,y与x是正比例函数关系;当x≥20时,y与x是反比例函数关系).(1)根据图象求当x≥20时,y与x之间的函数关系式;(2)当x≥20时,体内抗体浓度不高于140微克/ml时是从注射药物第多少天开始?【分析】(1)直接利用反比例函数解析式求法得出答案;(2)结合所求解析式,把y=140代入求出答案.【解答】解:(1)设当x≥20时,y与x之间的函数关系式是y=,图象过(20,280),则k=20×280=5600,解得:k=5600,y与x之间的函数关系式是y=;(2)当x≤20时,140=14x,解得:x=10.当x≥20时,140=,解得:x=40,答:体内抗体浓度不高于140微克/ml时是从注射药物第40天开始.5.工厂对某种新型材料进行加工,首先要将其加温,使这种材料保持在一定温度范围内方可加工,如图是在这种材料的加工过程中,该材料的温度y(℃)时间x(min)变化的函数图象,已知该材料,初始温度为15℃,在温度上升阶段,y与x成一次函数关系,在第5分钟温度达到60℃后停止加温,在温度下降阶段,y与x成反比例关系.(1)写出该材料温度上升和下降阶段,y与x的函数关系式:①上升阶段:当0≤x≤5时,y=;②下降阶段:当x>5时,y.(2)根据工艺要求,当材料的温度不低于30℃,可以进行产品加工,请问在图中所示的温度变化过程中,可以进行加工多长时间?【分析】(1)直接利用待定系数法求出一次函数以及反比例函数的解析式;(2)利用y=30代入结合函数增减性得出答案.【解答】解:(1)①上升阶段:当0≤x<5时,为一次函数,设一次函数表达式为y=kx+b,由于一次函数图象过点(0,15),(5,60),所以,解得:,所以y=9x+15,②下降阶段:当x≥5时,为反比例函数,设函数关系式为:y=,由于图象过点(5,60),所以m=300.则y=;故答案为:9x+15;=(2)当0≤x<5时,y=9x+15=30,得x=,因为y随x的增大而增大,所以x>,当x≥5时,y==30,得x=10,因为y随x的增大而减小,所以x<10,10﹣=,答:可加工min.1.(2021秋•亳州月考)下列函数图象是双曲线的是()A.y=x2+3B.y=﹣x﹣5C.y=﹣D.y=﹣【分析】根据反比例函数y=(k≠0)的图象是双曲线可得答案.【解答】解:A、y=x2+3是二次函数,图象是抛物线,故此选项不符合题意;B、y=﹣x﹣5是一次函数,图象是直线,故此选项不符合题意;C、y=﹣是正比例函数,图象是过原点的直线,故此选项不符合题意;D、y=﹣是反比例函数,图象是双曲线,故此选项符合题意;故选:D.2.(2019秋•港南区期末)正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(1,2)D.(2,1)【分析】根据反比例函数的关于原点对称的性质知,正比例函数y=2x和反比例函数的另一个交点与点(1,2)关于原点对称.【解答】解:∵正比例函数y=2x和反比例函数的一个交点为(1,2),∴另一个交点与点(1,2)关于原点对称,∴另一个交点是(﹣1,﹣2).故选:A.3.(2021秋•顺德区期末)函数y=kx﹣k与y=在同一坐标系中的图象如图所示,下列结论正确的是()A.k<0B.m>0C.km>0D.<0【分析】根据正比例函数与反比例函数图象的特点与系数的关系解答即可.【解答】解:由图象可知双曲线过二、四象限,m<0;一次函数过一、三,四象限,所以k>0.故选:D.4.(2021秋•铁西区期末)如图,A是反比例函数y=的图象上一点,过点A作AB⊥y轴于点B,点C在x轴上,且S△ABC=2,则k的值为()A.4B.﹣4C.﹣2D.2【分析】先设A点坐标,再根据点A在第二象限,则x<0,y>0,然后由三角形面积公式求出xy即可.【解答】解:设点A的坐标为(x,y),∵点A在第二象限,∴x<0,y>0,∴S△ABC=AB•OB=|x|•|y|=﹣xy=2,∴xy=﹣4,∵A是反比例函数y=的图象上一点,∴k=xy=﹣4,故选:B.5.(2021秋•南开区期末)若反比例函数y=的图象在其所在的每一象限内,y随x的增大而减小,则k的取值范围是()A.k<﹣2B.k>﹣2C.k<2D.k>2【分析】先根据反比例函数的性质得出关于k的不等式,求出k的取值范围即可.【解答】解:∵反比例比例函数y=的图象在其每一象限内,y随x的增大而减小,∴k+2>0,解得k>﹣2.故选:B.6.(2021秋•朝阳区校级期末)如图,△AOB和△BCD均为等腰直角三角形,且顶点A、C 均在函数y=(x>0)的图象上,连结AD交BC于点E,连结OE.若S△OAE=4,则k 的值为()A.2B.2C.4D.4【分析】根据等腰直角三角形的性质得出OA=AB,∠AOB=∠CBD=45°,那么OA∥BC,S△OAB=S△OAE=4.过点A作AF⊥OB于F,根据等腰三角形的性质得出OF=BF,那么S△OAF=S△ABF=S△OAB=2,再利用反比例函数比例系数k的几何意义求出k=4.【解答】解:∵△AOB和△BCD均为等腰直角三角形,∴OA=AB,∠AOB=∠CBD=45°,∴OA∥BC,∴S△OAB=S△OAE=4.如图,过点A作AF⊥OB于F,则OF=BF,∴S△OAF=S△ABF=S△OAB=2,∵点A在函数y=(x>0)的图象上,∴k=2,解得k=4.故选:C.7.(2021秋•牡丹江期末)已知点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y =﹣的图象上,并且y1<y2<0<y3,则下列各式正确的是()A.x2<x1<x3B.x1<x2<x3C.x3<x1<x2D.x2<x3<x1【分析】根据反比例函数的图象,由y1<y2<0<y3,在图象上确定点A(x1,y1),B(x2,y2),C(x3,y3)的位置,进而得出答案.【解答】解:由图象法,由于y1<y2<0<y3,点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=﹣的图象上的位置大致如下:由图象可得,当y1<y2<0<y3时,x3<0<x1<x2,故选:C.8.(2021秋•莲池区期末)点A(a,b)在反比例函数y=的图象上,且a,b是关于x的一元二次方程x2﹣6x+m=0的两根,则点A坐标是()A.(1,9)B.(2,)C.(3,3)D.(﹣3,﹣3)【分析】根据一元二次方程根与系数的关系得出a+b=6①,再由点A(a,b)在反比例函数y=的图象上得出ab=9②,再用代入法解二元一次方程组即可.【解答】解:∵a,b是关于x的一元二次方程x2﹣6x+m=0的两根,∴a+b=6①,∵A(a,b)是反比例函数y=上的一点,∴ab=9②,把①变形为a=6﹣b代入②得:b(6﹣b)=9,整理得:b2﹣6b+9=0,解得:b=3,则a=6﹣3=3,∴点A坐标为(3,3),故选:C.9.(2021秋•泰山区期中)如果等腰三角形的面积为6,底边长为x,底边上的高为y,则y 与x的函数关系式为()A.y=B.y=C.y=D.y=【分析】利用三角形面积公式得出xy=6,进而得出答案.【解答】解:∵等腰三角形的面积为6,底边长为x,底边上的高为y,∴xy=6,∴y与x的函数关系式为:y =.故选:A.10.(2021春•衢州期末)某杠杆装置如图,杆的一端吊起一桶水,阻力臂保持不变,在使杠杆平衡的情况下,小康通过改变动力臂L,测量出相应的动力F数据如表.请根据表中数据规律探求,当动力臂L长度为2.0m时,所需动力最接近()动力臂L (m)动力F (N)0.56001.03021.52002.0a2.5120A.120N B.151N C.300N D.302N【分析】根据表中信息可知动力臂与动力成反比关系,选择利用反比例函数来解答.【解答】解:由表可知动力臂与动力成反比的关系,设方程为:L =,从表中取一个有序数对,不妨取(0.5,600)代入L =,解得:K=300,∴L =,把L=2代入上式,解得:F=150,故选:B.11.