三角函数总结大全(整理好的)
三角函数必背公式汇总

三角函数必背公式汇总三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。
而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。
1(一)正弦函数在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA。
即sinA=∠A的对边/斜边。
正弦值在[2kπ-π/2,2kπ+π/2](k∈Z)随角度增大(减小)而增大(减小),在[2kπ+π/2,2kπ+3π/2](k∈Z)随角度增大(减小)而减小(增大);(二)余弦函数在Rt△ABC(直角三角形)中,∠C=90°,,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。
余弦函数:f(x)=cosx(x∈R)。
余弦值在[2kπ-π,2kπ](k∈Z)随角度增大(减小)而增大(减小),在[2kπ,2kπ+π]角度增大(减小)而减小(增大);(三)正切函数在Rt△A BC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是tanB=b/a,即tanB=AC/BC。
2半角公式sin(A/2)=±√((1-cosA)/2)cos(A/2)=±√((1+cosA)/2)tan(A/2)=±√((1-cosA)/((1+cosA))倍角公式Sin2A=2SinA*CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)两角和与差公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cossinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)积化和差公式sinAsinB=-[cos(A+B)-cos(A-B)]/2cosAcosB=[cos(A+B)+cos(A-B)]/2sinAcosB=[sin(A+B)+sin(A-B)]/2cosAsinB=[sin(A+B)-sin(A-B)]/2和差化积公式sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)。
三角函数公式总结计划大全很详细

一、正弦函数(sin)1.基本公式正弦函数的基本公式为:sinθ=对边/斜边。
2.倍角公式正弦函数的倍角公式有:(1)sin2θ=2sinθcosθ(2)sin3θ=3sinθ4sin³θ(3)sin4θ=2sin2θsinθ3.半角公式正弦函数的半角公式为:sinθ/2=±√[(1cosθ)/2]4.和差公式正弦函数的和差公式有:(1)sin(α±β)=sinαcosβ±cosαsinβ(2)sin(α+β)=sinαcosβ+cosαsinβ(3)sin(αβ)=sinαcosβcosαsinβ5.积化和差与和差化积公式正弦函数的积化和差公式为:sinαcosβ+cosαsinβ=sin(α+β)正弦函数的和差化积公式为:sinαcosβcosαsinβ=sin(αβ)二、余弦函数(cos)1.基本公式余弦函数的基本公式为:cosθ=邻边/斜边。
余弦函数的倍角公式有:(1)cos2θ=2cos²θ1(2)cos3θ=4cos³θ3cosθ(3)cos4θ=2cos2θ3.半角公式余弦函数的半角公式为:cosθ/2=±√[(1+cos2θ)/2]4.和差公式余弦函数的和差公式有:(1)cos(α±β)=cosαcosβ±sinαsinβ(2)cos(α+β)=cosαcosβsinαsinβ(3)cos(αβ)=cosαcosβ+sinαsinβ5.积化和差与和差化积公式余弦函数的积化和差公式为:cosαcosβ+sinαsinβ=cos(αβ) 余弦函数的和差化积公式为:cosαcosβsinαsinβ=cos(α+β)三、正切函数(tan)1.基本公式正切函数的基本公式为:tanθ=对边/邻边。
2.倍角公式正切函数的倍角公式有:(1)tan2θ=(tanθ+1)/(1tan²θ)(2)tan3θ=(tanθ+tan3θ)/(1tanθtan3θ)正切函数的半角公式为:tanθ/2=±√[(1cosθ)/(1+cosθ)]4.和差公式正切函数的和差公式有:(1)tan(α±β)=(tanα±tanβ)/(1tanαtanβ)(2)tan(α+β)=(tanα+tanβ)/(1tanαtanβ)(3)tan(αβ)=(tanαtanβ)/(1+tanαtanβ)5.积化和差与和差化积公式正切函数的积化和差公式为:tanαtanβ=(tan(α+β)tan(αβ))/(1+tanαtanβ)正切函数的和差化积公式为:tan(α±β)=(tanα±tan β)/(1tanαtanβ)四、其他三角函数1.正割函数(cot)正割函数的公式为:cotθ=邻边/对边=1/tanθ2.副弦函数(csin)一、正弦函数(sin)1.基本公式正弦函数的基本公式为:sinθ=对边/斜边。
