4.4点与圆、直线与圆、圆与圆的位置关系(2009年)

合集下载

直线与圆、圆与圆的位置关系知识点及题型归纳

直线与圆、圆与圆的位置关系知识点及题型归纳

直线与圆、圆与圆的位置关系知识点及题型归纳(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--直线与圆、圆与圆的位置关系知识点及题型归纳知识点精讲一、 直线与圆的位置关系直线与圆的位置关系有3种,相离,相切和相交二、 直线与圆的位置关系判断1. 几何法(圆心到直线的距离和半径关系)圆心(,)a b 到直线0Ax By C ++=的距离,则d =则d r <⇔直线与圆相交,交于两点,P Q ,||PQ =d r =⇔直线与圆相切; d r >⇔直线与圆相离2. 代数方法(几何问题转化为代数问题即交点个数问题转化为方程根个数)由2220()()Ax By C x a y b r++=⎧⎨-+-=⎩ ,消元得到一元二次方程20px qx t ++=,20px qx t ++=判别式为∆,则:则0∆>⇔直线与圆相交; 0∆=⇔直线与圆相切; 0∆<⇔直线与圆相离.三、 两圆位置关系的判断是用两圆的圆心距与两圆半径的和差大小关系确定,具体是:设两圆12,O O 的半径分别是,R r ,(不妨设R r >),且两圆的圆心距为d ,则: 则d R r <+⇔两圆相交; d R r =+⇔两圆外切; R r d R r -<<+⇔两圆相离 d R r =-⇔两圆内切;0d R r ≤<-⇔两圆内含(0d =时两圆为同心圆)四、 关于圆的切线的几个重要结论(1) 过圆222x y r +=上一点00(,)P x y 的圆的切线方程为200x x y y r +=. (2) 过圆222()()x a y b r -+-=上一点00(,)P x y 的圆的切线方程为200()()()()x a x a y b y b r --+--=(3) 过圆220x y Dx Ey F ++++=上一点00(,)P x y 的圆的切线方程为0000022x x y y x x y y D E F ++++⋅+⋅+= (4) 求过圆222x y r +=外一点00(,)P x y 的圆的切线方程时,应注意理解:①所求切线一定有两条;②设直线方程之前,应对所求直线的斜率是否存在加以讨论.设切线方程为00()y y k x x -=-,利用圆心到切线的距离等于半径,列出关于k 的方程,求出k 值.若求出的k 值有两个,则说明斜率不存在的情形不符合题意;若求出的k 值只有一个,则说明斜率不存在的情形符合题意.题型讲解题型1 直线与圆的相交关系 思路提示研究直线与圆的相交问题,应牢牢记住三长关系,即半径长2l、弦心距d 和半径r 之间形成的数量关系222()2l d r +=.例 已知圆O :225x y +=,直线l :cos sin 1(0)2x y πθθθ+=<<,设圆O 上到直线l 的距离等于1的点的个数为k ,则k =___________.分析 先求出圆心到直线的距离,在进行判断解析 因为圆心(0,0)到直线l 的距离为1,又因为圆O 4个点符合条件. 评注 若圆O 上到直线l 的距离等于2的点的个数为k ,则2k =;若3k =,则圆O 上到直线l 的距离等1-变式1已知圆O :224x y +=,直线l :1x ya b+=,设圆O 上到直线l 的距离等于1的点的个数有两个,则2211a b +的取值范围___________. 例 已知圆C :228120x y y +-+=,直线l :20ax y a ++=,(1) 当直线l 与圆C 相交时,求实数a 的取值范围;(2) 当直线l 与圆C 相交于,A B 两点,且AB =l 的方程.分析 根据点到直线距离等于半径来度量直线与圆相切问题;根据三长关系解决直线与圆相交问题. 解析 (1)圆C :22(4)4x y +-=,故圆心为(0,4)C ,因为直线l 与圆C 相交,所以圆心为(0,4)C 到直线l 的距离2d =<,解得34a <-,故实数a 的取值范围是3(,)4-∞-(2)由题意,直线l 与圆C 相交于,A B 两点,且AB =224+=,化简可得2870a a ++=,即1a =-或7a =-,故所求直线的方程为20x y -+=或7140x y -+=.评注 在处理直线与圆的相交问题时经常用到三长关系,即半弦长,弦心距,半径长构成直角三角形的三边.变式1 对任意的实数k ,直线1y kx =+与圆222x y +=的位置关系一定是( ) A .相离 B. 相切 C.相交但直线不过圆心 D.相交且直线过圆心变式2 过点(1,2)--的直线l 被圆222210x y x y +--+=,则直线l 的斜率为__________.变式3 已知直线l 经过点(1,3)P -且与圆224x y +=相交,截得弦长为l 的方程.例 过点(1,1)P 的直线l 与圆22:(2)(3)9C x y -+-=相交于,A B 两点,则||AB 的最小值为( )A.解析 设圆心(2,3)C 到直线l 的距离d ,由弦长公式||AB ==可知当距离最大d时,弦长||AB 最小.又||d CP ≤==l CP ⊥时取等号,故max d .所以max ||4AB ===.故选B评注 过圆内一定点的所有弦中,过此点的直径为最长弦,过此点且垂直于该直径的弦为最短弦. 变式1 过点(11,2)A 做圆22241640x y x y ++--=的弦,其中弦长为整数的共有( ) A. 16 条 B. 17条 C. 32条 D. 34条例 已知圆的方程为22680x y x y +--=.设该圆过点(3,5)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为( )A. C. 解析 22680x y x y +--=可化为22(3)(4)25x y -+-=,故圆心坐标(3,4),半径为5,点(3,5)在圆内,因为AC 最长,所以AC 为直径,即||10AC =,BD 最短,且BD 过点(3,5),所以||BD ==,所以1||||2S AC BD ==B变式1 如图所示,已知AC ,BD 为圆O :224x y +=的两条相互垂直的弦,垂足为M ,则四边形ABCD 的面积的最大值为__________.例 (2012北京海淀高三期末理13改编)已知圆22:(1)2C x y -+=,过点(1,0)M -的直线l 交圆C 于,A B 两点,若0CA CB ⋅=(C 为圆心),则直线l 的方程为__________.解析 设直线:(1)l y k x =+,即:l 0kx y k -+= 则圆心到直线l 的距离为d =又0CA CB ⋅=,故CA CB ⊥,即△ABC 是等腰三角形,2C π∠=.所以sin142d r π====即k =±,故直线l :10x +=或10x += 变式1 已知O 为平面直角坐标系的原点,过点(2,0)M -的直线l 与圆221x y +=交于,P Q 两点.若12OP OQ ⋅=-,求直线l 的方程.变式2 已知圆C :22(1)(6)25x y ++-=上的两点,P Q 关于直线l :8y kx =+对称,且0OP OQ ⋅=(O 为坐标原点),求直线PQ 的方程题型2 直线与圆的相切关系 思路提示若直线与圆相切,则圆心到直线的距离等于半径,切线的几何性质为:圆心和切点的连线垂直于切线.例 求经过点(1,7)-与圆2225x y +=相切的直线方程.分析 将点(1,7)-代入圆方程得221(7)5025+-=>,知点(1,7)-是圆外一点,故只需求切线的斜率或再求切线上另一点坐标.解析 解法一:依题意,直线的斜率存在,设所求切线斜率为k ,则所求直线方程为7(1)y k x +=-,整理成一般式为70kx y k ---=.5=,化简得3127120k k --=,解得43k =或34k =-. 故所求切线方程为:43250x y --=或34250x y ++=.解法二:依题意,直线的斜率存在,设所求切线方程为0025x x y y +=(00(,)x y 是切点),将坐标(1,7)-代入后得00725x y -=,由00002272525x y x y -=⎧⎪⎨+=⎪⎩,解得0043x y =⎧⎨=-⎩或0034x y =-⎧⎨=-⎩. 故所求切线方程为:43250x y --=或34250x y ++=.评注 已知圆外一点,求圆的切线方程一般有三种方法:①设切点,用切线公式法;②设切线斜率,用判别式法:③设切线斜率,用圆心到切线距离等于圆半径.一般地,过圆外一点可向圆作两条切线,在后两种方法中,应注意斜率不存在的情况.变式1 已知圆22:(1)(2)4C x y -+-=,求过点(1,5)P -的圆的切线方程.