第四章 习题解答
高频电子线路最新版课后习题解答第四章 高频功率放大器习题解答

思考题与习题4.1 按照电流导通角θ来分类,θ=180度的高频功率放大器称为甲类功放,θ>90度的高频功放称为甲乙类功放,θ=90度的高频功率放大器称为乙类功放,θ<90度的高频功放称为丙类功放。
4.2 高频功率放大器一般采用LC谐振回路作为负载,属丙类功率放大器。
其电流导通角θ<90度。
兼顾效率和输出功率,高频功放的最佳导通角θ= 60~70 。
高频功率放大器的两个重要性能指标为电源电压提供的直流功率、交流输出功率。
4.3 高频功率放大器通常工作于丙类状态,因此晶体管为非线性器件,常用图解法进行分析,常用的曲线除晶体管输入特性曲线,还有输出特性曲线和转移特性曲线。
4.4 若高频功率放大器的输入电压为余弦波信号,则功率三极管的集电极、基极、发射极电流均是余弦信号脉冲,放大器输出电压为余弦波信号形式的信号。
4.5 高频功放的动态特性曲线是斜率为1-的一条曲线。
R∑υ对应的静态特性曲线的交点位于放大区就4.6对高频功放而言,如果动态特性曲线和BEmaxυ称为欠压工作状态;交点位于饱和区就称为过压工作状态;动态特性曲线、BEmax 对应的静态特性曲线及临界饱和线交于一点就称为临界工作状态。
V由大到小变化时,4.7在保持其它参数不变的情况下,高频功率放大器的基级电源电压BB功放的工作状态由欠压状态到临界状态到过压状态变化。
高频功放的集电极V(其他参数不变)由小到大变化时,功放的工作状态由过压状态到电源电压CCV(其它参数不变)由小临界状态到欠压状态变化。
高频功放的输入信号幅度bm到大变化,功放的工作状态由欠压状态到临界状态到过压状态变化。
4.8 丙类功放在欠压工作状态相当于一个恒流源;而在过压工作状态相当于一个恒压源。
集电极调幅电路的高频功放应工作在过压工作状态,而基级调幅电路的高频功放应工作在欠压工作状态。
发射机末级通常是高频功放,此功放工作在临界工作状态。
4.9 高频功率放大器在过压工作状态时输出功率最大,在弱过压工作状态时效率最高。
电磁学赵凯华,陈熙谋第三版)第四章 习题及解答

习题 ! ! "
(")当金属板上带电面密度为 ("!% 时,两层介质的分界面上的极化 电荷面密度 "!);
(&)极板间电势差 *;
(!)两层介质中的电位移 +"
解:($) 设上极板带正电,面电荷密度为 "!% ,下极板带负电,面电
荷密度为 !"!% ,则可得
#
#
+ & "!% ,#
,$
&+ !$ !%
密度。由此
"!’
)!!·!
)!!·( ! !")!$ "
)!!$
![ !(
(
! !" ) ,]
{ } !
)!!$
!#
! !"
#!$ $
$ [ !" $ *( !# ! !" )(
]!$
!(
!
!
"
) [
#!$ $( !# ! !" )!$ !" $ *( !# ! !" )( ]# !#$
!
)! ( !# ! !" )#!$ $ [ !" $ *( !# ! !" )(
(%)极板间各处的电势( 设正极板处 ($ # $); (#)画 & !)、’ !)、( !) 曲线; (!)已知极板面积为 $" (( "% ,求电容 *,并与不加电
介质时的电容 *$ 比较。 解:(() 设本题图中电容器内部从左到右分成 !、
"、# 区。由介质中的高斯定理可解出
习题 ! ! !
从而
的介电常量是变化的,在一极板处为 !" ,在另一极板处为 !# ,其它处的介电 常量与到 !" 处的距离成线性关系,略去边缘效应。
黎曼几何第四章习题解答

4
5¿
·‚kU X, Z = ∇U X, Z + X, ∇U Z , Ïd
DX dt .
2
y²µé?Û÷γ
1w•þ|Z (t),3t = 0?§Ï•X (γ (0)) = 0, k (∇γ R)(γ (0), X (γ (0)), γ (0), Z (0)) = 0 (4)
,˜•¡kµ LHS of (4) = = = γ R(γ , X, γ , Z )(0) − R(∇γ γ , X, γ , Z )(0) − R(γ , ∇γ X, γ , Z )(0) −R(γ , X, ∇γ γ , Z )(0) − R(γ , X, γ , ∇γ Z )(0) γ R(γ , X )γ , Z (0) − R(γ , ∇γ X )γ , Z (0) − R(γ , X )γ , ∇γ Z (0) ∇γ (R(γ , X )γ ), Z (0) − R(γ , ∇γ X )γ , Z (0)
Ï•[ei , ej ]p = ∇ei ej (p) − ∇ej ei (0) = 0 (8) + (9)3p: Š•µ
R(el , eh )∇ek ei (p) + R(eh , ek )∇el ei (p) + R(ek , el )∇eh ei (p) +R([ek , el ], eh )ei (p) − ∇[[ek ,el ],eh ] ei (p) +R([el , eh ], ek )ei (p) − ∇[[el ,eh ],ek ] ei (p) +R([eh , ek ], el )ei (p) − ∇[[eh ,ek ],el ] ei (p) þª u0. Ïd(5)ª†>3p:? Š•". dü>þ´ÜþŒ•(5)ªo¤á. 8.(SchurÚn) (M n , g )´‡ëÏ n(n ≥ 3)‘6/. b M ÷v˜e5Ÿµé ? ¿ :p ∈ M , M 3p: ÷ ? ¿ ‘ ¡σ ⊂ Tp M ¡ - ÇK (p, σ )†σ à ' " y ²: M ´~-ǘm, =K (p)´~мê" y²: ½ÂR (X, Y, Z, W ) = X, Z Y, W − X, W Y, Z . é?¿p ∈ M , ½ ¼êk (p)Xeµ k (p) := K (p, σ ) Ù¥σ ⊂ Tp M ´?˜‡ ‘ ¡"d^‡•k ´û½ @okÚn3.4, ·‚k §¿…´1w "
马沛生 主编 化工热力学 第四章习题解答

习题四一、是否题M M.4—1 对于理想溶液的某一容量性质M,则 i i解:否4—2 在常温、常压下,将10cm3的液体水与20 cm3的液体甲醇混合后,其总体积为30 cm3。
解:否4-3温度和压力相同的两种纯物质混合成理想溶液,则混合过程的温度、压力、焓、Gibbs自由能的值不变。
解:否4-4对于二元混合物系统,当在某浓度范围内组分2符合Henry规则,则在相同的浓度范围内组分1符合Lewis-Randall规则.解:是4-5在一定温度和压力下的理想溶液的组分逸度与其摩尔分数成正比.解:是4-6理想气体混合物就是一种理想溶液.解:是4-7对于理想溶液,所有的混合过程性质变化均为零。