三角函数总结归纳

最新三角函数总结归纳大全三角函数是数学中的重要概念,主要用于描述三角形中角度和边长之间的关系。
以下是三角函数的总结归纳:1. 定义:- 正弦(sin):定义为对边与斜边的比值,记作sin(θ),其中θ为角度。
- 余弦(cos):定义为邻边与斜边的比值,记作cos(θ)。
- 正切(tan):定义为对边与邻边的比值,记作tan(θ)。
2. 基本关系:- Pythagorean identity:sin^2(θ) + cos^2(θ) = 1。
这是三角函数的基础,常用于角度和三角形的计算。
- Pythagorean theorem:在直角三角形中,斜边的平方等于两直角边的平方和。
- Cotangent identity:cot(θ) = 1/tan(θ)。
- Secant identity:sec(θ) = 1/cos(θ)。
- Cosecant identity:csc(θ) = 1/sin(θ)。
3. 诱导公式:- 公式一:sin(π/2 - α) = cos(α)。
- 公式二:cos(π/2 - α) = sin(α)。
- 公式三:sin(π/2 + α) = cos(α)。
- 公式四:cos(π/2 + α) = -sin(α)。
- 公式五:sin(π- α) = sin(α)。
- 公式六:cos(π- α) = -cos(α)。
- 公式七:sin(π+ α) = -sin(α)。
- 公式八:cos(π+ α) = -cos(α)。
4. 和差公式:- sin(α+ β) = sinαcosβ+ cosαsinβ。
- cos(α+ β) = cosαcosβ- sinαsinβ。
- tan(α+ β) = (tanα+ tanβ)/(1 - tanαtanβ)。
5. 倍角公式:- sin2α= 2sinαcosα。
- cos2α= cos^2(α) - sin^2(α)。
- tan2α= 2tanα/(1 - tan^2(α))。
三角函数知识点归纳总结

三角函数知识点归纳总结三角函数是数学中研究角度与三角形边长之间关系的函数。
它们在解决几何问题、物理问题以及工程学中有着广泛的应用。
以下是三角函数的一些基本知识点归纳总结:1. 定义:- 正弦函数(sin):在直角三角形中,正弦是锐角的对边与斜边的比值。
- 余弦函数(cos):余弦是锐角的邻边与斜边的比值。
- 正切函数(tan):正切是锐角的对边与邻边的比值。
- 余切函数(cot):余切是锐角的邻边与对边的比值。
- 正割函数(sec):正割是斜边与邻边的比值。
- 余割函数(csc):余割是斜边与对边的比值。
2. 三角函数的值:- 特殊角(如0°, 30°, 45°, 60°, 90°)的三角函数值是基础,需要熟记。
- 正弦和余弦函数的值域是[-1, 1]。
- 正切和余切函数的值域是所有实数,但正切在90°(π/2弧度)处无定义,余切在0°和180°(0和π弧度)处无定义。
3. 单位圆:- 单位圆是一个半径为1的圆,三角函数可以在这个圆上定义。
- 角度可以用弧度制或角度制表示。
π弧度等于180°。
4. 三角恒等式:- 基本恒等式:sin²θ + cos²θ = 1。
- 双角公式:如sin(2θ) = 2sinθcosθ,cos(2θ) = cos²θ -sin²θ。
- 和差公式:如sin(α ± β) = sinαcosβ ± cosαsinβ,cos(α ± β) = cosαcosβ ∓ sinαsinβ。
5. 三角函数的图像:- 正弦函数和余弦函数是周期函数,周期为2π。
- 正切函数和余切函数也是周期函数,但它们在某些点有垂直渐近线。
6. 反三角函数:- 反三角函数是三角函数的逆运算,如arcsin、arccos、arctan 等。
- 反三角函数的值域通常被限制在特定的区间内,以保证其为单值函数。
三角函数知识归纳总结

三角函数知识归纳总结三角函数是高中数学中的一门重要内容,主要研究一个三角形的边与角之间的关系。
在解决几何、物理、信号处理等问题时经常会用到三角函数的知识。
下面是对于三角函数的一些常见知识进行归纳总结。
1.基本概念:三角函数包括正弦函数、余弦函数和正切函数,分别记作sin、cos 和tan。
正弦函数sin A表示角A的对边与斜边之比,即sin A = a / c。
余弦函数cos A表示角A的邻边与斜边之比,即cos A = b / c。
正切函数tan A表示角A的对边与邻边之比,即tan A = a / b。
2.函数图像:正弦函数的图像是一条余弦曲线,范围在[-1,1]之间,周期为2π。
余弦函数的图像是一条正弦曲线,范围在[-1,1]之间,周期为2π。
正切函数的图像是一条无穷的曲线,范围为整个实数轴。
3.基本性质:正弦函数和余弦函数的值在同一角度上相等,只是符号不同。
即sin(A) = cos(90° - A)。