变式2 直线l (2)2y k x =-+与圆22:220C x y x y +--=相切,则的一个方向向量为( ) A. (2,2)- B. (1,1) C. (3,2)- D. 1(1,)2例 自点(3,3)A -发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆224470x y x y +--+=相切,求入射光线l 所在直线的方程.分析 利用对称性解决此类反射问题.根据光学特征,对称性的使用既可以使用点的对称,也可以使用圆的对称.解析 已知圆22(2)(2)1x y -+-=关于x 轴的对称圆'C 的方程为22(2)(2)1x y -++=,可设光线所在直线方程为3(3)y k x -=+,所以直线l 与圆'C 相切,圆心'(2,2)C -到直线l的距离1d ==,解得43k =-或34k =-.所以光线所在的直线l 方程为4330x y ++=或3430x y +-=.变式1 自点(3,3)A -发出的光线l 射到x 轴上,被x 轴反射,其反射光线'l 所在直线与圆224470x y x y +--+=相切,求反射光线'l 所在直线的方程.题型3 直线与圆的相离关系思路提示关于直线与圆的相离问题的题目大多是最值问题,即直线上的点与圆上的点的最近或最远距离问题,这样的题目往往要转化为直线上的点与圆心距离的最近和最远距离再加减半径长的问题. 例 (1)直线:1l y x =-的点到圆22:4240C x y x y ++-+=上的点的距离最小值是____________. (2)由直线1y x =+上的点向圆22(3)(2)1x y -++=引切线,则切线长的最小值为( )分析 过直线1y x =+上任意一点向圆22(3)(2)1x y -++=引切线PQ ,即可得到1||PQ O Q PQ ⊥==,那么,当切线长PQ 取最小值时,即1O P 取最小值.解析 (1)圆C 可化为22(2)(1)1x y ++-=,故圆心(2,1)C -到直线1y x =-的距离d ==1d r -=(3) 过1O 作1O H 垂直于直线1y x =+于点H ,过H 作HR 相切圆1O 与R ,连接1O R ,则切线长的最小值为||HR ,圆心(3,2)-到直线10x y -+=的距离d ==||HR =,故选A.变式1 已知点P 是直线40(0)kx y k ++=>上一动点,,PA PB 是圆22:20C x y y +-=的两切线,,A B 是切点,若四边形PACB 的最小面积是2,则k 的值为( )C. D. 2 变式2 已知圆22:1O x y +=和定点(2,1)A ,由圆O 外一点(,)P a b 向圆O 引切线PQ ,切点为Q ,且满足||||PQ PA =.(1)求实数,a b 间满足的等量关系; (2)求线段PQ 长的最小值.题型4 圆与圆的位置关系 思路提示已知两圆半径分别为12,r r ,两圆的圆心距为d ,则:(1) 两圆外离12r r d ⇔+<;(2)两圆外切12r r d ⇔+=; (3)两圆相交1212||r r d r r ⇔-<<+; (4)两圆内切12||r r d ⇔-=;(5)两圆内含12||r r d ⇔->;两圆外切和内切较为重要,这两种位置关系常与椭圆和双曲线的定义综合考查.例 圆221:20O x y +-=和圆222:40O x y y +-=的位置关系是( )A. 外离B. 相交C. 外切D. 内切 分析 判断圆心距与两圆半径的关系解析 由圆221:20O x y +-=得1(0,0)O ,1r =圆222:40O x y y +-=得2(0,2)O ,22r =,121212||||2r r O O r r -<=<+,两圆相交,故选B.变式1 在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是_________.变式2 在平面直角坐标系xOy 中,点(0,3)A ,直线l :24y x =-,设圆C 的半径为1,圆心在l 上,(1) 若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程; (2) 使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是_________.例 已知两圆222610x y x y +---=和2210120x y x y m ++-+= (1)m 取何值时两圆外切.(2)m 取何值时两圆外切,此时公切线方程是什么(3)求45m =时两圆的公共弦所在直线的方程和公共弦的长度.分析 把两圆的一般方程化为标准方程,求两圆的圆心距d ,判断d 与R r +,R r -的关系,再用圆的几何性质分别解决(2)(3)问.解析 两圆的标准方程分别为22(1)(3)11x y -+-=,22(5)(6)61,(61)x y m m -+-=-<,圆心分别为(1,3),(5,6)M N(1) =25m =+(2) 小于两圆圆心距55=,解得,两圆方程222610x y x y +---=与2210120x y x y m ++-+=,相减得861250x y +--+=代入,得43130x y +-+=.(3) 两圆的公共弦所在直线方程为2222(261)(101245)0x y x y x y x y +----+--+=,即43230x y +-=,所以公共弦长为=评注 应注意两圆位置关系由圆心距和两圆半径的和与差的大小关系来确定.变式1 若圆224x y +=与圆22260(0)x y ay a ++-=>,公共弦的长为a =___________.变式2 设两圆12,C C 都和两坐标轴相切,且都过点(4,1),则两圆的圆心距离12||C C =( )A. 4B. 有效训练题1. 已知点(,)P a b 在圆C :224x y +=内(异于圆心),则直线10ax by ++=与圆C 的位置关系是( )A. 相交B. 相切C. 相离D. 不能确定 2.已知a b ≠,且2sin cos 04a a πθθ+-=,2sin cos 04b b πθθ+-=,则连接2(,)a a ,2(,)b b 两点的直线与单位圆的位置关系是( )A. 相交B. 相切C. 相离D. 不能确定3.设,m n R ∈,若直线(1)(1)20m x n y +++-=与圆22(1)(1)1x y -+-=相切,则m n +的取值范围是( )A. 1⎡⎣B. (),11⎡-∞⋃++∞⎣C. 2⎡-+⎣D. (),22⎡-∞-⋃++∞⎣4.若直线1x ya b+=经过点(cos ,sin )M αα,则( ) A. 221a b +≤ B. 221a b +≥ C.22111a b +≤ D. 22111a b +≥5.过点(1,1)P 的直线,将圆形区域22{(,)|4}x y x y +≤分两部分,使得这两部分的面积之差最大,该直线的方程为( )A. 20x y +-=B. 10y -=C. 0x y -=D. 340x y +-=6.若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是( )A. []3,1--B. []1,3-C. []3,1-D. (][),31,-∞-⋃+∞7. 设,m n R ∈,若直线10mx ny +-=与x 轴相交于点A ,与y 轴相交于B ,且l 与圆224x y +=相交所得弦的长为2,O 为坐标原点,则△ABC 面积的最小值为___________8.过点(4,0)-作直线l 与圆2224200x y x y ++--=交于,A B 两点,如果||8AB =,则l 的方程为__________.9.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则的最大值是_______. 10.已知点(3,1)M ,直线40ax y -+=及圆22(1)(2)4x y -+-=. (1)求过点M 的圆的切线方程;(2)若直线40ax y -+=与圆相切,求a 的值(3)若直线40ax y -+=与圆相交于,A B 两点,且AB 弦的长为a 的值11.已知圆M 的方程为22(2)1x y +-=(M 为圆心),直线的方程为20x y -=,点P 在直线l 上,,过点P 作圆M 的切线,PA PB ,切点为,A B . (1)若060APB ∠=,试求点的坐标;(2)若点P 的坐标为(2,1),过P 作直线与圆M 交于,C D 两点,当CD =CD 的方程;(3)求证:经过,,A P M 三点的圆必过定点,并求出所有定点的坐标.1112. 已知圆C 过点(1,1)P ,且与圆222:(2)(2)(0)M x y r r +++=>关于直线20x y ++=对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ MQ ⋅的最小值.(M 为圆M 的圆心);(3)过点P 作两条相异直线分别与圆C 相交于,A B ,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行请说明理由.。

