中考(贵州专版 人教)数学复习 专题06 分式及分式方程

合集下载

2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。

考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。

专题六 分式方程 课件(59张PPT)2025届中考数学一轮复习.ppt

专题六 分式方程 课件(59张PPT)2025届中考数学一轮复习.ppt

知识复习
列分式方程解应用题的一般步骤: (1)审:审清题意,弄清已知量和未知量;找出已知的或隐 含的等量关系,常用表格分析法. (2)设:设未知数(既可以设直接未知数,也可以设间接未 知数). (3)列:列出分式方程. (4)解:解这个方程. (5)验:检验,既要检验所求得的根是不是所列分式方 程的解,又要检验所求得的根是否符合实际意义. (6)答:写出答案.
讲解二: 分式方程的实际应用
知识复习
列分式方程常用的等量关系 (1)行程问题:速度 时间=路程. (2)利润问题:利润 = 售价 进价;利润率 = 利润 进价 100% (3)工程问题:工作量=工作时间 工作效率; 总工作量=各个分工作量之和. (4)销售问题:销售额 = 销售量 单价.
命题形式1 解分式方程
3 3.(2024·浙江·中考真题)若 2 1,则 x
.
x 1
解析:去分母得: 2 x 1, 移项合并得: x 3 , 解得: x 3, 经检验, x 3是分式方程的解, 故答案为: 3
命题形式1 解分式方程
【题型解读】 此题考查了解分式方程,解分式方程的基本思想是“转化思 想”,把分式方程转化为整式方程求解.解分式方程一定注 意要验根.分式方程去分母转化为整式方程,求出整式方 程的解得到x的值,经检验即可得到分式方程的解.
∴ m 2x 5, ∵原方程有增根,∴ x 2 0 ,∴ x 2 , ∴ m 2x 5 1,故答案为: 1.
命题形式2 分式方程的含参问题
【题型解读】 本题考查了根据分式方程的根有增根求参数的值,等式两边同时
乘以公因式 x 2,化简分式方程,然后根据方程有增根,求出
x 的值,即可求出 m .
∵不等式组的解集为 x 4,∴ a 2 4,∴ a 2 ;