正弦函数和余弦函数在90°的倍数角上都等于0,即sin(0°) = cos(90°) = sin(180°) = cos(270°) = ··· = cos(n × 90°) = 0。
正切函数在0°、180°、360°等等的倍数角上都等于0,即tan(0°) = tan(180°) = tan(360°) = ··· = tan(n × 180°) = 0。
4.三角函数的关系:(1) 三角函数的互余关系:sin(A) = cos(90° - A),cos(A) =sin(90° - A)。
(2) 三角函数的倒数关系:tan(A) = 1 / cot(A),cot(A) = 1 /tan(A)。
三角函数公式(最全)

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1tanα·tanβ-tanβ·tanγ-tanγ·tanα)
5、幂级数
c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞) c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)
cosh x = 1+x2/2!+x^4/4!+…+x2k/(2k)!+…, x∈R
arcsinh x =x - x3/(2*3) + (1*3)x5/(2*4*5) -(1*3*5)x7/(2*4* 6*7)…, x∈(-1,1)
arctanh x = x + x3/3 + x5/5 + …, x∈(-1,1)
上述两式相比可得: tan3a=tana·tan(60°-a) ·tan(60°+a)
6、四倍角公式
sin4a=-4*[cosa*sina*(2*sina^2-1)] cos4a=1+(-8*cosa^2+8*cosa^4) tan4a=(4*tana-4*tana^3)/(1-6*tana^2+tana^4)
7、五倍角公式
5
应用欧拉公式
8、n倍角公式
上式用于求n倍角的三角函数时,可变形为: 所以
其中,Re表示取实数部分,Im表示取虚数部分.而
三角函数大全(2023高考试用)
三角函数大全(2023高考试用)
三角函数在我们高中的学习生涯中占据了很大一部分,很多考生都不太会做三角函数的题目,这是因为各位考生对三角函数的公式不够熟练。
下面是小编为大家准备的“三角函数大全(2023高考试用)”,希望能够帮助到各位考生。
三角函数大全(2023高考试用)
1.任意角的三角函数
注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向线段MP、OM、AT分别叫做角的正弦线、余弦线、正切线。
2.同角三角函数的基本关系式
3.诱导公式
4.二倍角公式
5.万能公式(可以理解为二倍角公式的另一种形式)
万能公式告诉我们,单角的三角函数都可以用半角的正切来表示。
6.和差化积公式
7.了解和差化积公式的推导,有助于我们理解并掌握好公式:
8.积化和差公式
我们可以把积化和差公式看成是和差化积公式的逆应用。
9.辅助角公式
10.正弦定理
11.余弦定理
12.三角形的面积公式
三角函数做题方法:
1. 分题型:由角求值、由值求角;求最值、求周期……
2. 熟记和、差、倍、半公式及诱导公式,最好能会推导。
3. 熟练掌握正、余弦,正、余切的图像与性质。
4. 熟悉辅助角技巧、三角函数线
在此基础上,多做题,多总结。
三角函数知识点总结归纳
三角函数知识点总结归纳三角函数是高中数学必学知识点,那么三角函数知识点有哪些呢?快来和小编一起看看吧。
下面是由小编为大家整理的“三角函数知识点总结归纳”,仅供参考,欢迎大家阅读。
三角函数知识点总结归纳一、见“给角求值”问题,运用“新兴”诱导公式一步到位转换到区间(-90o,90o)的公式.1.sin(kπ+α)=(-1)ksinα(k∈Z);2. cos(kπ+α)=(-1)kcosα(k∈Z);3. tan(kπ+α)=(-1)ktanα(k∈Z);4. cot(kπ+α)=(-1)kcotα(k∈Z).二、见“sinα±cosα”问题,运用三角“八卦图”1.sinα+cosα>0(或<0)óα的终边在直线y+x=0的上方(或下方);2. sinα-cosα>0(或<0)óα的终边在直线y-x=0的上方(或下方);3.|sinα|>|cosα|óα的终边在Ⅱ、Ⅲ的区域内;4.|sinα|<|cosα|óα的终边在Ⅰ、Ⅳ区域内.三、见“知1求5”问题,造Rt△,用勾股定理,熟记常用勾股数(3,4,5),(5,12,13),(7,24,25),仍然注意“符号看象限”。
四、见“切割”问题,转换成“弦”的问题。