解:否4-8对于理想溶液所有的超额性质均为零。
解:否4-9 理想溶液中所有组分的活度系数为零。
解:否4—10 系统混合过程的性质变化与该系统相应的超额性质是相同的. 解:否4—11理想溶液在全浓度范围内,每个组分均遵守Lewis-Randall 定则. 解:否4—12 对理想溶液具有负偏差的系统中,各组分活度系数i γ均 大于1。
解:否4-13 Wilson 方程是工程设计中应用最广泛的描述活度系数的方程。
但它不适用于液液部分互溶系统。
解:是二、计算题4-14 在一定T 、p 下,二元混合物的焓为 2121x cx bx ax H ++= 其中,a =15000,b =20000,c = — 20000 单位均为-1J mol ⋅,求 (1) 组分1与组分2在纯态时的焓值1H 、2H ;(2) 组分1与组分2在溶液中的偏摩尔焓1H 、2H 和无限稀释时的偏摩尔焓1∞H 、2∞H 。
解:(1)1111lim 15000J mol -→===⋅x H H a2121lim 20000J mol -→===⋅x H H b(2)按截距法公式计算组分1与组分2的偏摩尔焓,先求导:()()()12121111111d dd d d11d H ax bx cx x x x ax b x cx x x =++=+-+-⎡⎤⎣⎦12=-+-a b c cx将1d d Hx 代入到偏摩尔焓计算公式中,得()()()()()()11112121111111112122d 1d (1)211221H H H x x ax bx cx x x a b c cx ax b x cx x a b c cx x a b c cx a c x a cx =+-=+++--+-=+-+-+-+---+-=+-=+()()()()21121211111111121d 2d 112HH H x ax bx cx x x a b c cx x ax b x cx x x a b c cx b cx =-=++--+-=+-+---+-=+无限稀释时的偏摩尔焓1∞H 、2∞H 为:()()2-1112012-122111221lim lim 150002000035000J mol lim lim 200002000040000J molx x x x H H a cx H H b cx∞→→∞→→==+=+=⋅==+=+=⋅4—15 在25℃,1atm 以下,含组分1与组分2的二元溶液的焓可以由下式表示:121212905069H x x x x x x =++⋅+()式中H 单位为-1cal mol ⋅,1x 、2x 分别为组分1、2的摩尔分数,求 (1) 用1x 表示的偏摩尔焓1H 和2H 的表达式; (2) 组分1与2在纯状态时的1H 、2H ;(3) 组分1与2在无限稀释溶液的偏摩尔焓1∞H 、2∞H ;(4) ΔH 的表达式;(5) 1x =0。
组合数学第四章习题解答

12345 13524 14253 15432
5
2
翻转
12534 21345 32415 51423 41235
4
3
c ( a1 ) c(a2 ) 1 c ( ag ) l [m m ... m ] G
G×G’的单位元素是(e,e’),试证G×G’是群 (1)封闭性显然 (2)结合律显然 (3)逆元素显然
(4)单位元显然
4.27 一个项链由7颗珠子装饰成的,其中两颗珠 子是红的,3颗是蓝的,其余两颗是绿的,问有多少 种装饰方案,试列举之。
1
G (1)(2)(3)(4)(5)(6)(7) (1234567),(1357246), (1473625),(1526374), (1642753),(1765432)
4.5 试证循环群的子群也是循环群。 显然。 4.6 若H是G的子群,x和y是G的元素,试证: xH∩yH或为空,或xH=yH。 设a,b∈H,xa=yb,xH≠yH 存在m∈H,xm属于xH但不属于yH
x=yba-1,xm=yba-1m,由H是G的子群,因此 ba-1m∈H, yba-1m∈yH
4.23 凸多面体中与一个顶点相关的各角之和与2 的差称为该顶点的欠角,证明凸多面体各顶点欠 角之和为4
证:设V,S,E分别为顶点集,面集,边(棱)集。 由欧拉定理 |V|+|S|-|E|=2. 设aij为与顶点vi, 面Sj为相关的面角,ej为Sj的的边数, 给定Sj则∑aij=(ej-2)π 欠角和为∑(2π-∑aij)=∑2π-∑ ∑aij =2|V|π-∑ ∑aij=2|V|π-∑(ej-2)π =2|V|π-∑ejπ+2|S|π =2|V|π+2|S|π-2|E|π=4π
数电习题解答_杨志忠_第四章练习题_部分

教材:数字电子技术基础(“十五”国家级规划教材) 杨志忠 卫桦林 郭顺华 编著高等教育出版社2009年7月第2版; 2010年1月 北京 第2次印刷;第四章 组合逻辑电路(部分练习题答案)练习题P172【4.1】、试分析图P4.1所示电路的逻辑功能。
解题思路:根据逻辑图依次写出函数表达式、化简表达式、列写真值表、分析逻辑功能。
(b )、Y AB AB A B =+=:;(同或功能) 真值表略; 【4.2】、试分析图P4.2所示电路的逻辑功能。
解题思路:根据逻辑图依次写出函数表达式、化简表达式、列写真值表、分析逻辑功能。
(a )、Y AB AB AB AB A B =⋅=+=⊕;(异或功能) 真值表略; 【4.3】、试分析图P4.3所示电路的逻辑功能。
解题思路:根据逻辑图从输入到输出逐级依次写出函数表达式、化简表达式、列写真值表、分析逻辑功能。
(a )、()Y ABC A ABC B ABC C ABC A B C ABC ABC =⋅+⋅+⋅=⋅++=+; 真值表略; 【4.4】、试分析图P4.4所示电路的逻辑功能。
解题思路:根据逻辑图从输入到输出逐级依次写出函数表达式、化简表达式、列写真值表、分析逻辑功能。
解:12 Y A B C Y AB A B C AB A B C =⊕⊕=⋅⊕⋅=+⊕⋅;该逻辑电路实现一位全加运算。
Y1表示本位和数,Y2是进位输出。
mi A B C Y1 Y2 0 0 0 0 0 0 1 0 0 1 1 02 0 1 0 1 03 0 1 1 0 14 1 0 0 1 05 1 0 1 0 16 1 1 0 0 17 1 1 1 1 1【4.6】、写出图P4.6所示电路的逻辑函数表达式,并且把它化成最简与或表达式。