第06讲分式方程(讲义)(原卷版)-2024年中考数学一轮复习讲义

第06讲分式方程(讲义)(原卷版)-2024年中考数学一轮复习讲义

第06讲 分式方程目 录一、考情分析 二、知识建构考点一 解分式方程题型01 判断分式方程 题型02 分式方程的一般解法 题型03 分式方程的特殊解法 类型一 分组通分法 类型二 分离分式法 类型三 列项相消法 类型四 消元法题型04 错看或错解分式方程问题 题型05 解分式方程的运用(新定义运算)题型06 根据分式方程解的情况求值题型07 根据分式方程有解或无解求参数题型08 已知分式方程有增根求参数 题型09 已知分式方程有整数解求参数考点二 分式方程的应用题型01 列分式方程题型02 利用分式方程解决实际问题 类型一 行程问题 类型二 工程问题 类型三 和差倍分问题 类型四 销售利润问题考点一解分式方程分式方程的概念:分母中含有未知数的方程叫做分式方程.增根的概念:在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.1.分式方程与整式方程的根本区别:分母中含有未知数,也是判断分式方程的依据.2. 去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项.3. 分式方程的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.4. 分式方程的增根是去分母后的整式方程的根,也是使分式方程的公分母为0的根,它不是原分式方程的根.5. 解分式方程可能产生使分式方程无意义的根,检验是解分式方程的必要步骤.6. 分式方程有增根与无解并非是同一个概念.分式方程无解,需分类讨论:可能是解为增根,也可能是去分母后的整式方程无解.题型01 判断分式方程题型02 分式方程的一般解法解分式方程方法:先通过方程两边同乘最简公分母将分式方程化为整式方程,再解整式方程,最后需要检验整式方程的解是不是分式方程的解.题型03 分式方程的特殊解法类型一分组通分法方法简介:如果整个方程一起通分,计算量大又易出错,观察方程中分母的特点可联想分组通分求解.类型二分离分式法方法简介:每个分式的分母与分子相差1,利用这个特点可采用分类分式法求解类型三列项相消法方法简介:根据分式方程的结果特点,依据公式“1n(n+1)=1n−1n+1”化积为差,裂项相消,简化难度.类型四消元法方法简介:当方程中的分式互为倒数,或不同分式中的分母互为相反式,或方程中分子、分母的二次项与一次项分别相同时,可考虑用换元法.题型04 错看或错解分式方程问题+1,其中x=先化简,再求值:3−xx−4⋅(x−4)+(x−4)解:原式=3−xx−4=3−x+x−4=−1题型05 解分式方程的运用(新定义运算)题型06 根据分式方程解的情况求值由分式方程的解的情况求字母系数的取值范围,一般解法是:①根据未知数的范围求出字母的范围;②把使分母为0的未知数的值代入到去分母后的整式方程中,求出对应的字母系数的值;③综合①②,求出字母系数的范围.题型07 根据分式方程有解或无解求参数已知分式方程的解确定字母参数,首先将分式方程化为整式方程,用含字母参数的代数式表x,再根据解的情况确定字母参数的取值. 同时要注意原分式方程的最简公分母不能为零.题型08 已知分式方程有增根求参数依据分式方程的增根确定字母参数的值的一般步骤:1)先将分式方程转化为整式方程;2)由题意求出增根;3)将增根代入所化得的整式方程,解之就可得到字母参数的值.题型09 已知分式方程有整数解求参数考点二分式方程的应用用分式方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解方程;验:考虑求出的解是否具有实际意义;+1)检验所求的解是否是所列分式方程的解.2)检验所求的解是否符合实际意义.答:实际问题的答案.与分式方程有关应用题的常见类型:题型01 列分式方程【例1】(2022·云南·中考真题)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该A.1.4−x=8 1.4+x=8 1.4−2x=8 1.4+2x=8题型02 利用分式方程解决实际问题类型一行程问题【例2】(2022·四川自贡·统考中考真题)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【变式2-1】(2023青岛市一模)小李从A地出发去相距4.5千米的B地上班,他每天出发的时间都相同.第一天步行去上班结果迟到了5分钟.第二天骑自行车去上班结果早到10分钟.已知骑自行车的速度是步行速度的1.5倍:(1)求小李步行的速度和骑自行车的速度分别为多少千米每小时;(2)有一天小李骑自行车出发,出发1.5千米后自行车发生故障.小李立即跑步去上班(耽误时间忽略不计)为了至少提前5分钟到达.则跑步的速度至少为多少千米每小时?类型二工程问题【例3】(2023重庆市模拟预测)为方便群众出行,甲、乙两个工程队负责修建某段通往高铁站的快线,已知甲队每天修路的长度是乙队的1.5倍,如果两队各自修建快线600m,甲队比乙队少用4天.(1)求甲,乙两个工程队每天各修路多少米?(2)现计划再修建长度为3000m的快线,由甲、乙两个工程队来完成.若甲队每天所需费用为1万元,乙队每天所需费用为0.6万元,求在总费用不超过38万元的情况下,至少安排乙工程队施工多少天?【变式3-1】(2023·重庆渝中·重庆巴蜀中学校考一模)重庆市潼南区是中国西部绿色菜都,为全市人民提供了新鲜多样的蔬菜.今年,区政府着力打造一个新的蔬菜基地,计划修建灌溉水渠1920米,由甲、乙两,而乙施工队单独修建这个施工队合作完成.已知乙施工队每天修建的长度是甲施工队每天修建的长度的43项工程需要的天数比甲施工队单独修建这项工程需要的天数少4天.(1)求甲、乙两施工队每天各修建多少米?(2)若甲施工队每天的修建费用为13万元,乙施工队每天的修建费用为15万元,实际修建时先由甲施工队单独修建若干天,再由甲、乙两个施工队合作修建,恰好12天完成修建任务,求共需修建费用多少万元?类型三和差倍分问题【例4】(2022·广东深圳·深圳中学校考一模)2022年北京冬奥会吉祥物冰墩墩深受大家的喜欢.某商家两次购进冰墩墩进行销售,第一次用22000元,很快销售一空,第二次又用48000元购进同款冰墩墩,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进冰墩墩多少个?(2)若所有冰墩墩都按相同的标价销售,要求全部销售完后的利润率不低于20%(不考虑其他因素),那么每个冰墩墩的标价至少为多少元?【变式4-1】(2022·河南·统考中考真题)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需倍,用300元在市场上要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的54购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【变式4-2】(2021·山东济南·统考中考真题)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?【变式4-3】(2022·山东烟台·统考中考真题)扫地机器人具备敏捷的转弯、制动能力和强大的自主感知、规划能力,深受人们喜爱.某商场根据市场需求,采购了A,B两种型号扫地机器人.已知B型每个进价比A型的2倍少400元.采购相同数量的A,B两种型号扫地机器人,分别用了96000元和168000元.请问A,B两种型号扫地机器人每个进价分别为多少元?类型四销售利润问题【例5】(2023梁山县三模)某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?【变式5-1】(2023银川市二模)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?。