(2021•滨海县一模)如图,已知直线y=mx与双曲线y =的一个交点坐标为(3,4),则它们的另一个交点坐标是.【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:因为直线y=mx过原点,双曲线y=的两个分支关于原点对称,所以其交点坐标关于原点对称,一个交点坐标为(3,4),另一个交点的坐标为(﹣3,﹣4).故答案是:(﹣3,﹣4).12.(2021秋•铁西区期末)如图,若反比例函数与一次函数y2=ax+b交于A、B两点,当y1<y2时,则x的取值范围是.【分析】写出反比例函数的图象在一次函数的图象下方的自变量的取值范围即可.【解答】解:观察图象可知,当y1<y2时,则x的取值范围是﹣1<x<0或x>2.故答案为:﹣1<x<0或x>2.13.(2021秋•南岗区校级期末)如图,直线y=﹣x﹣2的图象与x、y轴交于B、A两点,与y=(x<0)的图象交于点C,过点C作CD⊥x轴于点D.如果S△BCD:S△AOB=1:4,则k的值为.【分析】由直线y=2x﹣4的图象与x,y轴交于B,A两点,可求得A与B的坐标,易得△AOB∽△CDB,然后由相似三角形面积比等于相似比的平方,求得CD与BD的长,继而求得点C的坐标,则可求得答案.【解答】解:∵直线y=﹣x﹣2的图象与x、y轴交于B、A两点,∴点A(0,﹣2),点B(﹣4,0),∴OA=2,OB=4,∵CD⊥x轴,∴CD∥OA,∴△AOB∽△CDB,∵S△BCD:S△AOB=1:4,∴==,∴CD=1,BD=2,∴OD=OB+BD=6,∴点C的坐标为:(﹣6,1),∵反比例函数y=(x<0)的图象过点C,∴k=﹣6×1=﹣6.故答案为:﹣6.14.(2021春•海州区期末)近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视镜片的焦距为0.2米,则眼镜度数y与镜片焦距x之间的函数关系式是.【分析】由于近视眼镜的度数y(度)与镜片焦距x(米)成反比例,可设y=,由于点(0.2,400)在此函数解析式上,故可先求得k的值.【解答】解:根据题意近视眼镜的度数y(度)与镜片焦距x(米)成反比例,设y=,由于点(0.2,400)在此函数解析式上,∴k=0.2×400=80,∴y=.故答案为:y=.15.(2020秋•渠县期末)心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y随时间x(分)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)上课后的第5分钟与第30分钟相比较,分钟时学生的注意力更集中.。
练习-反比例函数的图象和性质习题

反比例函数的图象和性质习题课前自主练1.函数y=kx(k是______的常数)叫做______.2.已知函数的解析式,要画出函数的图象,一般分为________•、•________•、•_________三个步骤,这样画图象的方法叫做_________.3.用图象表示函数,其特点是________,列表描点时,•描出的点越多,•图象就越_________.4.不在函数y=11x的图象上的点是()A.(0,1) B.(-2,-1) C.(-1,1) D.(,2)5.已知点P(9,m)在函数y=x的图象上,则m的值为()A.±3 B.3 C.-3 D.81课中合作练题型1:反比例函数的图象6.(基础题)反比例函数y=-1x的常数k=________,它的图象是_______,•在第______、_____象限,当x>0时,它的图象在第_____象限,当x<0时,它的图象在第______象限.7.(拓展题)反比例函数的图象经过(3,-4),则它的解析式为______,它的图象在第______象限.8.(综合题)对正比例函数y=kx和反比例函数y=kx,在同一坐标系中的图象可能是()9.(基础题)双曲线y=kx(k≠0),当k>0时,它的两个分支分别在第______象限,在每个象限内y随x的增大而______;当k<0,它的两个分支在第______象限,在每个象限内y随x的增大而________.10.(拓展题)已知反比例函数的图象经过点(-3,2).(1)求它的解析式.(2)分别判断A(2,3),B(-6,1),C(66)是否在图象上.(3)说明y随x的变化而增减情况.课后系统练基础能力题11.反比例函数y=kx,若k<0,则()A.y的值为负; B.双曲线在一、三象限C.y随x的增大而增大; D.在所在的每一个象限,y随x的增大而增大12.如果双曲线y=12mx,当x<0时,y随x的增大而增大,那么m的取值范围是()A.m<0 B.m<12C.m>12D.m≥1213.反比例函数y=mx m+2的图象在()A.第一、二象限 B.第一、三象限; C.第二、四象限 D.第三、四象限14.若点(-2,y1)、(-1,y2)、(1,y3)在反比例函数y=2x的图象上,则下列结论中,正确的是()A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y115.(综合题)根据下列条件判断双曲线y=kx在哪个象限内:(1)通过点(-3,-1);(2)所在的每个象限内,y随x的增大而增大.16.(综合题)已知y与x+2成反比例,且当x=1时,y=13.(1)写出这个函数的解析式;(2)该图象能否与x轴、y轴相交?(3)其图象能否经过点(-1,1).17.(拓展题)已知矩形的面积为6cm2,它的一组邻边长分别是xcm、ycm.•请写出y与x 之间的函数关系式,并求出自变量的取值范围.参考答案1.不为零,反比例函数 2.列表,描点,连线,描点法 3.直观,准确4.C 5.•B 6.-1,双曲线,二,四,四,二7.y=12x-,二、四 8.A 9.一、三,减小,二、四,•增大 •10.(1)y=6x-(2)A不在 B在 C在(3)在所在象限内,y随x的增大而增大11.D 12.C 13.C 14.C15.(1)在一、三象限(2)在二、四象限 16.(1)y=12 x+(2)不能与x轴相交,能与y轴相交(3)能 17.y=6x(x>0).。
反比例函数的图象与性质练习题

反比例函数的图象与性质练习题反比例函数的图象与性质练题一、填空题(每小题3分,共30分)1、近视眼镜的度数y(度)与镜片焦距x成反比例。
已知400度近视眼镜片的焦距为0.25米,则眼镜度数y与镜片焦距x之间的函数关系式是y = 1000/x。
2、如果反比例函数y=k/x的图象过点(2,-3),那么k=-6.3、已知y与x成反比例,并且当x=2时,y=-1,则当y=3时,x的值是2/3.4、已知y与(2x+1)成反比例,且当x=1时,y=2,那么当x=0,y的值是无定义。
5、若点A(6,y1)和B(5,y2)在反比例函数y=-6/x 的图象上,则y1与y2的大小关系是y1<y2.6、已知函数y=4/x的图象上,则y1与y2的大小关系是y1>y2.7、若函数y=(m-1)x是反比例函数,则m的值是2.8、直线y=-5x+b与双曲线y=-2/x相交于点P(-2,m),则b=10.9、如图1,点A在反比例函数y=2/x的图象上,过点A 作AB垂直于x轴,垂足为B,若△AOB=2,则这个反比例函数的解析式为y=2/x。