解题思路:变量译码器实现逻辑函数是把逻辑变量输入译码器地址码,译码器输出i i m Y =,再用与非门(输出低电平有效)变换就可以得到所需的逻辑函数,输出函数具有下列的表达形式:(,,)0356m(0,3,5,6)A B C F Y Y Y Y ==∑。
复变函数习题解答(第4章)
p178第四章习题(一)[ 3, 4, 6, 7(4), 10, 12, 13, 14 ]3. 如果lim n→∞ (c n + 1/c n)存在( ≠∞ ),试证下列三个幂级数有相同的收敛半径:(1) ∑n≥ 0c n z n;(2) ∑n≥ 0 (c n/(n + 1))z n + 1;(3) ∑n≥ 0 (n c n)z n– 1.【解】事实上,我们只要证明下面的命题:若∑n≥ 0c n z n的收敛半径为R,则∑n≥ 0 (n c n)z n– 1的收敛半径也为R.从这个命题,就可以得到幂级数(1)的收敛半径与幂级数(2)的收敛半径相同,幂级数(3)的收敛半径与幂级数(1)的收敛半径相同.step1. 当R是正实数或+∞时.若| z | < R,则存在r∈ 使得| z | < r < R.因∑n≥ 0c n z n的收敛半径为R,根据收敛半径定义及Abel定理,知∑n≥ 0 | c n r n |收敛.因| (n c n)z n– 1 | = ( | n/r | · ( | z |/r)n – 1 ) · | c n r n |;而lim n→∞ ( | n/r | · ( | z |/r)n – 1 ) = 0,故∃M > 0使得0 ≤ | n/r | · ( | z |/r)n – 1≤M.所以| (n c n)z n– 1 | ≤M · | c n r n |.由Weierstrass判别法知∑n≥ 0 | (n c n)z n– 1 |收敛,所以∑n≥ 0 (n c n)z n– 1收敛.因此∑n≥ 0 (n c n)z n– 1的收敛半径R1≥R.特别地,若∑n≥ 0c n z n的收敛半径为+∞,则∑n≥ 0 (n c n)z n– 1的收敛半径也为+∞.step2. 当R是非负实数时.对任意的满足R < r < | z |的实数r,根据收敛半径定义,∑n≥ 0c n r n发散.从而∑n≥ 0 | c n r n |发散.当n > r + 1时,| c n r n | = | r/n | · | (n c n)r n– 1 | ≤ | (n c n)r n– 1 |;因此,∑n≥ 0 | (n c n)r n– 1 |发散.由Abel定理,∑n≥ 0 (n c n)z n– 1的收敛半径R1≤r.由r的任意性,得R1≤R.特别地,若∑n≥ 0c n z n的收敛半径为0,则∑n≥ 0 (n c n)z n– 1的收敛半径也为0.step3. 综合step1和step2的结论,当R为正实数时,也有R1 = R.即若∑n≥ 0c n z n的收敛半径为R,则∑n≥ 0 (n c n)z n– 1的收敛半径也为R.[这个证明中,我们没有用到条件lim n→∞ (c n + 1/c n)存在( ≠∞ ),说明该条件是可以去掉的.因为一般的幂级数并不一定满足这个条件,因此去掉这个条件来证明结论是有意义的.]4. 设∑n≥ 0c n z n的收敛半径为R (0 < R < +∞),并且在收敛圆周上一点绝对收敛,试证明这个级数对所有的点z : | z | ≤R为绝对收敛且一致收敛.【解】设z0在收敛圆周上,且∑n≥ 0 | c n z0 n |绝对收敛.那么对于点z : | z | ≤R,都有| z | ≤ | z0|.因此级数∑n≥ 0 | c n z n |收敛,即∑n≥ 0c n z n绝对收敛.而由Weierstrass判别法知知级数∑n≥ 0c n z n对所有的在闭圆| z | ≤R上一致收敛.6. 写出e z ln(1 + z)的幂级数展式至含z5项为止,其中ln(1 + z)|z = 0 = 0.【解】在割去射线L = { z∈ | Im(z) = 0,Re(z) ≤-1}的z平面上,能分出Ln(1 + z)的无穷多个单值解析分支(Ln(1 + z))k = ln| (1 + z) | + i arg(1 + z) + 2kπi ,k∈ .由条件ln(1 + z)|z = 0 = 0,知arg(1) + 2kπ = 0,即k = 0.所以,满足条件的分支为ln(1 + z) = ln| (1 + z) | + i arg(1 + z).因为(ln(1 + z))’= 1/(1 + z) = ∑n≥ 0 (-1)n z n,| z | < 1.∀z : | z | < 1,从沿0到z的曲线逐项积分得ln(1 + z) - ln(1 + z)|z = 0 = ∑n≥ 0 ((-1)n/(n + 1)) z n + 1,| z | < 1;即ln(1 + z)= ∑n≥ 0 ((-1)n/(n + 1)) z n + 1,| z | < 1.因e z= ∑n≥ 0 (1/n!) z n,z∈ ,故∀z : | z | < 1,幂级数∑n≥ 0 (1/n!) z n,∑n≥ 0 ((-1)n/(n + 1)) z n都绝对收敛.故它们的Cauchy乘积收敛于它们的和函数的乘积,所以e z ln(1 + z) = z · (∑n≥ 0 (1/n!) z n)(∑n≥ 0 ((-1)n/(n + 1)) z n),| z | < 1.设e z ln(1 + z) = z ·∑n≥ 0 c n z n,| z | < 1.则c n = ∑0 ≤k≤n(1/k!) · (-1)n -k/(n -k + 1),n∈ .故c0 = 1,c1 = 1/2,c2 = 1/3,c3 = 0,c4 = 3/40,....所以e z ln(1 + z) = z+ (1/2)z2 + (1/3) z3 + (3/40) z5 + ...,| z | < 1.7. 将下列函数按z– 1的幂展开,并指出其收敛范围.(4) z1/3 ( 11/3 = (– 1 + √3 i )/2 ).【解】在割去射线L = { z∈ | Im(z) = 0,Re(z) ≤-1}的z平面上,能分出z1/3的三个单值解析分支( z1/3)k = | z |1/3 · exp((arg(z) + 2kπ)i/3),k = 0, 1, 2.设要展开的分支为z1/3 = | z |1/3 · exp((arg(z) + 2k0π)i/3),0 ≤k0 ≤ 2.因为| 1|1/3 = 1,arg(1) = 0,故exp(2πi/3) = (– 1 + √3 i )/2 = exp(2k0πi/3),所以k0 = 1.即要展开的分支为z1/3 = | z |1/3 · exp((arg(z) + 2π)i/3).