五、“见齐思弦”=>“化弦为一”:已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α.六、见“正弦值或角的平方差”形式,启用“平方差”公式:1.sin(α+β)sin(α-β)= sin2α-sin2β;2. cos(α+β)cos(α-β)= cos2α-sin2β.七、见“sinα±cosα与sinαcosα”问题,起用平方法则:(sinα±cosα)2=1±2sinαcosα=1±sin2α,故1.若sinα+cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α;2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α.八、见“tanα+tanβ与tanαtanβ”问题,启用变形公式:tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=九、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且平行于y轴的直线分别成轴对称;2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;3.同样,利用图象也可以得到函数y=Atan(wx+φ)和函数y=Acot(wx+φ)的对称性质。
三角函数知识点归纳总结
三角函数知识点归纳总结第一篇:三角函数基础知识点三角函数是高中数学中的重要内容,也是建立数学模型和解决实际问题的重要工具。
三角函数主要分为正弦函数、余弦函数、正切函数和余切函数四种。
1. 正弦函数正弦函数是三角函数中最基本的函数之一,通常用sin 表示。
它的定义域是整个实数集,取值范围在[-1,1]之间。
在单位圆上,正弦函数就是对于任意角度θ,其对应点在单位圆上的y坐标值。
2. 余弦函数余弦函数与正弦函数非常相似,通常用cos表示。
它的定义域也是整个实数集,取值范围也在[-1,1]之间。
在单位圆上,余弦函数就是对于任意角度θ,其对应点在单位圆上的x 坐标值。
3. 正切函数正切函数是将正弦函数与余弦函数相除得到的,通常用tan表示。
它的定义域是除去所有奇点(即函数值为正无穷或负无穷的点)之后的实数集,取值范围则是整个实数集。
在单位圆上,正切函数就是对于任意角度θ,其对应点在单位圆上的斜率。
4. 余切函数余切函数则是将余弦函数与正弦函数相除得到的,通常用cot表示。
其定义域和范围与正切函数相反。
在单位圆上,余切函数就是对于任意角度θ,其对应点在单位圆上的斜率的倒数。
以上四种三角函数都是周期函数,其周期是360度或2π弧度。
在求解实际问题时,可以通过这些函数将角度与其它物理量(如长度、速度等)相互转化。
第二篇:三角函数的应用三角函数的应用广泛,今天我们来谈谈三角函数在三角形中的应用和在物理问题中的应用。
1. 三角函数在三角形中的应用三角函数在解决三角形中的各种问题时非常重要。
例如,已知一个三角形的两条边以及它们之间的夹角,我们可以通过正弦函数、余弦函数或正切函数求出第三条边的长度或其它角度的大小。
同样的,如果已知三角形的三条边的长度,则可以应用余弦定理和正弦定理求出三个角度的大小。
2. 三角函数在物理问题中的应用三角函数在物理学中的应用非常广泛。
例如,我们可以应用正弦函数和余弦函数来描述一个简谐运动(如波动、振动)的变化规律。
三角函数知识点归纳总结
三角函数知识点归纳总结三角函数是高中数学中重要的概念之一,涵盖了正弦函数、余弦函数和正切函数等常用函数。
在此将对三角函数的知识点进行归纳总结,包括定义、性质和应用等方面。
1. 正弦函数(sine function):正弦函数是一个周期函数,用sin表示。
在单位圆上,正弦函数的值等于半径落在单位圆上的点的y坐标。
- 定义:sinθ = y / r,其中θ表示角度,y表示对边的长度,r表示斜边的长度。
- 基本性质:周期为2π,函数值介于-1和1之间,奇函数(满足f(-θ) = -f(θ))。
- 特殊性质:正弦函数在[0, π/2]区间上是递增的,在[π/2, π]区间上是递减的,在[π, 2π]区间上是递增的。
- 应用:电磁波、震动、信号处理等领域。
2. 余弦函数(cosine function):余弦函数是一个周期函数,用cos表示。
在单位圆上,余弦函数的值等于半径落在单位圆上的点的x坐标。
- 定义:cosθ = x / r,其中θ表示角度,x表示邻边的长度,r表示斜边的长度。
- 基本性质:周期为2π,函数值介于-1和1之间,偶函数(满足f(-θ) = f(θ))。
- 特殊性质:余弦函数在[0, π/2]区间上是递减的,在[π/2, π]区间上是递增的,在[π, 2π]区间上是递减的。
- 应用:振动、周期性现象、热传导等领域。
3. 正切函数(tangent function):正切函数是一个周期函数,用tan表示。
正切函数的值等于正弦函数值与余弦函数值的比值。
- 定义:tanθ = y / x,其中θ表示角度,y表示对边的长度,x表示邻边的长度。
- 基本性质:周期为π,正切函数在部分区间上为单调递增或递减函数。
- 特殊性质:正切函数的定义域为除x = (2k+1)π/2(k为整数)之外的实数集,值域为负无穷到正无穷。
- 应用:电路分析、光学、几何等领域。