10、如图2,函数y=-kx(k≠0)与y=-4/x的图象交于点A、B,过点A作AC垂直于y轴,垂足为C,则△BOC的面积为4k/3.二、选择题(每小题3分,共30分)1、如果反比例函数的图象经过点P(-2,-1),那么这个反比例函数的表达式为()A、y=-1/2x B、y=-2/x C、y=2/x D、y=1/2x答案:B2、已知y与x成反比例,当x=3时,y=4,那么当y=3时,x的值等于()A、4 B、-4 C、3 D、-3答案:-43、若点A(-1,y1),B(2,y2),C(3,y3)都在反比例函数y=5/x的图象上,则下列关系式正确的是()A、y1<y2<y3 B、y2<y1<y3 C、y3<y2<y1 D、y1<y3<y2答案:B4、反比例函数y=(m-5)/x的图象的两个分支分别在第二、四象限内,那么m的取值范围是()A、m>5 B、m<5 C、m≠5 D、m≥5或m≤-5答案:m>5注:本文中的“y1”和“y2”应为“y1”和“y2”,已进行修改。
17.4 反比例函数 华东师大版数学八年级下册同步练习(含解析)
17.4反比例函数基础过关全练知识点1反比例函数的概念1.(2022江苏苏州草桥中学期中)下列函数中,变量y是x的反比例函数的是()A.y=x3B.y=3x+1C.y=3xD.y=3x2.【易错题】(2022湖南衡阳弘扬中学期中)已知y=(k-2)x k2−5是反比例函数,那么k的值是.知识点2反比例函数的图象与性质3.(2022云南中考)反比例函数y=6x的图象位于() A.第一、三象限 B.第一、四象限C.第二、三象限D.第二、四象限4.(2021山西期末)关于反比例函数y=-12x,下列说法不正确的是()A.函数图象经过点(3,-4)B.函数图象关于原点成中心对称C.函数图象位于第一、三象限D.当x<0时,y随x的增大而增大5.(2022河南南阳卧龙期中)已知点A(-1,y1),B(2,y2),C(1,y3),D(3,-2)都在双曲线y=kx上,则y1,y2,y3的大小关系是() A.y1>y2>y3 B.y1>y3>y2C.y3>y2>y1D.y2>y1>y36. (2022海南海口十中期中)在同一坐标系中,函数y =kx和y =kx +3(k ≠0)的图象大致是( )ABCD7.【分类讨论思想】(2022河南南阳桐柏思源实验学校第二次月考)已知点A (a ,y 1),B (a +1,y 2)在反比例函数y =m 2+1x(m 是常数)的图象上,且y 1<y 2,则a 的取值范围是( )A.a <0B.a >0C.0<a <1D.-1<a <0 8.【新独家原创】已知m =(−12)−1,则反比例函数y =m+3x的图象分布在第 象限.9.【教材变式·P56T1变式】(2022辽宁大连模拟)某长方体的体积为 1 000 cm 3,长方体的高h (单位:cm)随底面积S (单位:cm 2)的变化而变化,则h 关于S 的函数关系式为 ,它是 函数.10.(2022内蒙古呼和浩特中考)点(2a -1,y 1)、(a ,y 2)在反比例函数y =kx (k >0)的图象上,若0<y 1<y 2,则a 的取值范围是 . 知识点3 确定反比例函数的解析式11.(2022江苏苏州星湾中学期中)若点A (3,-6)在反比例函数y =kx 的图象上,则k 的值为( )A.-18B.18C.-2D.212.(2022海南中考)若反比例函数y =kx (k ≠0)的图象经过点(2,-3),则它的图象也一定经过的点是 ( )A.(-2,-3)B.(-3,-2)C.(1,-6)D.(6,1)13.【跨学科·物理】(2022河南南阳新野期中)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,图象如图所示,当气球内的气压大于120 kPa时,气球将爆炸,为了安全起见,气球的体积应()A.不小于54m3 B.小于54m3C.不小于45m3 D.小于45m314.(2022福建泉州安溪期中)如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=kx(k>0,x>0)的图象上,当m>1时,过点P分别作x轴、y 轴的垂线,垂足为A、B,过点Q分别作x轴、y轴的垂线,垂足为C、D,DQ交PA于点E,随着m的增大,四边形ACQE的面积()A.逐渐增大B.逐渐减小C.先减小后增大D.先增大后减小15.(2022福建中考)已知反比例函数y=kx的图象位于第二、四象限,则实数k的值可以是.(只需写出一个符合条件的实数)16.(2022湖北仙桃中考)在反比例函数y=k−1的图象的每一支上,y都随xx的增大而减小,且整式x2-kx+4是一个完全平方式,则该反比例函数的解析式为.(x>0) 17.【一题多变】(2022四川凉山州中考)如图,点A在反比例函数y=kx的图象上,过点A作AB⊥x轴于点B,若△OAB的面积为3,则k=.[变式一](2022湖南怀化中考)如图,直线AB交x轴于点C,交反比例函数y=a−1(a>1)的图象于A、B两点,过点B作BD⊥y轴,垂足为点D,若xS△BCD=5,则a的值为()A.8B.9C.10D.11[变式二](2022黑龙江齐齐哈尔中考)如图,点A是反比例函数y=k(x<0)x图象上一点,过点A作AB⊥y轴于点D,且D为线段AB的中点.若点C 为x轴上任意一点,且△ABC的面积为4,则k=.18.(2022河南南阳镇平期中)已知:反比例函数y=k的图象经过A(2,-4).x(1)求k的值.(2)这个函数的图象在哪几个象限?y随x的增大怎样变化?(3)画出函数的图象.(4)点B(-2,4),C(-1,5)在这个函数的图象上吗?19.(2022山东聊城实验中学期中)一辆汽车匀速通过某段公路,所需时,其图象为如图所示的一间t(h)与行驶速度v(km/h)满足函数关系:t=kv段曲线,且端点为A(40,1)和B(m,0.5).(1)求k和m的值;(2)若行驶速度不得超过50 km/h,则汽车通过该路段最少需要多少时间?能力提升全练20.【一题多解】(2022湖北武汉中考,6,)已知点A(x1,y1),B(x2,y2)在的图象上,且x1<0<x2,则下列结论一定正确的是() 反比例函数y=6xA.y1+y2<0B.y1+y2>0C.y1<y2D.y1>y221.(2022浙江舟山中考,15,)如图,在直角坐标系中,△ABC的顶点C 与原点O重合,点A在反比例函数y=k(k>0,x>0)的图象上,点B的坐标x为(4,3),AB与y轴平行,若AB=BC,则k=.22.(2022江苏常州中考,23,)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图象分别与x轴、y轴交于点A、B,与反比例函数y=k(x>0)x的图象交于点C,连结OC.已知点B(0,4),△BOC的面积是2.(1)求b、k的值;(2)求△AOC的面积.23.【新考法】(2022河南中考,18,)如图,反比例函数y=k(x>0)的图x象经过点A(2,4)和点B,点B在点A的下方,AC平分∠OAB,交x轴于点C.(1)求反比例函数的表达式;(2)请用无刻度的直尺和圆规作出线段AC的垂直平分线;(要求:不写作法,保留作图痕迹)(3)线段OA与(2)中所作的垂直平分线相交于点D,连结CD,求证:CD∥AB.素养探究全练24.【模型观念】(2022内蒙古赤峰中考)阅读下列材料.定义运算:min|a,b|,当a≥b时,min|a,b|=b;当a<b时,min|a,b|=a.例如:min|-1,3|=-1;min|-1,-2|=-2.完成下列任务.(1)①min|(-3)0,2|=;②min|√14,-4|=.(2)如图,已知反比例函数y1=k和一次函数y2=-2x+b的图象交于A、Bx,−2x+b|=(x+1)(x-3)-x2,求这两个函数的解析两点.当-2<x<0时,min|kx式.答案全解全析基础过关全练1.C 根据反比例函数的定义,知符合题意的只有C.2.答案 -2解析 由题意得{k 2−5=−1,k −2≠0,解得k =-2.3.A 反比例函数y =6x 中,k =6>0,所以图象位于第一、三象限,故选A.4.C A.把x =3代入y =-12x得,y =-4,所以函数图象经过点(3,-4),故本选项正确;B.