九年级上册数学《圆》点、线和圆的位置关系-知识点整理

九年级上册数学《圆》点、线和圆的位置关系-知识点整理

圆知识要点圆的定义:(1)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点叫圆心,线段OA叫做半径;(2)圆是到定点的距离等于定长的点的集合。

1、点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:d<r <====>点P在⊙O内;d=r <====>点P在⊙O上;d>r <====>点P在⊙O外。

2、直线与圆的位置关系(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。

如果⊙O的半径为r,圆心O到直线l的距离为d,那么:直线l与⊙O相交<====>d<r;直线l与⊙O相切<====>d=r;直线l与⊙O相离<====>d>r;3、切线的判定和性质(1)、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

(2)、切线的性质定理圆的切线垂直于经过切点的半径。

如右图中,OD垂直于切线。

4、切线长定理(1)、切线长在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。

(2)、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

如右图中:圆外一点P与圆O相切与D,E两点,所以有PD=PE,可以通过连接OP来证明。

5、过三点的圆(1)、不在同一直线上的三个点确定一个圆。

(2)、三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆。

如图圆O是△ABC的外接圆(3)、三角形的外心三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。

(4)、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。

(5)、三角形的内切圆与三角形的各边都相切的圆叫做三角形的内切圆。

如图圆O是△A'B'C'的内切圆。

第四节 直线与圆、圆与圆的位置关系

第四节  直线与圆、圆与圆的位置关系

[题点发散 1]
已知圆 C1:(x-a)2+(y+2)2=4 与圆 C2:(x+ 1 外切 ,则 ab 的最大值为_____ 4 . b)2+(y+2)2=1 相 内切
解析:由 C1 与 C2 内切,得 a+b2+-2+22=1. 即(a+b) =1,又
2
a+b 2 1 ab≤ =4,当且仅当 2
第四节
直线与圆、圆与圆的位置关系
2.(人教 B 版教材习题改编)两圆 x2+y2=1 与(x+4)2+(y-a)2
± 2 5或 0 =25 相切,则常数 a=____________.
c 3. 两圆交于点 A(1,3)和 B(m,1), 两圆的圆心都在直线 x-y+Байду номын сангаас= 2
3 0 上,则 m+c 的值等于________ .
第四节
直线与圆、圆与圆的位置关系
2.(2014· 江苏高考)在平面直角坐标系 xOy 中,直线 x+2y-3 2 55 5 =0 被圆(x-2)2+(y+1)2=4 截得的弦长为________ .
解析: 因为圆心 (2 ,- 1) 到直线 x + 2y - 3 = 0 的距离 d = |2-2-3| 3 = ,所以直线 x+2y-3=0 被圆截得的弦长为 5 5 2 9 2 55 4- = . 5 5
解析:由两圆存在四条切线,故两圆外离, a+b2+-2+22>3. ∴(a+b)2>9.即 a+b>3 或 a+b<-3. |a+b-1| 又圆心(a,b)到直线 x+y-1=0 的距离 d= >1, 2 ∴直线 x+y-1=0 与圆(x-a)2+(y-b)2=1 相离.
解析:有题意可知线段 AB =0 上,代入得 m+c=3.