因为z1/3 = exp(2πi/3) · | z |1/3 · exp(arg(z)/3 ·i),而主值支(1 + (z– 1))1/3 = | z |1/3 · exp(arg(z)/3 ·i)的展式为(1 + (z– 1))1/3 = ∑n≥ 0 C(1/3, n)(z– 1)n,| z– 1| < 1.所以,要展开的分支z1/3 = exp(arg(z)/3 ·i) ·∑n≥ 0 C(1/3, n)(z– 1)n= ∑n≥ 0 (– 1 + √3 i )/2 ·C(1/3, n)(z– 1)n,| z– 1| < 1.10. 设a为解析函数f(z)的至少n阶零点,又为解析函数ϕ(z)的n阶零点,试证:lim x→a f(z)/ϕ(z) = f(n)(a)/ϕ(n)(a).【解】设f(z)与ϕ(z)在a的某邻域U= { z∈ | | z–a | < R}内的Taylor展式分别为f(z) = ∑k≥ 0 c k (z–a) k,ϕ(z) = ∑k≥ 0 d n (z–a) k,z∈U,因a为f(z)的至少n阶零点,又为ϕ(z)的n阶零点,故当k≤n – 1时,f(k)(a) = ϕ(k)(a) = 0,且ϕ(n)(a) ≠ 0.因∀k∈ ,c k = f(k)(a)/k!,d k = ϕ(k)(a)/k!;故当k≤n – 1时,c k = d k = 0,且d n≠ 0.因此,f(z) = ∑k≥n c k (z–a) k,ϕ(z) = ∑k≥n d k (z–a) k.注意到幂级数c n + c n + 1 z+ c n + 2 z2 + ...以及幂级数d n + d n + 1 z+ d n + 2 z2 + ...都在U 内收敛,设它们的和函数分别为f1(z), ϕ1(z).则f(z) = (z–a)m f1(z),ϕ(z) = (z–a)nϕ1(z) ( z∈U ),且f1(a) = c n,ϕ1(a) = d n ≠ 0.所以,lim x→a f(z)/ϕ(z) = lim x→a f1(z)/ϕ1(z) = f1(a)/ϕ1(a) = c n/d n = f(n)(a)/ϕ(n)(a).12. 设f(z)在区域D内解析;在某一点z0∈D有f(n)(z0) = 0,n = 1, 2, ....试证f(z)在D内必为常数.【解】设U = { z∈ | | z–z0| < R}⊆D,则f(z)在U内能展成(z–z0)的幂级数f(z) = ∑k≥ 0 c k (z–z0) k,其中c k = f(k)(z0)/k!.因为f(k)(z0) = 0,k = 1, 2, ....故c k = 0,k = 1, 2, ....因此f(z)在U内恒为常数c0.由唯一性定理,f(z)在区域D内恒为常数c0.13. (最小模原理)若区域D内不恒为常数的解析函数f(z)在D内的点z0有f(z0) ≠ 0,则| f(z0) |不可能是| f(z) |在区域D内的最小值,试证之.【解】存在z0的邻域U = { z∈ | | z–z0| < R}⊆D,使得f(z)在U内恒不为零.倘若| f(z0) |是| f(z) |在区域D内的最小值,则| f(z0) |是| f(z) |在U内的最小值.那么,| 1/f(z0) |是| 1/f(z) |在U内的最大值.而1/f(z)在U内解析,由最大模原理,1/f(z)在U内恒为常数.故f(z)在U内也恒为常数.由唯一性定理,f(z)在区域D内也恒为常数,这与题目的条件相矛盾.所以| f(z0) |不可能是| f(z) |在区域D内的最小值.14. 设D是周线C的内部,函数f(z)在区域D内解析,在闭域cl(D) = D⋂C上连续,其模| f(z) |在C上为常数.试证:若f(z)不恒等于一个常数,则f(z)在D内至少有一个零点.【解】因f(z)在cl(D)上连续,故| f(z) |在cl(D)有最大值,即存在z0∈cl(D),使得| f(z0) | = max z∈cl(D) | f(z) |.因连续函数f(z)在闭域cl(D)上不恒为常数,故f(z)在D上也不恒为常数.由最大模原理,∀z∈D,有| f(z) | < | f(z0) |.因此z0∈∂D = C.设| f(z) |在C上为常数m,则m = | f(z0) | > 0.(反证法)若f(z)在D内恒不为零,则1/f(z)在D内解析.而在周线C上,| f(z) | = m > 0.故1/f(z)在cl(D)上连续.因1/f(z)在D内不恒为常数,因此1/f(z)也满足f(z)所满足的条件.由最大模原理,对∀z∈D,| 1/f(z) | < 1/m.由此得到m < | f(z) | < m,矛盾.[从本题的证明中可以看出,用最大模原理,可以得到如下结论:设f(z)在区域D 内解析,在cl(D)连续且不恒为常数,若| f(z) |在cl(D)上有最大值,那么| f(z) |在cl(D)上的最大值M必然在D的某个边界点取到,并且在D内总有| f(z) | < M.这时也必然有∂D ≠∅,max z∈cl(D) | f(z) | = max z∈∂D| f(z) |.我们特别强调的是条件“| f(z) |在cl(D)上有最大值”.这点对有界区域D来说,因| f(z) |是紧集cl(D)上的连续函数,因此| f(z) |在cl(D)上总是有最大值的.例如本题中的区域D是周线C的内部,当然就是有界集.但当D是无界区域时,有可能| f(z) |在cl(D)上没有最大值,也有可能∂D = ∅.另外,我们还用到了一个从分析的角度看来是很明显的结论:若f(z)在闭域cl(D)连续且不恒为常数,则f(z)在D上也不恒为常数.]p178第四章习题(二)[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ]1. 设级数∑n≥ 1f n(z)在点集E上一致收敛于f(z),且在E上| g(z) | < M ( M < +∞),则级数∑n≥ 1g(z)f n(z)在E上一致收敛于g(z) ·f(z).试证之.【解】∀ε > 0,∃N∈ +,使得当n > N时,∀z∈E,| ∑ 1 ≤k≤n f k(z) -f(z) | < ε/M.此时,| ∑ 1 ≤k≤n g(z)f k(z) -g(z) ·f(z) | = | g(z) | · | ∑ 1 ≤k≤n f k(z) -f(z) | < M ·ε/M = ε.所以级数∑n≥ 1g(z)f n(z)在E上一致收敛于g(z) ·f(z).2. 试证:在单位圆| z | < 1内,级数z + (z 2–z) + (z 3–z 2) + ... + (z n–z n– 1) + ... 