反比例函数的图象的两个分支关于原点成中心对称,故本选项正确;C.k =-12<0,所以函数图象位于第二、四象限,故本选项错误;D.k =-12<0,所以图象位于第二、四象限,且在每个象限内,y 随x 增大而增大,所以当x <0时,y 随x 的增大而增大,故本选项正确.故选C. 5.A ∵点D (3,-2)在双曲线y =kx 上,∴k =3×(-2)=-6<0,∴反比例函数的图象在第二、四象限,在每个象限内,y 随x 的增大而增大,∴A (-1,y 1)在第二象限,B (2,y 2),C (1,y 3)在第四象限, ∴y 1>0,0>y 2>y 3,∴y 1>y 2>y 3.故选A. 6.C 分两种情况讨论:①当k >0时,函数y =kx +3的图象在第一、二、三象限,函数y =kx 的图象在第一、三象限;②当k <0时,函数y =kx +3的图象在第一、二、四象限,函数y =kx 的图象在第二、四象限.只有C选项符合,故选C.7.D∵m2+1>0,∴反比例函数y=m 2+1x(m是常数)的图象在第一、三象限,在每个象限内,y随x的增大而减小.①当A(a,y1),B(a+1,y2)在同一象限时,∵y1<y2, ∴a>a+1,此不等式无解;②当点A(a,y1),B(a+1,y2)在不同象限时,∵y1<y2, ∴a<0,a+1>0,解得-1<a<0.故选D.8.答案一、三解析∵m=(−12)−1=-2,∴m+3=-2+3=1>0,∴函数y=m+3x的图象分布在第一、三象限.9.答案h=1 000S;反比例解析根据长方体的体积等于底面积乘高,可知函数关系式为h=1 000S,它是反比例函数.10.答案a>1解析因为k>0,所以反比例函数图象在第一、三象限,且在每个象限内,y随x的增大而减小.由0<y1<y2得,0<a<2a-1,解得a>1.故答案为a>1.11.A将点A(3,-6)代入y=kx得k=3×(-6)=-18,故选A.12.C∵反比例函数y=kx(k≠0)的图象经过点(2,-3),∴k=2×(-3)=-6,∵(-2)×(-3)=6≠-6,(-3)×(-2)=6≠-6,1×(-6)=-6,6×1=6≠-6,∴它的图象一定还经过的点是(1,-6),故选C.13.C设气球内气体的气压p(kPa)与气体体积V(m3)之间的关系式为p=k(k≠0),V,∵图象过点(1.6,60),∴k=96.∴p=96V当p=120时,V=4.∵图象在第一象限,p随V的增大而减小,故气球内的5m3,即气球的体积应气压小于或等于120 kPa时,体积应大于或等于45不小于4m3.故选C.514.A由题意得AC=m-1,CQ=n,则S四边形ACQE=AC·CQ=(m-1)n=mn-n.(k>0,x>0)的图象上,∴mn=k=4.∵P(1,4)、Q(m,n)在函数y=kx∴S四边形ACQE=AC·CQ=4-n,∵m>1时,n随m的增大而减小,∴S四边形ACQE=4-n随m的增大而增大.故选A.15.答案-3(答案不唯一)的图象位于第二、四象限,∴k<0,∴k的值可解析∵反比例函数y=kx以是-3.(答案不唯一)16.答案y=3x解析∵整式x2-kx+4是一个完全平方式,∴k=±4,的图象的每一支上,y都随x的增大而减小,∵反比例函数y=k−1x∴k-1>0,解得k>1,∴k=4,∴k-1=4-1=3,.∴反比例函数的解析式为y=3x17.答案 6解析∵△OAB的面积为3,点A在反比例函数y=k(x>0)的图象上,xOB·AB=3,即OB·AB=6,∴k=6.∴12),[变式一]D设B的横坐标为m,则B(m,a−1m∵BD ⊥y 轴,∴S △BCD =12m ·a−1m=5,解得a =11,故选D.[变式二]答案 -4 解析 如图,连结OA ,OB ,∵AB ⊥y 轴,∴AB ∥x 轴, ∴S △ABC =S △AOB , ∵△ABC 的面积为4, ∴S △AOB =4.∵D 为线段AB 的中点, ∴S △AOD =S △BOD ,∴S △AOD =2.根据反比例函数的比例系数k 的几何意义可得k =-4.18.解析 (1)∵反比例函数y =kx 的图象经过点A (2,-4),∴k =-4×2=-8.(2)由(1)知k =-8,∴反比例函数的解析式为y =-8x,∵-8<0,∴函数的图象在第二、四象限,在每个象限内,y 随x 的增大而增大. (3)函数图象如图.(4)∵-2×4=-8,-1×5=-5≠-8,∴点B 在函数图象上,点C 不在函数图象上.19.解析 (1)由题意得,函数t =k v的图象经过点(40,1),∴1=k40,解得k =40,∴函数关系式为t =40v,把(m ,0.5)代入t =40v,得0.5=40m,解得m =80.故k 的值为40,m 的值为80.(2)把v =50代入t =40v,得t =4050=0.8,∵t 随v 的增大而减小,∴汽车行驶速度不超过50 km/h 时,通过该路段最少需要0.8小时. 能力提升全练20.C 解法一:∵点A (x 1,y 1),B (x 2,y 2)是反比例函数y =6x 的图象上的两点,∴x 1y 1=x 2y 2=6.∵x 1<0<x 2,∴y 1<0<y 2.故选C.解法二:反比例函数y =6x 的大致图象如图所示.∵x 1<0<x 2,∴点A 在第三象限,点B 在第一象限,∴y 1<y 2.21.答案 32解析 由点B 的坐标为(4,3),可得OB =√42+32=5,∵AB ∥y 轴,AB =BC ,∴A 点的坐标为(4,8),∴k =4×8=32.22.解析 (1)∵一次函数y =2x +b 的图象过点B (0,4),∴b =4,∴一次函数的解析式为y =2x +4,∵OB =4,△BOC 的面积是2,∴12OB ·x C =2,即12×4×x C =2,∴x C =1,把x =1代入y =2x +4,得y =6,∴C (1,6),∵点C 在反比例函数y =k x(x >0)的图象上,∴k =1×6=6.(2)把y =0代入y =2x +4,得2x +4=0,解得x =-2,∴A (-2,0),∴OA =2,∴S△AOC=12×2×6=6.23.解析本题将尺规作图与反比例函数综合起来进行考查.(1)∵反比例函数y=kx(x>0)的图象经过点A(2,4),∴k=2×4=8.故反比例函数的表达式为y=8x.(2)如图,直线EF即为所作.(3)证明:如图,∵AC平分∠OAB,∴∠OAC=∠BAC.∵AC的垂直平分线交OA于点D,∴DA=DC,∴∠DAC=∠DCA.∴∠DCA=∠BAC.∴CD∥AB.素养探究全练24.解析(1)①1.②-4.(2)(x+1)(x-3)-x2=-2x-3,∵当-2<x<0时,min|kx,−2x+b|=-2x+b,∴-2x+b=-2x-3,∴b=-3,∴y2=-2x-3,当x=-2时,y2=1,∴A(-2,1).将A(-2,1)代入y1=kx 中,得k=-2,∴y1=-2x.。
(完整版)反比例函数的图像和性质练习题
A.x<﹣1或0<x<3B.﹣1<x<0或x>3C.﹣1<x<0D.x>3
10、如图,点P是x轴正半轴上一个动点,过点P作x轴的垂线PQ交双曲线y= 于点Q,连结OQ,点P沿x轴正方向运动时,Rt△QOP的面积( ).
A、逐渐增大 B、逐渐减小 C、保持不变 D、无法确定
(第10题图) (第11题图) (第12题图)
(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?
24、如图, 已知反比例函数y= 的图象与一次函数y=ax+b的图象交于M(2,m)和N(-1,-4)两点.
(1)求这两个函数的解析式;
(2)求△MON的面积;
(3)请判断点P(4,1)是否在这个反比例函数的图象上,
反比例函数的图像和性质练习题
一、选择题
1.下列函数中,y与x成反比例函数是( )
A、 B、 C、 D、
2.反比例函数 的图象两支分布在第二、四象限,则k取值范围为( )
A.k<2B.k>2C. D.