2024年中考数学一轮复习考点06 分式方程(精讲)(解析版)29

2024年中考数学一轮复习考点06 分式方程(精讲)(解析版)29

考点06.分式方程(精讲)【命题趋势】分式方程考查内容以分式方程解法、分式方程含参问题、分式方程的应用题为主,既有单独考查,也有和一次函数、二次函数结合考察,年年考查,分值为10分左右,预计2024年各地中考还将继续考查分式方程解法、分式方程含参问题(较难)、分式方程的应用题,为避免丢分,学生应扎实掌握。

【知识清单】1:解分式方程(☆☆)1)分式方程的概念:分母中含有未知数的方程叫做分式方程.注意:“分母中含有未知数”是分式方程与整式方程的根本区别,是判定一个方程为分式方程的依据。

2)分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母.(2)解分式方程的步骤:①找最简公分母,当分母是多项式时,先分解因式;②去分母,方程两边都乘最简公分母,约去分母,化为整式方程;③解整式方程;④验根.3)增根在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根。

由于可能产生增根,所以解分式方程要验根,其方法是将根代入最简公分母中,使最简公分母为零的根是增根,否则是原方程的根.注意:增根虽然不是方程的根,但它是分式方程去分母后变形而成的整式方程的根。

若这个整式方程本身无解,当然原分式方程就一定无解。

2:分式方程的应用(☆☆☆)1)列分式方程解应用题的一般步骤:①审题(找等量关系);②设未知数;③列分式方程;④解分式方程;⑤检验(一验分式方程,二验实际问题);⑥答。

2)分式方程的应用主要涉及工程问题,有工作量问题、行程问题、利润问题等。

每个问题中涉及到三个量的关系,如:工作时间=工作量工作效率,时间=路程速度,总利润=单件利润×销售量,利润率=利润÷成本×100%等。

【易错点归纳】1.解分式方程过程中,易错点有:①去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项;②忘记验根,最后的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解。