收敛于函数f(z) ≡ 0,但它并不是一致收敛的.【解】当| z | < 1时,| S n(z) | = | ∑ 1 ≤k≤n (z k–z k– 1) | = | z |n → 0 ( n→∞ ).故级数在单位圆| z | < 1内收敛于函数f(z) ≡ 0.而∀n∈ +,在z = (1/2)1/n处,有| ∑n + 1 ≤k≤ 2n (z k–z k– 1) | = | z 2n–z n | = | ( z n)2–z n | = | 1/4 – 1/2 | = 1/4.因此级数在| z | < 1内不是一致收敛的.或取z n= 1 – 1/n,则| S n(z n) – 0 | = ( 1 – 1/n )n→ 1/e ( n→∞ ).因此级数在| z | < 1内不是一致收敛的.3. 试证(1) 如果∑n≥ 1v n(z) = δ绝对收敛,则| δ| ≤∑n≥ 1 | v n(z) |.(2) 对任一复数z,| e z– 1 | ≤ e | z |– 1 ≤ | z | e | z |.(3) 当0 < | z | < 1时,| z |/4 < | e z– 1 | < 7| z |/4.【解】(1) | ∑ 1 ≤k≤n v k(z) | ≤∑ 1 ≤k≤n | v k(z) | ≤∑k≥ 1 | v k(z) |.令n →∞得| δ| ≤∑k≥ 1 | v k(z) |.(2) 对任一复数z,e z– 1 = ∑n≥ 1z n/n!,其中右边的级数绝对收敛.根据(1)我们有| e z– 1| ≤∑n≥ 1 | z n/n! | = ∑n≥ 1 | z | n/n! = e | z |– 1.而e | z | = ∑n≥ 0 | z | n/n! = 1 + ∑n≥ 1 | z | n/n! = 1 + | z | ∑n≥ 1 | z | n – 1/n!≤ 1 + | z | ∑n≥ 1 | z | n – 1/(n – 1)! = 1 + e | z |,即e | z |– 1 ≤ | z | e | z |.(3) 当0 < | z | < 1时,注意到∑n≥ 1 | z | n – 1/n! ≤∑n≥ 1 1/n! = e - 1 < 7/4,因此有e | z |– 1 = | z | ∑n≥ 1 | z | n – 1/n! < 7| z |/4.因e z– 1 = ∑n≥ 1z n/n!,故(e z– 1)/z = ∑n≥ 0z n/(n + 1)! = 1 + ∑n≥ 1z n/(n + 1)!,而| ∑n≥ 1z n/(n + 1)! | ≤∑n≥ 1 | z |n/(n + 1)! ≤∑n≥ 1 1/(n + 1)! = e - 2.所以,| (e z– 1)/z | ≥ 1 - | ∑n≥ 1z n/(n + 1)! | ≥ 1 – (e - 2) = 3 - e > 1/4.故| z |/4 < | e z– 1 |.[注意(2)中e | z |– 1 ≤ | z | e | z |实际上是关于实数| z |的不等式,用数学分析容易得到∀t∈ ,e t≥ 1 + t.令t = – | z |,则e– | z |≥ 1 – | z |,即e | z |– 1 ≤ | z | e | z |.]4. 设f(z) = ∑n≥ 0a n z n (a0≠ 0)的收敛半径R > 0,且M = max | z | ≤ρ| f(z)| ( ρ< R ).试证:在圆| z | < | a0 |ρ/(| a0 | + M)内,f(z)无零点.【解】在Cauchy不等式,| f(n)(0) | ≤n! M/ρ n,故| a n| ≤M/ρ n.若| z | < ρ,| f(z) -a0 | = | ∑n≥ 1a n z n | ≤∑n≥ 1 | a n | | z | n≤∑n≥ 1M/ρ n · | z | n= M ∑n≥ 1 (| z |/ρ)n = M | z |/ρ· 1/(1 - | z |/ρ) = M | z |/(ρ- | z |).当| z | < | a0 |ρ/(| a0 | + M)时,有| z | < ρ,并注意到函数g(t) = t/(ρ-t) = ρ/(ρ-t) - 1在区间(0, ρ)上是严格单调增的,就得到,| f(z) -a0 | ≤M | z |/(ρ- | z |)< M | a0 |ρ/(| a0 | + M) · 1/(ρ- | a0 |ρ/(| a0 | + M))= M | a0 |ρ · 1/(ρM) = | a0 |.故| f(z) | ≥ | a0 | - | f(z) -a0 | > 0,所以,f(z)在圆| z | < | a0 |ρ/(| a0 | + M)内无零点.5. 设在| z | < R内解析的函数f(z)有Taylor展式∑n≥ 0a n z n.试证:当0 ≤ r < R时,(1/(2π))⎰[0, 2π] | f(r e iθ)|2dθ= ∑n≥ 0 | a n |2r2n.【解】当| z | = r时,因为∑n≥ 0a n z n绝对收敛,故∑n≥ 0 | a n | · | z | n收敛.即∑n≥ 0 | a n | ·r n收敛,.故∑n≥ 0a n*(z*) n也绝对收敛.由Cauchy乘积定理,∑n≥ 0 | a n | ·r n与∑n≥ 0 | a n | ·r n的Cauchy乘积∑n≥ 0d n绝对收敛,其中d n = ∑ 0 ≤k≤n | a k | · | a n – k | r n.设∑n≥ 0a n z n的部分和为S n(z),则∑n≥ 0a n*(z*) n的部分和为(S n(z))*,所以∑n≥ 0a n*(z*) n和为( f(z))*,即( f(z))*= ∑n≥ 0a n*(z*) n.由Cauchy乘积定理,∑n≥ 0a n z n与∑n≥ 0a n (z*) n的Cauchy乘积∑n≥ 0c n(z)绝对收敛于f(z) · ( f(z))* = | f(z)|2,其中c n(z) = ∑ 0 ≤k≤n a k z k·a n – k*(z*)n – k.因| c n(z) | = | ∑ 0 ≤k≤n a k z k·a n – k*(z*)n – k | ≤∑ 0 ≤k≤n | a k z k·a n – k*(z*)n – k | = d n,故∑n≥ 0c n(z)在| z | = r上一致收敛于| f(z)|2.设z = r e iθ,把| f(z)|2,c n(z)等都看成θ的函数(θ∈[0, 2π]),那么它们都是连续的.并且,∑n≥ 0c n(z(θ))在[0, 2π]上一致收敛于| f(z(θ))|2.