3.如果双曲线y= 经过点(-2,3),那么此双曲线也经过点( )
A.(-2,-3)B.(3,2)C.(3,-2)D.(-3,-2)
7.一次函数 与反比例函数 在同一坐标系中的图像大致是( )
(第6题图) (第7题图)
8.面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是()
(第8题图) (第9题图)
9、已知一次函数y1=kx+b与反比例函数y2= 在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是()
19、如图,点A是反比例函数 图象上一点,AB⊥y轴于点B, 那么△AOB的面积是。
专题01 反比例函数的图像和性质(专项培优训练)教师版
专题01 反比例函数的图像和性质(专项培优训练)满分:100分考试时间:120分钟难度系数:0.46试卷说明:本套试卷结合人教版数学九年级下册同步章节知识点,精选易错,常考,压轴类问题进行专题汇编!题目经典,题型全面,解题模型主要选取热点难点类型!同步复习,考前强化必备!适合成绩中等及偏上的学生拔高冲刺。
一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2分)(2023秋•香坊区校级期中)在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是( )A.k>3B.k>0C.k≥3D.k<3解:∵在反比例函数的图象的每一条曲线上,y都随x的增大而减小,∴3﹣k>0,∴k<3.故选:D.2.(2分)(2023秋•九龙坡区校级月考)反比例函数的图象经过点A(2,﹣4),则当x=﹣2时,y的值为( )A.﹣4B.C.D.4解:因为反比例函数的图象是双曲线,且关于坐标原点成中心对称,又点A(2,﹣4)在反比例函数的图象上,所以点A关于坐标原点的对称点也在该反比例函数的图象上.又点A关于坐标原点的对称点的坐标为(﹣2,4),即x=﹣2时,y=4.故选:D.3.(2分)(2023•任丘市二模)如图,把函数和函数的图象画在同一平面直角坐标系中,则坐标系的原点可能是( )A.点M B.点N C.点P D.点Q解:在函数和函数的中,∵1>0,﹣2<0,∴函数的图象在第三象限,函数的图象在第二象限,∵|﹣2|>|1|,∴当x取相同的值时,的图象更靠近坐标轴,∴坐标系的原点可能是Q.故选:D.4.(2分)(2023春•德化县期中)对于反比例函数,下列说法不正确的是( )A.点(﹣2,1)在它的图象上B.它的图象在第二,第四象限C.图象关于原点对称D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2解:反比例函数的关系式为:y=﹣,即xy=﹣2,点(﹣2,1)坐标满足关系式,因此A选项不符合题意;由于k=﹣2,因此图象位于第二,第四象限,因此B不符合题意;根据反比例函数的对称性,图象关于原点对称,因此C选项不符合题意;若点A(x1,y1),B(x2,y2)不在同一象限,由x1<x2,得出y1>y2,因此D选项符合题意.故选:D.5.(2分)(2023•长兴县二模)运用你学习函数的经验,判断下列哪个函数的图象如图所示( )A.B.y=C.D.解:选项A中的函数y=的x不能等于﹣1,与题干中的图象不符,故选项A不符合题意;选项B中的函数y=的x不能等于﹣1,与题干中的图象不符,故选项B不符合题意;选项C中的函数y=的图象与题干中的图象相符,故选项C符合题意;选项D中的函数y=的x不能等于﹣1,与题干中的图象不符,故选项D不符合题意;故选:C.6.(2分)(2023•武汉)关于反比例函数,下列结论正确的是( )A.图象位于第二、四象限B.图象与坐标轴有公共点C.图象所在的每一个象限内,y随x的增大而减小D.图象经过点(a,a+2),则a=1解:反比例函数,图象在第一、三象限,与坐标轴没有交点,故A选项错误,B选项错误;反比例函数,在每一个象限内,y随着x的增大而减小,故C选项正确;反比例函数图象经过点(a,a+2),∴a(a+2)=3,解得a=1或a=﹣3,故D选项错误,故选:C.7.(2分)(2023•奉贤区二模)下列函数图象中,可能是反比例函数的图象的是( )A.B.C .D .解:∵中,k =6>0,∴该函数图象在第一、第三象限,故选:C .8.(2分)(2022秋•梁山县期末)如图,A (0,1),B (1,5)曲线BC 是双曲线的一部分.曲线AB 与BC 组成图形G .由点C 开始不断重复图形G 形成一条“波浪线“.若点P (2025,m ),Q (x ,n )在该“波浪线上,则m 的值及n 的最大值为( )A .m =1,n =1B .m =5,n =1C .m =1,n =5D .m =1,n =4解:∵B (1,5)在y =的图象上.∴k =1×5=5.当x =5时,y ==1.∴C (5,1).又因为2025÷5=405.∴m =1.∵Q (x ,n )在该“波浪线”上.∴n 的最大值是5.故选:C .9.(2分)(2023秋•洪江市校级月考)下列反比例函数图象一定在二、四象限的是( )A .B .C .D .解:A.反比例函数中﹣k不一定小于零,故A选项不符合题意;B.反比例函数中﹣(k+1)不一定小于零,故B选项不符合题意;C.反比例函数中﹣(k2+1)一定小于零,故C选项符合题意;D.反比例函数中﹣(k﹣1)不一定小于零,故D选项不符合题意;故选:C.10.(2分)(2021秋•房县期末)如图,点P(﹣2a,a)是反比例函数y=的图象与⊙O的一个交点,图中阴影部分的面积为10π,则该反比例函数的表达式为( )A.y=﹣B.y=﹣C.y=﹣D.y=﹣解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π.解得:r=2.∵点P(﹣2a,a)是反比例函数y=(k<0)与⊙O的一个交点.∴﹣2a2=k且=r.∴a2=8.∴k=﹣2×8=﹣16,则反比例函数的解析式是:y=﹣.故选:D.二、填空题:本大题共10小题,每小题2分,共20分.11.(2分)(2023•北京二模)反比例函数y=(k≠0)在第一象限的图象如图所示,已知点A的坐标为(3,1),写出一个满足条件的k的值 2(答案不唯一) .解:假设点A(3,1)在反比例函数第一象限的图象上,则,∴k=3,但是点A在反比例函数(k≠0)第一象限的图象上方,∴0<k<3,∴满足条件的k的值可以是2.故答案为:2(答案不唯一).12.(2分)(2023春•姑苏区校级期末)若反比例函数y=(m+1)的图象在每个象限内随着x的增大而增大,则m的值为 ﹣2 .解:∵反比例函数y=(m+1)的图象在每个象限内随着x的增大而增大,∴m+1<0且3﹣m2=﹣1,解得m=﹣2.故答案为:﹣2.13.(2分)(2023•武功县模拟)已知反比例函数的图象在每个象限内y随x的增大而增大,且当1≤x≤3时,函数y的最大值和最小值之差为4,则k的值为 ﹣6 .解:∵反比例函数的图象在每个象限内y随x的增大而增大,∴k<0,∵当1≤x≤3时,函数y的最大值和最小值之差为4,∴,解得:k=﹣6.故答案为:﹣6.14.(2分)(2023秋•洪江市校级月考)若反比例函数y=的图象不经过第一象限,则k的取值范围是 k> .解:∵反比例函数y=的图象不经过第一象限,∴反比例函数y=的图象经过第二、四象限,∴1﹣3k<0,∴k>,故答案为:k>.15.(2分)(2023春•广陵区月考)已知反比例函数y=图象位于一、三象限,则m的取值范围是 m>﹣6 .解:∵反比例函数图象位于一、三象限,∴m+6>0,解得:m>﹣6.故答案为:m>﹣6.16.(2分)(2023•开阳县模拟)反比例函数y=的图象分布情况如图所示,则k的值可以是 0(答案不唯一) .(写出一个符合条件的k值即可)解:由反比例函数y=的图象位于第二,四象限可知,k﹣1<0,∴k<1,∴k的值可以是0,故答案为:0(答案不唯一).17.(2分)(2022秋•鹤山市期末)已知反比例函数y=的图象在第二、第四象限,则m的取值范围是 m <﹣7 .解:∵反比例函数y=的图象在第二、第四象限,∴m+7<0,即m<﹣7.故答案为:m<﹣7.18.(2分)(2022秋•永丰县期末)反比例函数y=(x>0)的图象中,函数值y随着x的增大而减小,则m的取值范围是 m>1 .解:∵反比例函数y=(x>0)的图象中,函数值y随着x的增大而减小,∴m﹣1>0,∴m>1,故答案为m>1.19.(2分)(2023春•灌云县期末)若反比例函数的图象在第一、三象限,则m的取值范围是 m > .解:∵反比例函数y=的图象在第一、第三象限,∴2m﹣3>0,解得m>.故答案为:m>.20.