4 第4讲 直线与圆、圆与圆的位置关系

4 第4讲 直线与圆、圆与圆的位置关系

第4讲直线与圆、圆与圆的位置关系1.直线与圆的位置关系设直线l:Ax+By+C=0(A2+B2≠0),圆:(x-a)2+(y-b)2=r2(r>0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).常用知识拓展1.过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.2.过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y -b)=r2.3.过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y =r2.4.直线与圆相交时,弦心距d ,半径r ,弦长的一半12l 满足关系式r 2=d 2+⎝⎛⎭⎫12l 2.判断正误(正确的打“√”,错误的打“×”)(1)若直线与圆组成的方程组有解,则直线与圆相交或相切.( )(2)若两个圆的方程组成的方程组无解,则这两个圆的位置关系为外切.( ) (3)“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的必要不充分条件.( ) (4)联立两相交圆的方程,并消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( )答案:(1)√ (2)× (3)× (4)√直线y =x +1与圆x 2+y 2=1的位置关系为( )A .相切B .相交但直线不过圆心C .直线过圆心D .相离解析:选B.因为圆心(0,0)到直线y =x +1的距离d =12=22,而0<22<1,所以直线和圆相交,但不过圆心.圆Q :x 2+y 2-4x =0在点P (1,3)处的切线方程为( )A .x +3y -2=0B .x +3y -4=0C .x -3y +4=0D .x -3y +2=0解析:选D.因点P 在圆上,且圆心Q 的坐标为(2,0), 所以k PQ =-32-1=-3,所以切线斜率k =33,所以切线方程为y -3=33(x -1), 即x -3y +2=0.若圆C1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则实数m =________. 解析:圆C 1的圆心是原点(0,0),半径r 1=1,圆C 2:(x -3)2+(y -4)2=25-m ,圆心C 2(3,4),半径r 2=25-m ,由两圆外切,得|C 1C 2|=r 1+r 2=1+25-m =5,所以m =9.答案:9(2018·高考全国卷Ⅰ)直线y =x +1与圆x 2+y 2+2y -3=0交于A ,B 两点,则|AB |=________.解析:由题意知圆的方程为x 2+(y +1)2=4,所以圆心坐标为(0,-1),半径为2,则圆心到直线y =x +1的距离d =|-1-1|2=2,所以|AB |=222-(2)2=2 2.答案:2 2直线与圆的位置关系(典例迁移)(1)已知点M (a ,b )在圆O :x 2+y 2=1外, 则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定(2)(一题多解)圆x 2+y 2=1与直线y =kx +2没有公共点的充要条件是________. 【解析】 (1)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,从而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b2=1a 2+b2<1,所以直线与圆相交.(2)法一:将直线方程代入圆方程,得(k 2+1)x 2+4kx +3=0,直线与圆没有公共点的充要条件是Δ=16k 2-12(k 2+1)<0,解得k ∈(-3,3).法二:圆心(0,0)到直线y =kx +2的距离d =2k 2+1,直线与圆没有公共点的充要条件是d >1,即2k 2+1>1,解得k ∈(-3,3). 【答案】 (1)B (2)k ∈(-3,3)[迁移探究] (变条件)若将本例(1)的条件改为“点M (a ,b )在圆O :x 2+y 2=1上”,则直线ax +by =1与圆O 的位置关系如何?解:由点M 在圆上,得a 2+b 2=1,所以圆心O 到直线ax +by =1的距离d =1a 2+b2=1,则直线与圆O 相切.判断直线与圆的位置关系常用的方法[提醒] 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.1.直线x sin θ+y cos θ=1+cos θ与圆x 2+(y -1)2=12的位置关系是( )A .相离B .相切C .相交D .以上都有可能解析:选A.因为圆心到直线的距离d =|cos θ-1-cos θ|sin 2θ+cos 2θ=1>22,所以直线与圆相离.2.(2019·四川教育联盟考试)若无论实数a 取何值时,直线ax +y +a +1=0与圆x 2+y 2-2x -2y +b =0都相交,则实数b 的取值范围为( )A .(-∞,2)B .(2,+∞)C .(-∞,-6)D .(-6,+∞)解析:选C.因为x 2+y 2-2x -2y +b =0表示圆,所以2-b >0,即b <2. 因为直线ax +y +a +1=0过定点(-1,-1),所以点(-1,-1)在圆x 2+y 2-2x -2y +b =0的内部,所以6+b <0,解得b <-6. 综上,实数b 的取值范围是(-∞,-6).故选C.圆的切线与弦长问题(多维探究)角度一 圆的切线问题过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( )A .2x +y -5=0B .2x +y -7=0C .x -2y -5=0D .x -2y -7=0【解析】 因为过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条, 所以点(3,1)在圆(x -1)2+y 2=r 2上, 因为圆心与切点连线的斜率k =1-03-1=12,所以切线的斜率为-2,则圆的切线方程为y -1=-2(x -3),即2x +y -7=0.故选B. 