中考数学(贵阳专版)总复习训练:第2章 第3节 分式方程及应用

中考数学(贵阳专版)总复习训练:第2章 第3节 分式方程及应用

第三节 分式方程及应用一、选择题1.分式方程2x -2-1x=0的根是( D ) A .x =1 B .x =-1C .x =2D .x =-22.下列关于x 的方程是分式方程的是( C )A .2+x 5-3+x 6=4B .x -18-b=3+x 5 C .x +1x -1=3 D .x a -a b =b a -x b 3.分式方程1x -1-2x +1=4x 2-1的解是( D ) A .x =0 B .x =-1C .x =±1D .无解4.甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是( A )A .8B .7C .6D .55.下列说法正确的是( A )A .8x=x -5是分式方程 B .x +32=x -13是分式方程 C .2x 2+x +3x 2-x -4x 2-1=0的解是x =-1 D .解分式方程时,一定能产生增根6.把分式方程2x +4=1x转化为一元一次方程时,方程两边需同乘以( D ) A .x B .2x C .x +4 D .x(x +4)7.小朱要到距家1 500 m 的学校上学,一天,小朱出发10 min 后,小朱的爸爸立即去追小朱,并且在距离学校60 m 的地方追上了他.已知爸爸比小朱的速度快100 m /min ,求小朱的速度.若设小朱的速度是x m /min ,则根据题意所列方程正确的是( B )A .1 440x -100-1 440x =10B .1 440x =10+1 440x +100C .1 440x =1 440x -100+10D .1 440x +100-1 440x =10 8.将分式方程1-5x +2x (x +1)=3x +1去分母整理后得( D )A .8x +1=0B .8x -3=0C .x 2-7x +2=0D .x 2-7x -2=09.若关于x 的分式方程x x -2=2-m 2-x的解为正数,则满足条件的正整数m 的值为( A ) A .1,2,3 B .1,2 C .1,3 D .2,310.关于x 的方程x +1x -1=a +1a -1的所有解是( C ) A .a B .a a -1C .a 和a a -1D .a 和a -b 2a 二、填空题11.请你给x 选择一个合适的值,使方程2x -1=1x -2成立,你选择的x =__3(答案不唯一)__. 12.已知关于x 的方程3x +n 2x +1=2的解是负数,则n 的取值范围为__n<2且n ≠1.5__. 13.杭州到北京的铁路长1 487 km .火车的原平均速度为x km /h ,提速后平均速度增加了70 km /h ,由杭州到北京的行驶时间缩短了3 h ,则可列方程为__1 487x -1 487x +70=3__. 14.若关于x 的分式方程x -a x -1-3x=1无解,则a =__1____. 15.在数轴上,点A ,B 对应的数分别为2,x -5x +1,且A ,B 两点关于原点对称,则x 的值为__1__. 三、解答题16.解分式方程:x x -1+21-x=4. 解:方程两边同乘(x -1),得x -2=4(x -1),整理,得-3x =-2,解得x =23, 经检验,x =23是原方程的解, 故原方程的解为x =23. 17.某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元.解:设甲商品的单价为x 元,则乙商品的单价为2x 元.根据题意,得240x -3002x=15, 解得x =6,经检验,x =6是所列方程的根,∴2x =2×6=12(元).答:甲、乙两种商品的单价分别为6元、12元.18.某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总额为1 200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总额也为1 200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.解:设九(1)班人均捐款x 元,则九(2)班人均捐款(1+20%)x =1.2x 元.根据题意列方程,得1 200x -1 2001.2x=8,解得x =25. 经检验,x =25是原方程的根.当x =25时,1.2x =30.答:九(1)班、九(2)班每班的人均捐款数分别为25元和30元.19.某市为进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路.实际施工时,每月的工效比原计划提高了20%,结果提前5个月完成这一工程.求原计划完成这一工程的时间是多少个月?解:设原计划完成这一工程的时间为x 个月.根据题意列方程,得(1+20%)·1x =1x -5, 解得x =30.经检验,x =30是原方程的根.答:原计划完成这一工程的时间是30个月.20.为了提高产品的附加值,某公司计划将研发生产的1 200件新产品进行精加工后再投放市场,现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工1.5x 件新产品.由题意,得1 200x =1 2001.5x+10, 解得x =40,经检验,x =40是原方程的解,并且符合题意.∴1.5x =60.答:甲、乙两个工厂每天能加工新产品的件数分别为40件、60件.21.端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.8元,花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,求粽子与咸鸭蛋的价格各多少.解:设咸鸭蛋的价格为x 元,则粽子的价格为(1.8+x)元.根据题意,得30x +1.8=12x,解得x =1.2, 经检验,x =1.2是分式方程的解,且符合题意,∴1.8+x =1.8+1.2=3(元).答:咸鸭蛋的价格为1.2元,粽子的价格为3元.22.东营市某学校2015年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2 000元,购买乙种足球共花费1 400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2 900元,那么这所学校最多可购买多少个乙种足球?解:(1)设购买一个甲种足球需x 元,则购买一个乙种足球需(x +20)元.由题意,得2 000x =2×1 400x +20, 解得x =50,经检验,x =50是原方程的解.∴x +20=70.答:购买一个甲种足球需50元,购买一个乙种足球需70元;(2)设这所学校可购买y 个乙种足球,则购买(50-y)个甲种足球.由题意,得50×(1+10%)×(50-y)+70×(1-10%)y ≤2 900.解得y ≤18.75.由题意知,最多可购买18个乙种足球.笞:这所学校此次最多可购买18个乙种足球.。

初三数学总复习--分式方程及应用

初三数学总复习--分式方程及应用

初三数学总复习分式方程及应用一:【课前预习】(一):【知识梳理】1.分式方程:分母中含有 的方程叫做分式方程.2.分式方程的解法:解分式方程的关键是 (即方程两边都乘以最简公分母),将分式方程转化为整式方程;3.分式方程的增根问题:⑴ 增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根的增根;⑵ 验根:因为解分式方程可能出现增根,所以解分式方程必须验根。

验根的方法是将所求的根代人 或 ,若 的值为零或 的值为零,则该根就是增根。

4.分式方程的应用:列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.5.通过解分式方程初步体验“转化”的数学思想方法,并能观察分析所给的各个特殊分式或分式方程,灵活应用不同的解法,特别是技巧性的解法解决问题。