(2分)(2022•衢州二模)如图,点B在x轴正半轴上,点A在第一象限,AO=AB,函数y=(x>0)的图象分别交AO,AB于点C,D,若OC=3,BD=1,则OA的长为 5 ;当OD⊥AB时,k的值为 .解:如图,过点C作CE⊥OB于E,过点D作DF⊥OB于F,过点A作AG⊥OB于点G,设OB=m,∴CE ∥DF ∥AG ,OG =BG =m .∴∠OEC =∠BFD =90°,∵AO =AB ,∴∠AOB =∠ABO ,∴△COE ∽△DBF ,∴===3.设C (a ,b ),∴OE =a ,CE =b ,∴BF =a ,DF =b ,∴D (m ﹣a ,b ),∵反比例函数y =(x >0)的图象分别交边AO ,AB 于点C ,D ,∴k =ab =(m ﹣a )•b ,解得a =m ,∴EG =m ﹣m =m ,BF =a =m ,∴OF =m ﹣m =m .∵CE ∥AG ,∴OC :OA =CE :AG =OE :OG ,即3:OA =m :m ,∴OA =5.若OD ⊥AB ,则∠ODB =90°.由射影定理可得DF 2=OF •BF .∴b 2=m •m =m 2,即b =m ,在Rt△OCE中,由勾股定理可得,OE2+CE2=OC2,∴(m)2+(m)2=32,整理得m2=10.∴k=ab=m2=.故答案为:5;.三、解答题:本大题共8小题,21-22题每小题6分,23-28题每小题8分,共60分.21.(6分)(2022秋•顺德区期末)反比例函数.(1)画出反比例函数的图象;(2)观察图象,当y≥﹣1时,写出x的取值范围.解:(1)反比例函数.列表:x⋯﹣4﹣2﹣1124⋯y⋯﹣1﹣2﹣4421描点、连线,反比例函数的图象如图,;(2)由图象可知,当y≥﹣1时,自变量x的取值范围是x≤﹣4或x>0.22.(6分)(2023秋•利津县月考)已知反比例函数y=(m为常数)(1)若函数图象经过点A(﹣1,6),求m的值;(2)若函数图象在二、四象限,求m的取值范围;(3)若x>0时,y随x的增大而减小,求m的取值范围.解:(1)∵函数图象经过点A(﹣1,6),∴m﹣8=xy=﹣1×6=﹣6,解得:m=2,∴m的值是2;(2)∵函数图象在二、四象限,∴m﹣8<0,解得:m<8,∴m的取值范围是m<8;(3)∵若x>0时,y随x的增大而减小,∴m﹣8>0,解得:m>8,∴m的取值范围是m>8;23.(8分)(2020春•江都区期末)在函数的学习中,我们经历了“确定函数表达式﹣﹣画函数图象﹣﹣利用函数图象研究函数性质﹣﹣利用图象解决问题”的学习过程.我们可以借鉴这种方法探究函数y=的图象性质.(1)补充表格,并画出函数的图象.①列表:x…﹣3﹣10235…y…﹣1﹣2﹣441…②描点并连线,画图.(2)观察图象,写出该函数图象的一个增减性特征: 当x>1时,y随x的增大而减小,当x<1时,y随x的增大而减小 ;(3)函数y=的图象是由函数y=的图象如何平移得到的?其对称中心的坐标为 (1,0) ;(4)根据上述经验,猜一猜函数y=+2的图象大致位置,结合图象直接写出y≥3时,x的取值范围 1<x≤5 .解:(1)①x=3时,y==2.②图象如图所示:(2)当x>1时,y随x的增大而减小,当x<1时,y随x的增大而减小.故答案为:当x>1时,y随x的增大而减小,当x<1时,y随x的增大而减小.(3)函数y=的图象是由函数y=的图象向右平移1个单位得到.y=的对称中心为(1,0).故答案为(1,0)(4)数y=+2的图象是由y=的图象向上平移2个得到,y≥3时,1<x≤5.故答案为1<x≤5.24.(8分)(2019春•长春期中)已知反比例函数y=,(k为常数,k≠1).(1)若点A(1,2)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围;(3)若k=13,试判断点B(3,4),C(2,5)是否在这个函数的图象上,并说明理由.解:(1)∵点A(1,2)在这个函数的图象上,∴k﹣1=1×2,解得k=3;(2)∵在函数y=图象的每一支上,y随x的增大而增大,∴k﹣1<0,解得k<1;(3)点C不在这个函数的图象上,理由如下:∵k=13,有k﹣1=12,∴反比例函数的解析式为y=.将点B的坐标代入y=,可知点B的坐标满足函数关系式,∴点B在函数y=的图象上,将点C的坐标代入y=,由5≠,可知点C的坐标不满足函数关系式,∴点C不在函数y=的图象上.25.(8分)(2017•商水县二模)数学李老师给学生出了这样一个问题:探究函数y=的图象与性质,小斌根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小斌的探究过程,请您补充完成:(1)函数y=的自变量x的取值范围是: x≠﹣1 (2)列出y与x的几组对应值,请直接写出m的值,m= 3 .x…﹣5﹣4﹣3﹣2﹣﹣012m45…y… 2 3﹣10…(3)请在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)结合函数的图象,写出函数y=的一条性质.解:(1)∵x+1≠0,∴x≠﹣1.故答案为:x≠﹣1.(2)当y==时,x=3.故答案为:3.(3)描点、连线画出图象如图所示.(4)观察函数图象,发现:函数y=在x<﹣1和x>﹣1上均单调递增.26.(8分)(2016春•怀柔区期末)有这样一个问题,探究函数y=的图象和性质.小强根据学习一次函数的经验,对函数y=的图象和性质进行了探究.下面是小强的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是 x≠2 ;(2)如图,在平面直角坐标系xOy中,他通过列表描点画出了函数y=图象的一部分,请结合自变量的取值范围,补出函数图象的另一部分;(3)进一步探究发现,该函数图象有一条性质是:在第一象限的部分,y随x的增大而 减小 ;(4)结合函数图象,写出该函数图象的另外一条性质.解:(1)由已知得:x﹣2≠0,解得:x≠2.故答案为:x≠2.(2)补出函数图象的另一部分,如图.(3)∵在y=中k=3>0,∴该函数在第一象限的部分,y随x的增大而减小.故答案为:减小.(4)在第三、四象限的部分,y随x的增大而减小.27.(8分)(2016春•延庆县期末)有这样一个问题:探究函数y=+x的图象与性质.小东根据学习函数的经验,对函数y=+x的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=+x的自变量x的取值范围是 x≠1 ;(2)下表是y与x的几组对应值.x…﹣3﹣2﹣102345…y…﹣﹣﹣﹣1﹣﹣3m…求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数的图象,写出该函数的其它性质(一条即可): 该函数没有最大值,也没有最小值 .解:(1)x≠1,故答案为x≠1;(2)令x=4,∴y=+4=;∴m=;(3)如图(4)该函数的其它性质:该函数没有最大值,也没有最小值;故答案为该函数没有最大值,也没有最小值.28.(8分)(2022春•镇平县期中)已知反比例函数y=的图象经过A(2,﹣4).①求k的值.②这个函数的图象在哪几个象限?y随x的增大怎样变化?③画出函数的图象.④点B(﹣2,4),C(﹣1,5)在这个函数的图象上吗?解:①∵反比例函数y=的图象经过点A(2,﹣4),∴1﹣k=2×(﹣4)=﹣8;解得:k=9;②∵k=﹣8<0,∴图象位于二、四象限,在每个象限内y随x的增大而增大;③图象为:④∵﹣2×4=﹣8、﹣1×5=﹣5≠﹣8,∴B(﹣2,4)在反比例函数的图象上,C(﹣1,5)不在反比例函数的图象上。
专题6-2反比例函数的图象与性质-(解析版)