【答案】 B角度二 圆的弦长问题(1)(2019·湖北省重点中学联考(二))设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3),且与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为( )A .3x +4y -12=0或4x -3y +9=0B .3x +4y -12=0或x =0C .4x -3y +9=0或x =0D .3x -4y +12=0或4x +3y +9=0(2)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=________.【解析】 (1)当直线l 的斜率不存在时,直线l 的方程为x =0,联立方程得⎩⎪⎨⎪⎧x =0,x 2+y 2-2x -2y -2=0,得⎩⎪⎨⎪⎧x =0,y =1-3或⎩⎪⎨⎪⎧x =0,y =1+3,所以|AB |=23,符合题意.当直线l 的斜率存在时,设直线l 的方程为y =kx +3,因为圆x 2+y 2-2x -2y -2=0,即(x -1)2+(y -1)2=4,其圆心为C (1,1),圆的半径r =2,圆心C (1,1)到直线y =kx +3的距离d =|k -1+3|k 2+1=|k +2|k 2+1,因为d 2+⎝⎛⎭⎫|AB |22=r 2,所以(k +2)2k 2+1+3=4,解得k =-34,所以直线l 的方程为y =-34x +3,即3x +4y -12=0.综上,直线l 的方程为3x +4y -12=0或x =0.故选B.(2)由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,所以圆心C (2,1)在直线x +ay -1=0上,所以2+a -1=0,所以a =-1,所以A (-4,-1).所以|AC |2=36+4=40.又r =2,所以|AB |2=40-4=36.所以|AB |=6. 【答案】 (1)B (2)6(1)求直线被圆截得的弦长的常用方法①几何法:用圆的几何性质求解,运用弦心距、半径及弦的一半构成的直角三角形,计算弦长|AB |=2r 2-d 2;②代数法:联立直线与圆的方程得方程组,消去一个未知数得一元二次方程,再利用根与系数的关系结合弦长公式求解,其公式为|AB |=1+k 2|x 1-x 2|.(2)圆的切线方程的求法①几何法:设切线方程为y -y 0=k (x -x 0),利用点到直线的距离公式表示出圆心到切线的距离d ,然后令d =r ,进而求出k ;②代数法:设切线方程为y -y 0=k (x -x 0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0进而求得k .1.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A .2x +y +5=0或2x +y -5=0 B .2x +y +5=0或2x +y -5=0 C .2x -y +5=0或2x -y -5=0 D .2x -y +5=0或2x -y -5=0解析:选A.设直线方程为2x +y +c =0,由直线与圆相切,得d =|c |5=5,c =±5,所以所求方程为2x +y +5=0或2x +y -5=0.2.(2019·广西两市联考)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________.解析:设圆心为(a ,b )(a >0,b >0),半径为r ,则由题可知a =2b ,a =r ,r 2=b 2+3,解得a =r =2,b =1,所以所求的圆的方程为(x -2)2+(y -1)2=4.答案:(x -2)2+(y -1)2=4圆与圆的位置关系(典例迁移)(1)已知圆C 1:(x -a )2+(y +2)2=4与圆C 2:(x +b )2+(y +2)2=1相外切,则ab的最大值为( )A.62B.32C.94D .2 3(2)两圆C 1:x 2+y 2+4x +y +1=0,C 2:x 2+y 2+2x +2y +1=0相交于A ,B 两点,则|AB |=________.【解析】 (1)由圆C 1与圆C 2相外切,可得(a +b )2+(-2+2)2=2+1=3,即(a +b )2=a 2+2ab +b 2=9,根据基本不等式可知9=a 2+2ab +b 2≥2ab +2ab =4ab ,即ab ≤94,当且仅当a =b 时,等号成立.故选C.(2)由(x 2+y 2+4x +y +1)-(x 2+y 2+2x +2y +1)=0得弦AB 所在直线方程为2x -y =0. 圆C 2的方程为(x +1)2+(y +1)2=1, 圆心C 2(-1,-1),半径r 2=1. 圆心C 2到直线AB 的距离 d =|2×(-1)-(-1)|5=15.所以|AB |=2r 22-d 2=21-15=455. 【答案】 (1)C (2)455[迁移探究] (变条件)若本例(1)条件中“外切”变为“内切”,求ab 的最大值. 解:由C 1与C 2内切, 得(a +b )2+(-2+2)2=1.即(a +b )2=1, 又ab ≤⎝ ⎛⎭⎪⎫a +b 22=14,当且仅当a =b 时等号成立,故ab 的最大值为14.(1)几何法判断圆与圆的位置关系的步骤 ①确定两圆的圆心坐标和半径;②利用平面内两点间的距离公式求出圆心距d ,并求r 1+r 2,|r 1-r 2|; ③比较d ,r 1+r 2,|r 1-r 2|的大小,然后写出结论. (2)两圆公共弦长的求法两圆公共弦长,先求出公共弦所在直线的方程,在其中一圆中,由弦心距d ,半弦长l2,半径r 所在线段构成直角三角形,利用勾股定理求解.1.圆C 1:(x -m )2+(y +2)2=9与圆C 2:(x +1)2+(y -m )2=4外切,则m 的值为( ) A .2B .-5C .2或-5D .不确定解析:选C.由C 1(m ,-2),r 1=3;C 2(-1,m ),r 2=2; 则两圆心之间的距离为|C 1C 2|=(m +1)2+(-2-m )2=2+3=5,解得m =2或-5.故选C.2.圆C 1:x 2+y 2-4x +1=0与圆C 2:x 2+y 2-2x -2y +1=0的公共弦长为( ) A .2 B. 3 C .3D .4解析:选A.两圆联立错误!解得x -y =0.圆C 1可写成(x -2)2+y 2=3,故C 1(2,0),半径为3,圆心(2,0)到直线x -y =0的距离为d =|2|12+12=2,故公共弦长为2(3)2-(2)2=2.直观想象——解决直线与圆的综合问题直观想象是发现和提出数学问题、分析和解决数学问题的重要手段,是探索和形成论证思路、进行逻辑推理、构建抽象结构的思维基础。