故⎰[0, 2π] | f(z(θ))|2dθ= ∑n≥ 0⎰[0, 2π]c n(z(θ))dθ.因为在| z | = r上有z ·z* = r2,故c n(z) = ∑ 0 ≤k≤n a k z k·a n – k*(z*)n – k = ∑ 0 ≤k≤n a k z k·a n – k*(r2/z)n – k= ∑ 0 ≤k≤n a k z k·a n – k*r2(n – k) ·z k – n = ∑ 0 ≤k≤n (a k a n – k* ·r2(n – k))·z2k – n.故⎰[0, 2π] c n(z(θ)) dθ = ⎰[0, 2π] c n(z(θ)) d(z(θ))/z’(θ)= ⎰[0, 2π] c n(z(θ)) · 1/(r i e iθ)·d(z(θ)) = (1/i)⎰[0, 2π] c n(z(θ)) ·z(θ) –1·d(z(θ))= (1/i)⎰| z | = r c n(z) ·z –1·dz = (1/i)⎰| z | = r(∑ 0 ≤k≤n (a k a n – k* ·r2(n – k))·z2k – n – 1·dz.若n为奇数,则∑ 0 ≤k≤n (a k a n – k* ·r2(n – k))·z2k – n – 1中没有z–1项,因此⎰[0, 2π] c n(z(θ)) dθ = 0.若n为偶数2m,则⎰[0, 2π] c n(z(θ)) dθ= (1/i)⎰| z | = r(∑ 0 ≤k≤ 2m (a k a2m – k* ·r2(2m – k))·z2k –2m – 1·dz= (1/i)⎰| z | = r(a m a2m – m* ·r2(2m – m))·z– 1·dz= (1/i) (2πi) (a m a m*)·r2m = (2π) | a m |2 ·r2m,所以,⎰[0, 2π] | f(r e iθ)|2dθ= (2π) ∑m≥ 0 | a m |2 ·r2m.[这里我们用到了一个想法,把对实变量θ的积分,转化为对复数z的积分,是通过把θ作为积分变量z所在的曲线的参数来实现的.这种办法在后面的章节将会系统地给出.]6. 设f(z)是一个整函数,且假定存在着一个非负整数n,以及两个正数R与M,使当| z | ≥R时,| f(z) | ≤M | z |n.证明:f(z)是一个至多n次的多项式或一常数.【解】取r > R,考虑圆周| z | = r,由Cauchy不等式,当m > n时,| f(m)(0)/m! | ≤M r n/r m,令r → +∞,得f(m)(0) = 0.故f(z)在原点的Taylor展式为f(z) = ∑0 ≤k≤n f(k)(0)/k! ·z k.因此f(z)是一个至多n次的多项式或一常数.7. 设(1)f(z)在邻域K : | z–a | < R内解析,a是f(z)的m阶零点;(2)b≠a,b∈K.问函数F(z) = ⎰[a, z] f(ζ)dζ及函数Φ(z) = ⎰[b, z] f(ζ)dζ在点a的性质如何?(这里的积分路径都假定在K内.)【解】∀z∈K,我们有F’(z) = f(z),Φ’(z) = f(z).因此,F’(a) = ... = F(m )(a) = 0,F(m + 1)(a) ≠ 0,且F(a) = 0,故a是F(z)的m + 1阶零点.也有Φ’(a) = ... = Φ(m )(a) = 0,Φ(m + 1)(a) ≠ 0,但不一定有Φ(a) = 0.因此,a是Φ’(z)的m阶零点.[此题题意不够明确,可能是属于所谓的开放性问题或探究性问题.似乎放在积分部分更合适,当然在这里也可以用幂级数来作.]8. 设(1) 区域D含有实轴的一段L;(2) 函数u(x, y) + i v(x, y)及u(z, 0) + i v(z, 0) (z = x + i y )都在区域D内解析.试证在D内u(x, y) + i v(x, y) ≡u(z, 0) + i v(z, 0).【解】这两个函数在L上的限制都是u(x, 0) + i v(x, 0),因此它们在L上的限制相同.由唯一性定理,这两个函数在区域D内是完全相同的.[思考:究竟u, v是定义那个集合上的函数?]9. 设(1) 函数f(z)在区域D内解析,且不恒为常数;(2) 设C为D内任一周线,cl(I(C)) ⊆D;(3) A为任一复数.试证f(z) = A在C的内部I(C)内只有有限个根.【解】设g(z) = f(z) -A,则g(z)在区域D内解析,且不恒为常数;我们来证明g(z)在I(C)内只有有限个零点.注意到I(C)是有界集,因此cl(I(C))也是有界集,且cl(I(C))是闭集.倘若g(z)在I(C)内有无穷多个零点,那么,根据聚点原理,这些零点构成的集合Z必有聚点.而cl(I(C))是闭集,故Z的聚点仍在cl(I(C))内,因此也在D内.由唯一性定理,g(z)在区域D内为常数,矛盾.故g(z)在I(C)内只有有限个零点,即f(z) = A在C的内部I(C)内只有有限个根.10. 问| e z |在闭圆| z–z0 | ≤ 1上的何处达到最大?并求出最大值.【解】因e z 在圆| z–z0 | < 1内不恒为常数,故| e z |在圆| z–z0 | < 1内无最大值.因此,| e z |在闭圆| z–z0 | ≤ 1上最大值必然在边界| z–z0 | = 1上达到.设z0 = a + i b,a, b∈ .设z–z0 = x + i y,x, y∈ .在| z–z0 | = 1上,x, y满足x2 + y2 = 1.| e z | = | e a + i b · e x + i y | = | e a + i b | · | e x + i y | = e a · e x.故当x = 1时(此时y = 0),| e z |最大,且最大值为e a + 1.因此,| e z |在点z0 + 1处达到最大值,且最大值为e a + 1.11. 设函数f(z)在| z | < R内解析,令M(r) = max | z | = r | f(z) | ( 0 ≤r < R).试证:M(r)在区间[0, R)上是一个上升函数,且若存在r1及r2 (0 ≤r1 < r2 < R),使得M(r1) = M(r2),则f(z)在| z | < R内是常数.【解】只要证明若f(z)在| z | < R内不恒为常数,则M(r)在[0, R)上严格单调增.∀r, s∈[0, R),r < s.若r = 0,则M(r) = | f(0) |.因f(z)在| z | < s内不恒为常数(否则f(z)在| z | < R内恒为常数),由最大模原理,满足| a | < s的点a不是| f(z) |在| z | < s内的最大值点.因此| f(a) |更不是| f(z) |在| z | ≤s上的最大值点.| f(z) |在| z | ≤s上的最大值必然在边界| z | = s上达到.所以M(s) = max | z | = s | f(z) | > | f(a) |.特别地,取a = 0,就有M(s) > | f(a) | = M(r).若r > 0,设a满足| z | = r,| f(a) | = M(r).与前面同样的论证,知M(s) = max | z | = s | f(z) | > | f(a) | = M(r).故M(r)在[0, R)上严格单调增.。