2020-2021学年九年级数学上册尖子生同步培优题典【北师大版】专题6.2反比例函数的图象与性质姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•雨花区校级月考)关于反比例函数,下列说法错误的是()A.图象经过点(1,﹣3)B.y随x的增大而增大C.图象关于原点对称D.图象与坐标轴没有交点【分析】根据反比例函数图象是双曲线、反比例函数图象的增减性以及反比例函数图象与系数的关系进行判断即可.【解析】A、反比例函数,当x=1时y=﹣3,说法正确,故本选项不符合题意;B、反比例函数中k=﹣3<0,则该函数图象经过第二、四象限,在每个象限象限内y随x的增大而增大,说法错误,故本选项符合题意;C、反比例函数的图象关于原点对称,说法正确,故本选项不符合题意;D、图象与坐标轴没有交点,说法正确,故本选项不符合题意.故选:B.2.(2020春•江岸区校级月考)若点A(x1,3)、B(x2,﹣2)、C(x3,﹣1)在反比例函数y的图象上,且x1、x2、x3的大小关系是x1<x2<x3,则k的范围是()A.k<4 B.k>4 C.k≤4 D.k≥4【分析】根据反比例函数的性质和反比例函数增减性,结合函数的纵坐标,即可得到答案.【解析】由题意可知,在每个象限内,y随着x的增大而增大,∴反比例函数y的图象在二、四象限,∴k﹣4<0,∴k<4,故选:A.3.(2020秋•九龙坡区校级月考)下列各点中,在反比例函数y图象上的是()A.(﹣2,﹣6)B.(﹣2,6)C.(3,4)D.(﹣4,﹣3)【分析】利用反比例函数图象上点的坐标特征进行判断.【解析】∵﹣2×(﹣6)=12,﹣2×6=﹣12,3×4=12,﹣4×(﹣3)=12,∴点(﹣2,﹣6)在反比例函数y图象上.故选:A.4.(2020•南岗区四模)反比例函数y的图象经过点(﹣1,3),则k的值为()A.3 B.C.D.﹣3【分析】把点的坐标代入函数解析式即可求得k的值.【解析】∵反比例函数y的图象经过点(﹣1,3),∴3,解得k,故选:C.5.(2020•亭湖区校级三模)如图所示为反比例函数的部分图象,AB⊥OA,AB交反比例函数的图象于点D,且AD:BD=1:3,若S△AOB=8,则k的值为()A.4 B.﹣4 C.2 D.﹣2【分析】连接OD,如图,利用三角形面积公式得到∴S△AOD S△AOB=2,再根据反比例函数系数k的几何意义得到S△AOD|k|=2,然后利用反比例函数的性质确定k的值.【解析】连接OD,如图,∵BA⊥x轴于点A,AD:BD=1:3,∴S△AOD S△AOB=2,而S△AOC|k|=2,又∵k<0,∴k=﹣4.故选:B.6.(2020•惠山区校级二模)下列关于反比例函数y的说法中,错误的是()A.当x<0时,y随x的增大而减小B.双曲线在第一三象限C.当x>0时,y随x的增大而增大D.当x>0时,函数值y>0【分析】根据反比例函数性质解答.【解析】∵反比例函数y中,k=3>0,∴双曲线在第一、三象限,在每个象限内,y随x的增大而减小,∴A、B、D正确,C错误;故选:C.7.(2020•兰州)已知点A(x1,y1),B(x2,y2)在反比例函数y的图象上,若y1<y2<0,则下列结论正确的是()A.x1<x2<0 B.x2<x1<0 C.0<x1<x2D.0<x2<x1【分析】反比例函数的系数为﹣3<0,在每一个象限内,y随x的增大而增大.【解析】∵﹣3<0,∴图象位于第二、四象限,在每一个象限内,y随x的增大而增大,又∵y1<y2<0,∴图象在第四象限,∴0<x1<x2,故选:C.8.(2020春•龙华区校级月考)反比例函数y(k<0)的图象上的两点A(﹣1,y1)和B(﹣3,y2),则y1与y2的关系为()A.y1<y2 B.y1=y2 C.y1>y2D.无法确定【分析】根据反比例函数的性质和已知解析式得出函数的图象在第二、四象限,并且在每个象限内,y 随x的增大而增大,再比较即可.【解析】∵反比例函数y(k<0),∴函数的图象在第二、四象限,并且在每个象限内,y随x的增大而增大,∵反比例函数y(k<0)的图象上的两点A(﹣1,y1)和B(﹣3,y2),∴点A、B都在第二象限,∵﹣1>﹣3,∴y1>y2,故选:C.9.(2020春•西工区校级月考)一次函数y=kx+b的图象与反比例函数y(x>0)的图象交于A(2,1),B(,n)两点,则n﹣k的值为()A.2 B.﹣2 C.6 D.﹣6【分析】把A的坐标代入反比例函数的解析式即可求出反比例函数的解析式,把B的坐标代入求出n的值,把A、B的坐标代入一次函数y=kx+b即可求出k的值.【解析】∵把A(2,1)代入y得:m=2,∴反比例函数的解析式是y,∵B(,n)代入反比例函数y得:n=4,∴B的坐标是(,4),把A、B的坐标代入一次函数y1=kx+b得:,解得:k=﹣2,∴n﹣k=4+2=6,故选:C.10.(2020春•贵阳月考)如图,A、B两点在反比例函数y的图象上,分别过A、B两点向x轴、y轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.5 D.6【分析】根据反比例函数解析式中k的几何意义可知S1+S阴影=S2+S阴影=4,因为S阴影=1,所以S1=S2=3由此解决问题.【解析】∵A、B两点在反比例函数y的图象上,∴S1+S阴影=S2+S阴影=4,∵S阴影=1,∴S1=S2=3,∴S1+S2=6.故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•永州月考)在函数y的图象上有三点(﹣3,y1)、(﹣2,y2)、(1,y3),则函数值y1、y2、y3的大小关系为y2<y1<y3.【分析】分别计算自变量为﹣3、﹣2、1代入的函数值,然后比较函数值的大小即可.【解析】当x=﹣3时,y1;当x=﹣2时,y21;当x=1时,y32,所以y2<y1<y3.故答案为y2<y1<y3.12.(2020秋•渝中区校级月考)反比例函数y(k≠0)图象上有两点:(﹣2,4)和(1,a),则a的值为﹣8.【分析】利用反比例函数图象上点的坐标特征得到1×a=﹣2×4,然后解方程即可.【解析】∵点(﹣2,4)和(1,a)都在反比例函数y(k≠0)图象上,∴1×a=﹣2×4,解得a=﹣8.故答案为﹣8.13.(2020秋•九龙坡区校级月考)若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在函数y图象上的概率是.【分析】先画树状图展示所有6种种等可能的结果,再利用反比例函数图象上点的坐标特征可判断(﹣1,1),(1,﹣1)在函数y图象上,然后根据概率公式求解.【解析】画树状图为:共有6种种等可能的结果,它们是(﹣1,1),(﹣1,2),(1,﹣1),(1,2),(2,﹣1),(2,1),∵﹣1×1=﹣1,1×(﹣1)=﹣1,∴(﹣1,1),(1,﹣1)在函数y图象上,∴点M在函数y图象上的概率.故答案为.14.(2020秋•永州月考)已知y与x成反比例,并且当x=2时,y=﹣1,则当x=﹣4时,y=.【分析】设反比例函数的解析式y,再根据题意求得k,代入x=﹣4,即可求得y的值.【解析】设反比例函数的解析式y,把点(2,﹣1),代入解析式y,解得k=﹣2,则反比例函数的解析式是y,当x=﹣4时,y.故答案为.15.(2020•泸西县模拟)若点(2,a+1)和点(3,a﹣1)都是反比例函数y(k≠0)图象上的点,则a =5.【分析】反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k,据此可得a的值.【解析】∵点(2,a+1)和点(3,a﹣1)都是反比例函数y(k≠0)图象上的点,∴2(a+1)=3(a﹣1),∴a=5,故答案为:5.16.(2020•建邺区二模)在同一平面直角坐标系中,正比例函数y=k1x的图象与反比例函数y的图象一个交点的坐标是(﹣1,3),则它们另一个交点的坐标是(1,﹣3).【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解析】根据题意,直线y=k1x经过原点与双曲线y相交于两点,又由于双曲线y与直线y=k1x均关于原点对称.则两点关于原点对称,一个交点的坐标为(﹣1,3),则另一个交点的坐标为(1,﹣3).故答案为:(1,﹣3).17.(2020秋•碑林区校级月考)在平面直角坐标系中,等边△ABC如图放置,其中B(2,0),则过点A的反比例函数的表达式为y.【分析】作AC⊥OB,根据等边三角形的性质、正弦和余弦的定义分别求出OC、AC,利用待定系数法求出反比例函数解析式.【解析】过点A作AC⊥OB于C,设过点A的反比例函数的表达式为y,∵△OAB是等边三角形,∴OA=2,∠AOC=60°,∴OC=OA×cos∠AOC=21,AC=OA×sin∠AOC=2,∴点A的坐标为(1,),∴,解得,k,∴过点A的反比例函数的表达式为y,故答案为:y.18.(2020•武汉模拟)如图,在平面直角坐标系中,A(1,0),B(0,﹣2),将线段AB平移得到线段CD,当时,点C、D同时落在反比例函数y(k<0)的图象上,则k的值为﹣12.【分析】过C作CF⊥y轴于点F,由△EOA∽△EFC,得CF的长度,结合反比例函数解析式,表示出C点坐标,再根据平移的性质求得D点的坐标,再把D点坐标代入反比例函数解析式中得出k的方程便可求得k的值.【解析】过C作CF⊥y轴于点F,则CFF∥OA,∴△EOA∽△EFC,∴,∵,∴,∵OA=1,∴,∴FC=2,∴,∵A(1,0),B(0,﹣2),线段AB平移得到线段CD,∴D(﹣3,),把D(﹣3,)代入y中,得﹣3()=k,解得,k=﹣12,故答案为:﹣12.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020•吉林一模)已知y是x的反比例函数,且x=3时,y=8.(1)写出y与x之间的函数关系式;(2)如果自变量x的取值范围为3≤x≤4.求y的取值范围.