6. 分式方程的解法有 和 。

(二):【课前练习】1. 把分式方程11122x x x--=--的两边同时乘以(x-2), 约去分母,得( ) A .1-(1-x)=1 B .1+(1-x)=1 C .1-(1-x)=x-2 D .1+(1-x)=x-22. 方程2321x x -=+的根是( ) A.-2 B.12 C.-2,12D.-2,1 3. 当m =_____时,方程212mx m x +=-的根为12 4. 如果25452310A B x x x x x -+=-+--,则 A=____ B =________. 5. 若方程1322a x x x -=---有增根,则增根为_____,a=________.二:【经典考题剖析】1. 解下列分式方程:25211111 332552323x x x x x x x x x -+=+==+---++();(2);(); 2222213(1)1142312211x x x x x x x x x x x x -++⎛⎫⎛⎫+=+=+-+= ⎪ ⎪--++⎝⎭⎝⎭(4);(5);(6) 分析:(1)用去分母法;(2)(3)(4)题用化整法;(5)(6)题用换元法;分别设211x y x +=+,1y x x=+,解后勿忘检验。

2024年贵州省中考数学一轮复习第3讲 分 式课件

9.(2020·铜仁)先化简,再求值:(a+)÷,自选一个a的值代入求值.
解:原式=· =· =-.当a=0时,原式=-3.(答案不唯一,a≠±1,3均可以)
10.(2019·安顺)先化简(1+)÷,再从不等式组的整数解中选一个合适的x的值代入求值.
3.(2019·贵阳)若分式的值为0,则x的值是 2 .
B
x≠-1
2
命题点2 分式的化简及求值
4.(2023·贵州)化简-的结果正确的是( A )
A.1
B.a
C.
D.-
5.(2021·黔西南)计算:-= ​ .
6.(2021·毕节)先化简,再求值:÷(a-),其中a=2,b=1.
解:原式=÷=·=.当a=2,b=1时,原式==3.
1.乘除运算
乘法
分式乘分式,把分子乘分子、分母乘分母分别作积的分子、分母,即·=④ ​
除法
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即÷=⑤ · =(u≠0)

·
2.加减运算
同分母
分母不变,把分子相加减,即±=⑥ ​
异分母
先通分,变为同分母的分式,再加减,即±=±=⑦ ​
解:原式=(-)·(x2-x) =·x(x-1) =x(x-2).当x=3时,原式=3×(3-2)=3.
命题点1 分式的相关概念
1.(2020·安顺)当x=1时,下列分式没有意义的是( B )
A.
B.
C.
D.
2.(2021·铜仁)要使分式有意义,则x的取值范围是 x≠-1 .
基本性质
分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变.即=,=(其中f,g,h是整式,且h≠0)

中考复习 分式方程及其应用课件


• (2)分式方程
x 1 x 1 x

3
(x 1)( x 2)
的解是
(C)
A.x=1 B.x=-1 C.无解 D.x=-2

(3)解方程:
x2
3 3x

1 x 3
1
原方程的解为x=-1
2020/3/2
例题讲解

例1、(1)若分式方程
2

1 kx x2

2
1

x
有增根,则k=___k_=_1___.
2020/3/2
二、题型、方法
• 考点1 分式方程的概念
热身练手:1、指出下列关于x的方程中,是分式方程的是(4)、(5()只 填序号).
(1) x y 5 ;(2)
x
5
2

2
y 3
z
;(3) 1 ;
x
(4)
x
y
5

0

(5)
1 2x 5 x
3/2
考点2 分式方程的解法
变式1、若关于x分式方程
x
x
2

2

m 2
x
的解为正数,
求满足条件的正整数m的值?
m的值为1、3
变式2、若关于x的方程 m 1 x 0无解,求m的值?
x4 4x
m=3
2020/3/2
考点3 分式方程的应用 • 热身练手:某校甲、乙两组同学同时出发去距离学校4 km的植物园参观,
热身练手:2、解方程:
2 x
x 3

3
1
x

1
解:去分母,两边同时乘以(x-3),得 2-x-1=x-3, 解得x=2, 检验:当x=2时x-3 ≠0,

2023年中考数学一轮复习满分突破专题06 分式-【题型方法解密】

专题06 分式【热考题型】【知识要点】 知识点一:分式的基础概念:如果A ,B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式,A 为分子,B 为分母。