量子力学曾谨言习题解答第四章
这个叠加式中,D和 都有两个指标,第一个是量子数 ,第二个是量子数 ,从(12)可以看出在 的状态中, 取各种可能测值的几率如下表:
的本征值
2
0
-
-2
相应的几率
+
+
+
诸D的计算有两种方法,第一法是直接法,此法是从方程组(7)中解出,我们需要的 ,而用 的本征函数 , , 的项表示它,这方法是初等的,结果
再将文字A,B对易得
(5)证明
(证明)本题的证法与题四的第一法完全相同,只是条件A,B与[A,B]对易一点不能使用,即
从原来的对易式经过总数n-1次运算后,得
取A=q,B=p,注意[q,p]=hi代入前一式后,有
(6)证明 是厄密算符
证明)本题的算符可以先行简化,然后判定其性质
是厄密算符,因此原来算符也是厄密的。
当
因此:
现在利用前二式来证明题给一式的x分量的关系成立,该式左方:
86-87
利用(1)和(2)得
同理可得
综合3式得
[4]设算符A,B与它们的对易式[A,B]都对易。证明
(甲法)递推法,对第一公式左方,先将原来两项设法分裂成四项,分解出一个因式,再次分裂成六项,依次类推,可得待证式右方,步骤如下:
按题目假设
另一方法是根据厄密算符的定义:
用于积分最后一式:
前式=
说明题给的算符满足厄密算符定义。
(7)证 (A等是实数)是厄密算符
(证明)此算符F( )不能简化,可以用多次运算证明,首先假定已经证明动量是厄密算符,则
运用这个关系于下面的计算:
满足厄密算符的定义。
(8)证明 ( 实数)是厄密算符。
(证明)方法同前题,假定已经证明 , 都是厄密算符,即:
数字电子技术第4章组合逻辑电路习题解答
、已知8421BCD可用7段译码器,驱动日字LED管,显示出十进制数字。指出下列变换真值表中哪一行是正确的。(注:逻辑“1”表示灯亮)
D
C
B
A
a
b
c
d
e
f
g *
0
0
0
0
0
0
0
0
0
0
0
0
4
0
1
0
0
0
1
1
0
0
1
1
7
0
1
1
(1)试分析电路,说明决议通过的情况有几种。
(2)分析A、B、C、D四个人中,谁的权利最大。
习题图
解:(1)
(2)
ABCD
L
ABCD
L
0000
0001
0010
0011
0100
0101
0110
0111
0
0
0
1
0
0
1
1
1000
1001
1010
1011
1100
1101
1110
1111
0
0
0
1
0
1
1
1
(3)根据真值表可知,四个人当中C的权利最大。
3) 用与或非门实现。
解:(1)将逻辑函数化成最简与或式并转换成最简与非式。
根据最简与非式画出用与非门实现的最简逻辑电路:电路略。
(2 )由上述卡偌图还可得到最简或与表达式:
即可用或非门实现。
(3)由上步可继续做变换:
概率论第四章课后习题解答
概率论第四章习题解答1(1)在下列句子中随机地取一个单词,以X 表示取到的单词所饮食的字母个数,写出X 的分布律并求数学期望()E X 。
“THE GIRL PUT ON HER BEAUTIFUL RED HAT ”(2)在上述句子的30个字母中随机地取一个字母,以Y 表示取到的字母所在单词所包含的字母数,写出Y 的分布律并求()E Y(3)一人掷骰子,如得6点则掷第二次,此时得分为6加第二次得到的点数;否则得分为第一次得到的点数,且不能再掷,求得分X 的分布律。
解 (1)在所给的句子中任取一个单词,则其所包含的字母数,即随机变量X 的取值为:2,3,4,9,其分布律为 所以151115()234988884E X =⨯+⨯+⨯+⨯=。
(2)因为Y 的取值为2,3,4,9当2Y =时,包含的字母为“O ”,“N ”,故121{2}3015C P Y ===; 当3Y =时,包含的3个字母的单词共有5个,故当4Y =时,包含的4个字母的单词只有1个,故 当9Y =时,包含的9个字母的单词只有1个,故112314673()234915215103015E Y =⨯+⨯+⨯+⨯==。
(3)若第一次得到6点,则可以掷第二次,那么他的得分为:X =7,8,9,10,11,12;若第一次得到的不是6点,则他的得分为1,2,3,4,5。
由此得X 的取值为:其中的次品多于1,就去调整设备。
以X 表示一天中调整设备的次数,试求()E X 。
(设诸产品是否为次品是相互独立的。
)解 (1)求每次检验时产品出现次品的概率因为每次抽取0件产品进行检验,且产品是否为次品是相互独立的,因而可以看作是进行10次独立的贝努利试验,而该产品的次品率为0.1,设出现次品的件数为Y ,则(10,0.1)YB ,于是有1010{}(0.1)(0.9)kk k P Y k C -==(2)一次检验中不需要调整设备的概率 则需要调整设备的概率 {1}1{}10.736P Y P Y >=-≤=-= (3)求一天中调整设备的次数X 的分布律由于X 取值为0,1,2,3,4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 习题解答 1.某食品加工厂冷库的墙壁由两层材料组成,内层为200mm厚的软木,软木的导热系数为0.04W/(m·℃)。外层为250mm厚的红砖。红砖的导热系数为0.7 W/(m·℃)。已知冷库内壁的温度为-20℃,红砖墙外壁的温度为25℃,试求通过冷库壁的热通量以及冷库墙壁两层材料接触面上的温度。 解:由通过多层平壁的稳态热传导计算公式可知:Q=Q1=Q2 又传热面积S为定值,故有:q=q1=q2
故,t2=22℃ 2. 一面包炉的炉墙由一层耐火黏土砖,一层红砖及中间的硅藻土填料层组成。硅藻土层的厚度为50mm,导热系数为0.14 W/(m·℃),红砖层的厚度为250mm,导热系数为0.7 W/(m·℃)。若不采用硅藻土层,红砖层的厚度必须增加多少才能达到同样的保温效果? 解:若不采用硅藻土层,则新增的红砖层的热阻必须与原硅藻土层的热阻值相等,故有:
3. 在一预热器中,采用热水为加热介质预热果汁,热水进口温度为98℃,出口温度降至75℃,而果汁的进口温度为5℃,出口温度升至65℃。试分别计
122122
=0.050.140.70.25m250mmRRbbbSSb
硅藻土红砖 2
算两种流体在预热器内呈并流和逆流的平均温度差。 解:①逆流 热水:98℃→75℃ 果汁:65℃←5℃
211217559865=49.2755lnln9865m
ttttt℃
②并流 热水:98℃→75℃ 果汁:5℃→65℃
212219857565=37.2985lnln7565m
ttttt℃
4. 采用套管式换热器冷却苹果酱,苹果酱的质量流量为100kg/h,比热容为3817J/(kg·℃),进口温度为80℃,出口温度为20℃。套管环隙逆流通冷却水,进口温度为10℃,出口温度为17℃。总传热系数K为568W/(m2·℃)。求: ①所需的冷却水流量。 ②传热平均温度差及所需传热面积。 ③若采用并流,两流体的进、出口温度不变,则传热平均温度差及所需传热面积为多少? 解:①根据题意:
721721100387180202.29106361.67W4186Jkg2.2910781.52kg/h41861710hphhh
pc
cpccc
QWCttJhCQWCtt查附录可知水的比热容为℃
则
②逆流 苹果酱:80℃→20℃ 冷却水:17℃←10℃ 《食品工程原理》习题解答 3
21
21
2
80172010=28.88017lnln20106361.67=0.39m56828.8mmtttttQSKt
℃
③并流 苹果酱:80℃→20℃ 冷却水:10℃→17℃
21
21
2
80102017=21.38010lnln20176361.67=0.53m56821.3mmtttttQSKt
℃
5. 在烤炉内烤制一块面包。已知炉壁的温度为180℃,面包的表面温度为100℃,面包表面的黑度为0.85,表面积为0.0645m2,炉壁表面积远远大于面包表面积,试估算烤炉向这块面包辐射传递的热量? 解:本题属于表4-12中辐射情况3,故
12241210444412121212=10.855.674.82W/mK1802731002734.8210.064570.7W100100100100CCTTQCS
角系数总辐射系数
6. 水蒸气管道外径为108mm,其表面包一层超细玻璃棉毡保温,超细玻璃棉毡热导率随温度t的变化关系是:λ=0.033+0.00023t W/(m·K)。水蒸气管道外表面的温度为150℃,要求保温层外表面的温度不超过50℃,且每米管道的热量损失不超过160W/m,求所需保温层厚度。 解:由题意可知:
1120.054m,150,50rTT℃℃ 则保温层在平均温度下的热导率为: 4
1221122
1
15050=0.0330.00023=0.056WmK22ln2lnTTQLrrTTrQrL
2
2
23.140.05615050ln0.21980.0541600.0673m67.3mm67.35413.3mmrrb
7. 一冷藏瓶由真空玻璃夹层构成,夹层中双壁表面上镀银,镀银壁面黑度为0.02,外壁内表面温度为35℃,内壁外表面温度为0℃。试计算每单位面积容器壁由于辐射传热的散热量。 解:假设冷藏瓶真空玻璃夹层内壁的面积为S,由于两壁之间间距很小,故本题可视为表4-12中辐射情况4,则: 4412121212120121244441212121210010015.67===0.0571111+-1+-10.020.0235+2730+273==0.0571=1.100100100100TTQCSCCQTTCS
总辐射系数角系数
296Wm
8. 果汁在Φ32mm×3.5mm的不锈钢管中流过,外面用蒸汽加热。不锈钢的导热系数为17.5W/(m·℃),管内牛奶侧的对流传热系数为500 W/(m2·℃),管外蒸汽侧的对流传热系数为8000W/(m2·℃)。求总传热系数K。若管内有1mm厚的污垢层,垢层的导热系数为1.5 W/(m·℃),求热阻增加的百分数。 《食品工程原理》习题解答 5 解:
2342333333111110=0=6.6710(m)/W1.5110.003532103210132100/0.000667800017.528.51025105002510m265.67()11=343.oooososiomiiisosiooKdddbRRdddbRRKRWK
总②若考虑污垢热阻,则有:式中,℃
℃''
'
110.00291=0.003766265.670.003760.00291100%100%29.2%0.00291oRKRRR总总总总;
9. 香蕉浆在列管式换热器内与热水并流流动,热水在管外流动。香蕉浆的流量为500kg/h,比热容为3.66kJ/(kg·℃),进口温度为16℃,出口温度为75℃。热水的流量为2000 kg/h,进口温度为95℃,换热器的总传热系数为60 W/(m2·℃),求换热器的传热面积。 解:由题意先计算换热器的热负荷:
3323233311=8000W/m,b3.510m,3210m,17.5W/m,=500W/m,2510m1.2811113.5103212322528.5mm28.510m220800017.528.oooomiiooiioioimoooomiiKbddddddddddKbddddd
①式中℃℃℃323332105105002510343.6W/)·(m
℃ 6
3421122134225003.661075163.010W360020004.1810953.010360082.1cpc
hphcpc
QWCttWCTTWCttTT
℃ 热水:95℃→82.1℃ 香蕉浆:16℃→75℃ 故换热器的传热平均温度差为: 21
2142
951682.17529.89516lnln82.17531016.8m6029.8mmtttttQSKt
℃
10. 有一加热器,为了减少热损失,在加热器的平壁外表面包一层导热系数为0.16 W/(m·℃),厚度为300mm的绝热材料。已测得绝热层外表面的温度30℃,另测得距加热器平壁外表面250mm处的温度为75℃,求加热器平壁外表面的温度为多少? 解:由通过平壁的稳态热传导的计算公式可知:
1212
75300.250.3300tqbttttbbttt
℃
11. 在一单壳程、四管程的列管式换热器中,冷水在管程流动,其进、出口温度分别为15℃和32℃;热油在壳程流动,其进、出口的温度分别为120℃和40℃。热油的流量为2.1kg/s,其平均比热容为1.9 kJ/(kg·℃)。若换热器的总传热系数Ko为450 W/(m2·℃),换热器的热损失可忽略不计,试计算换热器的传热面