4. 弧度制度转换关系:角的度量单位有角度和弧度两种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数(一)任意角的三角函数及诱导公式1.任意角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α。
旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点。
为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角。
如果一条射线没有做任何旋转,我们称它形成了一个零角。
2.象限角、终边相同的角、区间角角的顶点与原点重合,角的始边与x 轴的非负半轴重合。
那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。
要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角。
终边相同的角是指与某个角α具有同终边的所有角,它们彼此相差2k π(k ∈Z),即β∈{β|β=2k π+α,k ∈Z},根据三角函数的定义,终边相同的角的各种三角函数值都相等。
区间角是介于两个角之间的所有角,如α∈{α|6π≤α≤65π}=[6π,65π]。
3.弧度制长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写)。
角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定。
角α的弧度数的绝对值是:rl=α,其中,l 是圆心角所对的弧长,r 是半径。
角度制与弧度制的换算主要抓住180rad π︒=。
弧度与角度互换公式:1rad =π180°≈57.30°=57°18ˊ;1°=180π≈0.01745(rad )。
弧长公式:r l ||α=(α是圆心角的弧度数); 扇形面积公式:2||2121r r l S α==。
4 三角函数的定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P到原点的距离记为(0)r r ==>,那么sin y r α=; cos x r α=; tan y x α=; (cot x y α=; sec rxα=; csc r y α=)利用单位圆定义任意角的三角函数,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦,记做sin α,即sin y α=; (2)x 叫做α的余弦,记做cos α,即cos x α=;(3)yx叫做α的正切,记做tan α,即tan (0)y x x α=≠。
5 三角函数的符号:由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知:①正弦值yr对于第一、二象限为正(0,0y r >>),对于第三、四象限为负(0,0y r <>);②余弦值x r 对于第一、四象限为正(0,0x r >>),对于第二、三象限为负(0,0x r <>);③正切值yx对于第一、三象限为正(,x y 同号),对于第二、四象限为负(,x y 异号)说明:若终边落在轴线上,则可用定义求出三角函数值。
6.三角函数线三角函数线是通过有向线段直观地表示出角的各种三角函数值的一种图示方法。
利用三角函数线在解决比较三角函数值大小、解三角方程及三角不等式等问题时,十分方便。
以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆(注意:这个单位长度不一定就是1厘米或1米)。
当角α为第一象限角时,则其终边与单位圆必有一个交点(,)P x y,过点P作PM x⊥轴交x轴于点M,根据三角函数的定义:|||||sin|MP yα==;|||||cos|OM xα==。
我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角α的终边不在坐标轴时,以O为始点、M为终点,规定:当线段OM与x轴同向时,OM的方向为正向,且有正值x;当线段OM与x轴反向时,OM的方向为负向,且有负值x;其中x为P点的横坐标.这样,无论那种情况都有cosOM xα==同理,当角α的终边不在x轴上时,以M为始点、P为终点,规定:当线段MP与y轴同向时,MP的方向为正向,且有正值y;当线段MP与y轴反向时,MP的方向为负向,且有负值y;其中y为P点的横坐标。
这样,无论那种情况都有sinMP yα==。
像MP OM、这种被看作带有方向的线段,叫做有向线段。
如上图,过点(1,0)A作单位圆的切线,这条切线必然平行于y轴,设它与α的终边交于点T,请根据正切函数的定义与相似三角形的知识,借助有向线段OA AT、,我们有tanyATxα==我们把这三条与单位圆有关的有向线段MP OM AT、、,分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线。