【判断分式的注意事项】 1)条件:①形如BA的式子; ②A ,B 为整式;③分母B 中含有字母,三者缺一不可。

2)判断一个式子是不是分式,需看它是否符合分式的条件,若分子和分母含有相同字母,不能把原式化简后再判断,例如:aa4就是分式。

与分式A有关的条件:考查题型一 分式的意义题型1.(2022·湖南怀化·中考真题)代数式25x ,1π,224x +,x 2﹣23,1x ,12x x ++中,属于分式的有( ) A .2个B .3个C .4个D .5个题型1-1.(2022·浙江舟山·中考真题)观察下面的等式:111236=+,1113412=+,1114520=+,…… (1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数) (2)请运用分式的有关知识,推理说明这个结论是正确的.易错点总结:考查题型二 分式有意义的条件题型2.(2022·四川凉山·中考真题)分式13x+有意义的条件是( ) A .x =-3B .x ≠-3C .x ≠3D .x ≠0题型2-1.(2022·湖北恩施·中考真题)函数y 的自变量x 的取值范围是( ) A .3x ≠ B .3x ≥ C .1x ≥-且3x ≠D .1x ≥-题型2-2.(2022·湖北黄石·中考真题)函数11y x -的自变量x 的取值范围是( ) A .3x ≠-且1x ≠B .3x >-且1x ≠C .3x >-D .3x ≥-且1x ≠题型2-3.(2022·广东广州·有意义时,x 应满足的条件为( ) A .1x ≠- B .1x >-C .1x <-D .x ≤-1易错点总结:考查题型三 分式值为0的条件题型3.(2021·广西桂林·中考真题)若分式23x x -+的值等于0,则x 的值是( ) A .2B .﹣2C .3D .﹣3题型3-1.(2021·四川雅安·中考真题)若分式||11x x -+的值为零,则x 的值为( )A.1B.1-C.1±D.0题型3-2.(2022·广西·中考真题)当x=______时,分式22xx+的值为零.题型3-3.(2021·湖南湘西·中考真题)若式子212y+-的值为零,则y=___.易错点总结:知识点二:分式的形式(基础)基本性质(基础):分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

数学人教版九年级下册分式与分式方程复习


检验:将v=5代入分式方程,左边=4=右边, 所以v=5是原分式方程的解。 在解分式方程的过程中体现了一个非常重要的数 学思想方法:转化的数学思想(化归思想)。
解分式方程的思路
分式 方程
去分母
整式 方程
解分式方程的一般步骤
1、 在方程的两边都乘以最简公分母,约去分母, 化成整式方程. 2、解这个整式方程. 3、 把整式方程的解代入最简公分母,如果最简 公分母的值不为0,则整式方程的解是原分式方程的 解;否则,这个解不是原分式方程的解,必须舍去. 4、写出原方程的根.
例3
x 1 4 2 1 解方程 x 1 x 1
解:方程两边都乘以 (x+1) ( x – 1 ) , 约去分母,得
( x + 1 )2-4 = x2-1
解这个整式方程,得 x=1
经检验得: x = 1 是增根 ∴原方程无解.
增根的定义
增根:在去分母,将分式方程转化为整式方程 的过程中出现的不适合于原方程的根. ········· 使最简公分母值为零的根 产生的原因:分式方程两边同乘以一个零因式 后,所得的根是整式方程的根,而不是分式方程 ···· ···· 的根.所以我们解分式方程时一定要代入最简 公分母检验
1 ﹢ 6
1
2x

解:设乙队如果单独施工1个月能完成总工 1 程的 x 。 1 1+ 1 + = 1 由题意得: 3 6 2x
2x+x+3=6x x=1
经检验:x=1是原分式方程的解,且符合题意。 1 ∵ 1﹥ 3
∴ 乙队施工速度快。
列分式方程解应用题
(1)设未知数:若把题目中要求的未知数直接用字母 表示出来,则称为直接设未知数,否则称间接设未知 数; (2)列代数式:用含未知数的代数式把题目中有关的 量表示出来,必要时作出示意图或列成表格,帮助理 顺各个量之间的关系; (3)列出方程:根据题目中明显的或者隐含的相等关 系列出方程 (4)解方程并检验; (5)写出答案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档