第4讲 直线与圆、圆与圆的位置关系

第4讲 直线与圆、圆与圆的位置关系

系.
2.圆的弦长问题
逻辑推理
2.能用直线和圆的方程解决一些 3.圆的切线问题
直观想象
简单的数学问题与实际问题
2
4.圆与圆的位置关系
直线与圆、圆与圆的位置关系
01
02
3
《高考特训营》 ·数学
知识特训
能力特训
返 回
直线与圆、圆与圆的位置关系
01
4
《高考特训营》 ·数学
知识特训
返 回
直线与圆、圆与圆的位置关系
×+× − +
+

= <r,又因为直线不过圆心,

所以直线与圆相交但不过圆心.
16
返 回
直线与圆、圆与圆的位置关系
《高考特训营》 ·数学
[记结论·提素能]
【记结论】
1.圆的切线方程常用结论
(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线的方程为x0x
+y0y=r2;
几何特征
代数特征
公切线条数
相交
R-r<d<R+r
___________
两组实数解
2
内切
__________
d=R-r
一组实数解
1
内含
d<R-r
无实数解
0
________
直线与圆、圆与圆的位置关系
[思考]
《高考特训营》 ·数学
若两圆相交,如何求公共弦所在直线的方程?
点拨:从两圆的方程中消掉二次项后得到的二元一次方程
2025届
直线与圆、圆与圆的位置关系
《高考特训营》
返 回
《高考特训营》
·数学 ·数学
第4讲 直线与圆、圆与圆的位置

圆和直线的位置关系公式

圆和直线的位置关系公式

圆和直线的位置关系公式圆和直线的位置关系公式是数学中最重要的公式之一,用于计算圆和直线之间的位置关系。

圆和直线的关系可以用几何图形来表示,它们的位置关系可以用几何学方法来表达,这就是圆和直线的位置关系公式。

一、圆和直线的位置关系圆和直线之间的位置关系可以分为三种:相交、相切和内切。

1. 相交:圆和直线的位置关系,当圆和直线的位置关系是相交时,圆和直线有两个公共点,这两个点就是它们的交点。

2. 相切:当圆和直线的位置关系是相切时,它们有一个公共点,这个点就是它们的切点。

3. 内切:当圆和直线的位置关系是内切时,它们有一个公共点,这个点就是它们的内切点。

二、圆和直线的位置关系公式既然已经了解了圆和直线之间的位置关系,那么下面就要介绍圆和直线的位置关系公式。

1. 相交的位置关系公式:(x-a)^2 + (y-b)^2 = r^22. 相切的位置关系公式:(x-a)^2 + (y-b)^2 = r^23. 内切的位置关系公式:(x-a)^2 + (y-b)^2 = r^2上面的公式中,a,b是圆心的坐标,r是圆的半径。

三、应用圆和直线的位置关系公式不仅可以用来计算圆和直线之间的位置关系,还可以用来计算圆的面积和周长、求解三角形等。

1. 求圆的面积根据面积公式:面积=πr^2,可以算出圆的面积。

2. 求圆的周长根据周长公式:周长=2πr,可以算出圆的周长。

3. 求解三角形根据圆和直线的位置关系公式,可以求出三角形的三条边长,然后根据三角形的定理,可以求出三角形的其他属性。

四、总结从上面的介绍可以看出,圆和直线的位置关系公式是一个非常重要的公式,它可以用来计算圆和直线之间的位置关系,也可以用来计算圆的面积和周长,还可以用来求解三角形等。

因此,圆和直线的位置关系公式在几何学中具有重要的意义,是学习数学的重要基础。

高中数学高考第4讲 直线与圆、圆与圆的位置关系

相切、相离的条件及判断方法。通过几何法和代数法,可以准确判断直线与圆的位置关系。同时,文档也探讨了圆与圆之间的位置关系,包括外离、外切、相交、内切和内含等。在解析过程中,穿插了多个经典例题,如通过方程组解的情况判断直线与圆的位置关系,计算直线与圆相交时的弦长,以及利用圆心距与半径的关系判断两圆的位置关系等。每个例题后都给出了详细的答案和解析,有助于读者深化对知识点的理解和应用。此外,文档还总结了常用结论和易错点,提醒读者注意切线方程的应用和避免常见误区。

《直线与圆的位置关系》 讲义

《直线与圆的位置关系》讲义在我们的数学世界中,直线和圆是两个非常重要的几何图形。

它们之间的位置关系不仅是数学中的基础知识,也在实际生活和各种科学领域中有着广泛的应用。

接下来,让我们一起深入探讨直线与圆的位置关系。

一、直线与圆的位置关系的定义直线与圆的位置关系有三种情况:相离、相切和相交。

当直线与圆没有公共点时,我们称直线与圆相离。

想象一下,一个圆在地上安静地躺着,而一条直线远远地从旁边经过,两者之间没有任何接触,这就是相离的状态。

当直线与圆有且只有一个公共点时,直线与圆相切。

此时,直线被称为圆的切线,这个公共点叫做切点。

就好像直线轻轻触碰了一下圆,然后就离开了,只留下这一个“亲密接触”的瞬间。

当直线与圆有两个公共点时,直线与圆相交。

可以想象成直线像一把刀一样切入圆中,产生了两个交点。

二、判断直线与圆位置关系的方法1、几何法通过比较圆心到直线的距离 d 与圆的半径 r 的大小关系来判断。

若 d > r ,则直线与圆相离;若 d = r ,则直线与圆相切;若 d <r ,则直线与圆相交。

那么如何求圆心到直线的距离呢?对于直线 Ax + By + C = 0 ,圆的方程为(x a)²+(y b)²= r²,圆心为(a, b) ,则圆心到直线的距离 d =|Aa + Bb + C| /√(A²+ B²) 。