【分析】(1)根据反比例函数的定义设出表达式,再利用待定系数法解出系数则可;(2)分别代入x的值求得y值后即可求得y的取值范围;【解析】(1)设反比例函数是y(k≠0),当x=3时,y=8,代入可解得k=24.所以y.(2)当x=3时,y=8,当x=4时,y=6,∴自变量x的取值范围为3≤x≤4.y的取值范围为6≤y≤8.20.(2018•尉氏县一模)某班数学兴趣小组根据学习函数的经验,通过列表、描点、连线的方法对函数y 的图象与性质进行了研究,研究过程如下,请补充完整.(1)y与x的几组对应值如下表:x…﹣3 ﹣2 ﹣1 1 2 3 …y… 6 6 m…函数y的自变量x的取值范围是x≠0,m的值为;(2)在给出的平面直角坐标系中,描出以上表中各组对应值为坐标的点,画出函数y的大致图象,并写出该函数的两条性质;(3)在同一坐标系中画出函数y1x的图象,并根据图象直接写出当y>y1时,自变量x的取值范围.【分析】(1)根据分式有意义的条件即可得到结论;(2)根据函数y的图象即可得到结论;(3)在同一坐标系中画出函数y1x的图象如图所示;根据函数的图象即可得到结论.【解析】(1)函数y的自变量x的取值范围是x≠0,当x=2时,m;故答案为:x≠0;;(2)函数y的图象如图所示,性质:①该函数图象关于y轴对称;②当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小;(3)在同一坐标系中画出函数y1x的图象如图所示;当y>y1时,自变量x的取值范围为x<0或0<x<2.21.(2020秋•渝中区校级月考)启航同学根据学习函数的经验,对函数y的图象与性质进行了探究.下面是他的探究过程,请补充完成:(1)函数y的自变量x的取值范围是x≠1.(2)列表,找出y与x的几组对应值,列表如下:x…﹣2 ﹣1 0 2 3 …y…a 1 2 2 1 …其中,a=.(3)在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象并写出该函数的一条性质:当x>1时,y随x的增大而减小,当x<1时,y随x的增大而增大.【分析】(1)根据一次函数的性质即可得出结论;(2)把x=﹣2代入函数解析式,求出y的值即可;(3)在坐标系内描出各点,再顺次画出图象;根据函数图象即可得出函数的一条性质.【解析】(1)∵分母不能为0,∴x≠1.故答案为:x≠1;(2)∵当x=﹣2时,y,∴a.故答案为:;(3)如图所示;由函数图象可知,当x>1时,y随x的增大而减小,当x<1时,y随x的增大而增大.故答案为:当x>1时,y随x的增大而减小,当x<1时,y随x的增大而增大.22.(2018•顺义区二模)根据函数学习中积累的知识与经验,李老师要求学生探究函数y1的图象.同学们通过列表、描点、画图象,发现它的图象特征,请你补充完整.(1)函数y1的图象可以由我们熟悉的函数的图象向上平移1个单位得到;(2)函数y1的图象与x轴、y轴交点的情况是:与x轴交于(﹣1,0),与y轴没交点;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是y1.【分析】(1)根据函数图象的平移规律,可得答案;(2)根据自变量与函数值的对应关系,可得答案;(3)根据点的坐标满足函数解析式,可得答案.【解析】(1)函数的图象可以由我们熟悉的函数的图象向上平移1个单位得到,故答案为:,1;(2)函数的图象与x轴、y轴交点的情况是:与x轴交于(﹣1,0),与y轴没交点,故答案为:与x轴交于(﹣1,0),与y轴没交点;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是答案不唯一,如:y1,故答案为:y1.23.(2020春•沙坪坝区期末)某数学小组对函数y1的图象和性质进行探究.当x=﹣2时,y=﹣2.(1)求k的值;(2)在给出的平面直角坐标系中,补全这个函数的图象,并写出这个函数的一条性质;(3)进一步探究函数图象并解决问题:已知函数y2=x的图象如图所示,结合函数y1的图象,直接写出不等式y1≥y2的解集.【分析】(1)把x=﹣2,y=﹣2代入y(x<﹣1)中,求得即可;(2)利用两点法画出函数y=2x﹣2(x≥﹣1)的图象,根据图象得出函数的一条性质;(3)根据图象即可得出结论.【解析】(1)把x=﹣2,y=﹣2代入y(x<﹣1)中,得﹣2,解得k=4;(2)补全这个函数的图象如图:写出这个函数的一条性质为:函数有最小值﹣4(答案不唯一);(3)由图象可知:不等式y1≥y2的解集是x≤﹣2或x≥2.24.(2019秋•渝中区校级月考)已知两数y=y1﹣y2,其中y1与x﹣2成反比例,y2=1,且y关于x的函数的图象经过点(1,﹣2).(1)根据条件可知y关于x的函数的解析式为y1,自变量的取值范围是x≠2.(2)函数图象探究:根据该函数解析式,画出该函数图象;(3)观察图象后填空:①该函数的图象关于点(3,﹣1)成中心对称;②若直线y=﹣x+b与该函数图象有交点,求b的取值范围.【分析】(1)根据题意设y1,代入点(1,﹣2)根据待定系数法即可求得解析式,根据分母不等于0,即可求得自变量x的取值;(2)画出函数图象即可;(3)根据图象即可得到结果.【解析】(1)根据题意设y1,∵y关于x的函数的图象经过点(1,﹣2).∴﹣21,解得k=1,∴y1,∵分母不能为0,∴x≠2,故答案为y1,x≠2;(2)由函数y1可知,函数y1的图象是反比例函数的图象向右平移2个单位,再向下平移1个单位得到,函数的图象如图:(3)观察图象:①该函数的图象关于点(3,﹣1)成中心对称;故答案为3,﹣1;②把(4,0)代入y=﹣x+b,解得b=4,把(2,﹣2)代入y=﹣x+b,解得b=0,∴若直线y=﹣x+b与该函数图象有交点,则b=4或b=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品好资料 欢迎下载
9.2 反比例函数的图象及其性质(2)
同步练习
【目标与方法】
1.认识反比例函数的图象的性质及其简单应用.
2.结合反比例函数的图象,•揭示与其对应的函数关系式之间的内在联系及其几何意义.
【基础与巩固】
1.已知反比例函数y=kx,若当x<0时,函数y随自变量x的增大而增大,则实数k•的范
围是( ).
(A)k≤0 (B)k≥0 (C)k<0 (D)k>0
2.已知反比例函数y=kx(k≠0)的图象经过点(3,4),则它的图象的两个分支分别在
( ).
(A)第二,四象限内 (B)第一,二象限内
(C)第三,四象限内 (D)第一,三象限内
3.下列反比例函数的图象在每一个象限内,y随x增大而减小的一定是( ).
(A)y=222211()()()aaaaByCyDyxxxx
4.已知反比例函数y=1kx的图象经过点(1,2),则函数y=-kx可确定为( ).
(A)y=2x (B)y=3x (C)y=-2x (D)y=-3x
5.反比例函数y=2x,y=4x,y=6x的图象具有以下的共同特征:
(1)___________________________________________;
(2)_________________________________________.
6.举出3个具有以下两条特征的反比例函数:
①图象分布在第二,四象限;
②图象在每一个象限内,y随x增大而增大.
7.写出1个图象不经过第二,四象限的反比例函数的关系式:________.
【拓展与延伸】
8.已知y=(m+1)xm-1是反比例函数,则函数的图象在第______象限,且在所在的每一个
精品好资料 欢迎下载
象限内,y随x增大而_________.
9.已知反比例函数y=4x的图象如图所示,A、B是图象在第一象限内的两个动点,过A、
B分别作x轴的垂线,垂足分别为C、D,再分别作y轴的垂线,垂足分别为E、F,试问
矩形ACOE、BDOF的面积的比值是多少?试说明理由.
10. 在直角坐标系内,从反比例函数y=kx(k>0)的图象上的一点分别作x轴、•y轴的垂
线段,与x、y轴所围成的矩形面积是12.
(1)求该函数的关系式;
(2)如果从该函数的图象上再任取一点,并分别作x、y轴的垂线段,那么与x、•y
轴所围成的矩形面积是多少?
(3)从本题你能得到哪些结论?
精品好资料 欢迎下载
答案:
1.(C) 2.(D) 3.(C) 4.(D)
5.(1)均在第一、三象限内;(2)在每一象限内,y随x的增长而减少
6.(1)y=-3x;(2)y=-58;(3)yxx(答案不惟一,只要符合要求即可) •
7.略
8.一、三 减少
9.1(因为两矩形的面积均为4)
10.(1)y=12x;
(2)12;
(3)从反比例函数y=kx(k>0)的图象上的一点分别作x、y轴的垂线段,与x、y轴
所围成的矩形面积一定是│k│.