6.同角三角函数关系式sin2α+cos2α=1(平方关系);ααcossin=tanα(商数关系);tanαcotα=1(倒数关系).使用这组公式进行变形时,经常把“切”、“割”用“弦”表示,即化弦法,这是三角变换非常重要的方法。
几个常用关系式:sinα+cosα,sinα-cosα,sinα·cosα;(三式之间可以互相表示)同理可以由sinα-cosα或sinα·cosα推出其余两式。
7.诱导公式可用十个字概括为“奇变偶不变,符号看象限”。
诱导公式一:sin(2)sinkαπα+=,cos(2)coskαπα+=,其中k Z∈诱导公式二:sin(180)α+=sinα-;cos(180)α+=-cosα诱导公式三:sin()sinαα-=-;cos()cosαα-=诱导公式四:sin(180)sinαα-=;cos(180)cosαα-=-诱导公式五:sin(360)sinαα-=-;cos(360)cosαα-=Oxya角的终P TM A(1)要化的角的形式为180k α⋅±(k 为常整数); (2)记忆方法:“奇变偶不变,符号看象限”;(3)sin(k π+α)=(-1)k sin α;cos(k π+α)=(-1)k cos α(k ∈Z); (4)sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭。
(二)三角函数的图像与性质1.正弦函数、余弦函数、正切函数的图像2.3.三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈;x y tan =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,4.对称轴与对称中心:sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈;cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+;对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系。
5.函数B x A y ++=)sin(ϕω),(其中00>>ωA最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。
6.由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。
途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象。
途径二:先周期变换(伸缩变换)再平移变换。
先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。
三角函数图象的平移和伸缩函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化Ak ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移.变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+ sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变得sin()y x ωϕ=+ sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变得sin()y A x ωϕ=+ sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++图象 先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变得sin()y A x ω= sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++图象 例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭.对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.分析:应先通过诱导公式化为同名三角函数.解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭.根据题意,有ππ22224x a x --=-,得π8a =-. 所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.5.由y =A sin(ωx +ϕ)的图象求其函数式: 给出图象确定解析式y =A sin (ωx +ϕ)的题型,有时从寻找“五点”中的第一零点(-ωϕ,0)作为突破口,要从图象的升降情况找准..第一个零点的位置。