2、代数法将直线方程与圆的方程联立,消去 y (或 x ),得到一个关于 x (或 y )的一元二次方程。

通过判断这个一元二次方程的根的判别式Δ 的值来确定位置关系。

若Δ < 0 ,则直线与圆相离;若Δ = 0 ,则直线与圆相切;若Δ > 0 ,则直线与圆相交。

三、直线与圆相切的性质1、切线的性质切线垂直于经过切点的半径。

这是一个非常重要且常用的性质。

如果我们知道某条直线是圆的切线,并且知道切点,那么连接圆心和切点的半径就与切线垂直。

2、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

高考数学第一轮单元复习课件 第45讲 直线与圆、圆与圆的位置关系


► 探究点2 圆的切线问题
例 2 已知圆 C:x2+y2+2x-4y+3=0. (1)若 C 的切线在 x 轴,y 轴上的截距的绝对值相等,求 此切线方程; (2)从圆 C 外一点 P(x1,y1)向圆引一条切线,切点为 M, O 为原点,且有|PM|=|PO|,求使|PM|最小的 P 点的坐标.
【思路】 (1)依据截距关系确定切线的斜率,设出直 线方程,利用点到直线的距离等于半径求解;
(2)首先确定P点的轨迹方程,从而确定|PM|最短时点 P的坐标满足的关系式.
【解答】 (1)∵切线在 x 轴,y 轴上的截距的绝对值 相等,∴切线的斜率是±1.设切线的方程为 y=x+b 或 y= -x+b,由点到直线的距离公式解得切线的方程为:x+y -3=0,x+y+1=0,x-y+5=0,x-y+1=0.
变式题 求圆心在直线 x+y=0 上,且过两圆 x2+y2 -2x+10y-24=0,x2+y2+2x+2y-8=0 的交点的圆的 方程.
【思路】 求出两圆的交点坐标,利用圆心到两交点的 距离都相等于半径,求出圆心和半径,也可以利用两交 点连结所得弦的垂直平分线与直线x+y=0的交点,就 是圆心;还可以利用圆系,先设出过两圆点的圆的方程, 再求系数.

x d 2 y2 r22 ②
将①②两式联立,研究此方程组的解.
如果方程组有解,且只有两解,这时相应的两 圆 相交于两点 。如图 45-2.
图 45-2
如果方程组有唯一解,这时两圆 相切(外切或内切) 。如 图 45-3.
图 45-3
如果方程组无解,这时两圆 外离或内含 。如图 45-4.
知识梳理
1.直线与圆的位置关系的判定方法 (1)代数法(或 Δ 法):看由直线与圆的方程组成的方程组有 无实数解。 将直线 l 的方程与圆 C 的方程联立,消元后得到关于 x(或 y)的一元二次方程. ①当 Δ>0 时,方程有 两 解,此时方程组也有两组实数 解,说明直线 l 与圆 C 相交 ; ②当 Δ=0 时,方程有唯一 解,此时方程组也有唯一一组 解,说明直线 l 与圆 C 相切 ;

高考数学一轮复习---直线与圆、圆与圆的位置关系知识点与题型复习

直线与圆、圆与圆的位置关系知识点与题型复习一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>02.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. ③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. (2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+221⎪⎭⎫⎝⎛l .三、考点解析考点一 直线与圆的位置关系 考法(一) 直线与圆的位置关系的判断例、直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交 B .相切 C .相离 D .不确定[解题技法]判断直线与圆的位置关系的常见方法: (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.考法(二) 直线与圆相切的问题例、(1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( )A .3x +4y -4=0B .4x -3y +4=0C .x =2或4x -3y +4=0D .y =4或3x +4y -4=0 (2)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.考法(三) 弦长问题例、(1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12 B .1 C.22D.2 (2)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( ) A .4π B .2π C .9π D .22π跟踪练习:1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎪⎪⎭⎫⎝⎛2222,的切线方程是________. 2.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.考点二 圆与圆的位置关系例、已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离变式练习:1.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-112.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.[解题技法]几何法判断圆与圆的位置关系的3步骤: (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.课后作业1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3 D .±32.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条3.直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( ) A.π6或5π6 B .-π3或π3 C .-π6或π6 D.π64.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0 D .x -2y -7=05.若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( ) A .±1 B .±24 C .± 2 D .±326.过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A .y =-34 B .y =-12 C .y =-32 D .y =-147.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 8.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 9.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________.10.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.11.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程.提高练习1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( ) A. 2 B.3 C .2 D .32.在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________. 3.已知圆C :x 2+(y -a )2=4,点A (1,0).(1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. (2009 湖北省宜昌市) 如图,日食图中表示太阳和月亮的分别为两个圆,这两个圆的位置关系是 .

答案:相交 20090923163742343860 4.4 点与圆、直线与圆、圆与圆的位置关系 填空题 基础知识 2009-09-23

2. (2009 湖北省襄樊市) 如图,在RtABC△中,9042CACBC∠°,,,分别以AC、BC为直径画半圆,则图中阴影部分的面积为 .(结果保留)

答案:542 20090923135947312514 4.4 点与圆、直线与圆、圆与圆的位置关系 填空题 解决问题 2009-09-23

3. (2009 湖北省襄樊市) 已知1O和2O的半径分别为3cm和2cm,且121cmOO,则1O与2O的位置关系为 .

答案:内切 20090923114042515250 4.4 点与圆、直线与圆、圆与圆的位置关系 填空题 基本技能 2009-09-23

C A

B

图 4. (2009 内蒙古鄂尔多斯市) 相交两圆的半径分别为6cm和8cm.请你写出一个符合条件的圆心距 cm.

答案:(只要求写一个在2与14之间的数即可) 20090921153637031112 4.4 点与圆、直线与圆、圆与圆的位置关系 填空题 双基简单应用 2009-09-21

5. (2009 新疆乌鲁木齐) 若相交两圆的半径分别为1和2,则此两圆的圆心距可能是( ) A.1 B.2 C.3 D.4

答案:B 20090921134509656256 4.4 点与圆、直线与圆、圆与圆的位置关系 选择题 基本技能 2009-09-21

6. (2009 重庆市) 已知1O⊙的半径为3cm,2O⊙的半径为4cm,两圆的圆心距12OO为7cm,则1O⊙与2O⊙的位置关系是 .

答案:外切 20090921101910953294 4.4 点与圆、直线与圆、圆与圆的位置关系 填空题 基本技能 2009-09-21

7. (2009 浙江省台州市) 大圆半径为6,小圆半径为3,两圆圆心距为10,则这两圆的位置关系为( ) A.外离 B.外切 C.相交 D.内含

答案:A 20090918170158359156 4.4 点与圆、直线与圆、圆与圆的位置关系 选择题 基本技能 2009-09-18

8. (2009 内蒙古赤峰市) 若两圆的直径分别为2cm和10cm,圆心距是8cm,则这两圆的位置关系是( ) A.内切 B.相交 C.外切 D.外离

答案:D 20090918154607687704 4.4 点与圆、直线与圆、圆与圆的位置关系 选择题 基础知识 2009-09-18

9. (2009 浙江省绍兴市) 如图,A⊙,B⊙的半径分别为1cm,2cm,圆心距AB为5cm.如果A⊙由图示位置沿直线AB向右平移3cm,则此时该圆与B⊙的位置关系是_____________.

答案:相交 20090918143256250558 4.4 点与圆、直线与圆、圆与圆的位置关系 填空题 基本技能 2009-09-18

10. (2009 浙江省宁波市) 如图,A⊙、B⊙的圆心A、B在直线l上,两圆的半径都为1cm,开始时圆心距4cmAB,现A⊙、B⊙同时沿直线l以每秒2cm的速度相向移动,则当两圆相切时,A⊙运动的时间为 秒.

答案:12或32 20090918091634734764 4.4 点与圆、直线与圆、圆与圆的位置关系 动态几何 双基简单应用 2009-09-18

11. (2009 陕西省) 图中圆与圆之间不同的位置关系有( ). A.2种 B.3种 C.4种 D.5种

B A 答案:A 20090918090222562815 4.4 点与圆、直线与圆、圆与圆的位置关系 选择题 基础知识 2009-09-18

12. (2009 山西省) 如图,AB是O⊙的直径,AD是O⊙的切线,点C在O⊙上,BCOD∥,23ABOD,,则BC的长为( )

A.23 B.32 C.32 D.22

答案:A 20090917140748984925 4.4 点与圆、直线与圆、圆与圆的位置关系 选择题 数学思考 2009-09-17

13. (2009 吉林省长春市) 两圆的半径分别为2和5,圆心距为7,则这两圆的位置关系为( ) A.外离 B.外切 C.相交 D.内切

答案:B 2009091618482362569 4.4 点与圆、直线与圆、圆与圆的位置关系 选择题 基础知识 2009-09-16

14. (2009 浙江省湖州市) 已知1O⊙与2O⊙外切,它们的半径分别为2和3,则圆心距12

OO

ABC

D O 的长是( ) A.12OO=1 B.12OO=5 C.1<12OO<5 D.12OO>5

答案:B 20090916162036828973 4.4 点与圆、直线与圆、圆与圆的位置关系 选择题 基本技能 2009-09-16

15. (2009 湖南省益阳市) 已知⊙O1和⊙O2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O1O2的取值范围在数轴上表示正确的是( )

答案:A 20090908154050375878 4.4 点与圆、直线与圆、圆与圆的位置关系 选择题 双基简单应用 2009-09-08

16. (2009 广西河池市) 若两圆的半径分别是1cm和5cm,圆心距为6cm,则这两圆的位置关系是( ) A.内切 B.相交 C.外切 D.外离

答案:C 20090908091309593197 4.4 点与圆、直线与圆、圆与圆的位置关系 选择题 双基简单应用 2009-09-08

17. (2009 黑龙江省齐齐哈尔市) 已知相交两圆的半径分别为5cm和4cm,公共弦长为6cm,则这两个圆的圆心距是______________.

B. 3 1 0 2 4 5 D. 3 1 0 2 4 5 A. 3 1 0 2 4 5

C. 3 1 0 2 4 5 答案:(47)cm 20090907173330609498 4.4 点与圆、直线与圆、圆与圆的位置关系 填空题 解决问题 2009-09-07

18. (2009 广西桂林市) 右图是一张卡通图,图中两圆的位置关系是( ). A.相交 B.外离 C.内切 D.内含

答案:D 20090907165653453916 4.4 点与圆、直线与圆、圆与圆的位置关系 选择题 基础知识 2009-09-07

19. (2009 广西崇左市) 如图,正方形ABCD中,E是BC边上一点,以E为圆心、EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sinEAB的值为 .

答案:35 20090907152136484916 4.4 点与圆、直线与圆、圆与圆的位置关系 填空题 解决问题 2009-09-07

D C E

B A 20. (2009 广东省中山市) 在ABCD中,10AB,ADm=,60D°,以AB为直径作O⊙,

(1)求圆心O到CD的距离(用含m的代数式来表示); (2)当m取何值时,CD与O⊙相切.

答案:.解:(1)分别过AO,两点作AECDOFCD,,垂足分别为点E,点F, AEOFOF∥,就是圆心O到CD的距离.

四边形ABCD是平行四边形, ABCDAEOF∥,. 2分

在RtADE△中,60sinsin60AEAEDDADAD°,,°, 333222AEAEmOFAEmm,,,

圆心到CD的距离OF为32m (2)32OFm, AB为O⊙的直径,且10AB,

当5OF时,CD与O⊙相切于F点,

即3103523mm,,

A D B C O

图(1) A D B C O E

F 图(2)

A D B C O E

F 当1033m时,CD与O⊙相切.

20090907143512984211 4.4 点与圆、直线与圆、圆与圆的位置关系 猜想、探究题 解决问题 2009-09-07

21. (2009 广东省肇庆市) 若1O⊙与2O⊙相切,且125OO,1O⊙的半径12r,则2O⊙的半径2r是( ) A. 3 B. 5 C. 7 D. 3 或7

答案:D 20090907101239662535 4.4 点与圆、直线与圆、圆与圆的位置关系 选择题 双基简单应用 2009-09-07

22. (2009 广东省湛江市) 如图,12OO⊙、⊙的直径分别为2cm和4cm,现将1O⊙向2O⊙平移,当12OO= cm时,1O⊙与2O⊙相切.

答案:1或3 20090907090216194711 4.4 点与圆、直线与圆、圆与圆的位置关系 填空题 解决问题

O1 O

2

相关文档
最新文档