生物反应器及其研究技术进展_王永红
生物乳腺反应器的原理及进展

动物乳腺生物反应器的原理及进展摘要:动物乳腺生物反应器技术是转基因技术的应用,于上世纪80年代提出,其目的是利用动物乳腺产生目的蛋白。
利用该技术生产的蛋白具有低成本,高活性,易提取纯化的优点。
虽然该技术尚处于发展时期,但具有广阔的应用前景和巨大地商业潜力,是许多公司大力发展的对象。
关键词:动物乳腺生物反应器、原理、进展、优点动物乳腺生物反应器(mammary gland reactor)是指利用动物乳腺特异性启动子调控元件指导外源基因在乳腺中特异性表达,并能从转基因动物乳汁中获取重组蛋白的一种生物反应器。
1生物反应器(bioreactor) 经历了3 个发展阶段:细菌基因工程、细胞基因工程、转基因动物生物反应器。
细菌基因工程产物往往不具备生物活性,必须经过糖基化、羟基化等一系列修饰加工后, 才能成为有效的药物,而细胞基因工程又因为哺乳动物细胞的培养条件要求相当苛刻,成本太高,限制了规模生产。
动物生物反应器具有产品质量高,容易提纯的特点,弥补了其它各类基因表达系统的缺陷。
它是在转基因技术体系基础上发展起来的。
7自从上世纪80年代出现以来,已经取得了许多突破,现己成为生物技术研究的热点。
并向商业化阶段转变,显示了广阔的应用前景。
并且利用转基因动物乳腺生物反应器生产饮用奶,以期望获得既能满足蛋白质需要,又能增加抵抗力的品质全面的奶,为人类服务。
21、动物乳腺生物反应器的原理乳腺生物反应器的原理是应用重组DNA 技术和转基因技术,将目的基因转移到尚处于原核阶段的动物胚胎中,经胚胎移植得到转基因乳腺表达的个体。
1 外源基因在乳腺特异性表达需要乳蛋白基因的一个启动子和调控区,即需要一个引导泌乳期乳蛋白基因表达的序列,这样才能将外源基因置于乳腺特异性调节序列控制之下,使其在乳腺中表达再通过回收奶获得具有生物活性的目的蛋白。
它是一个专门化的分泌腺体,可以生产出具完全生物活性的药用重组蛋白质,其纯化简单,生产投资及成本相对较少,而且对环境不具污染性,也被称为“分子农场”。
水处理生物膜反应器的优化研究

水处理生物膜反应器的优化研究随着城市人口和工业化的不断增长,水污染问题变得越来越突出。
水处理技术因此成为现代城市必不可少的基础设施之一。
其中,生物膜反应器(Biofilm Reactor,简称BFR)在各种水处理技术中有着广泛应用。
BFR是一种维持在固体基质表面的生物膜中的生物技术。
这种处理方法下,基质表面分解有机物并获得能量的微生物群落(细菌、藻类等)会集成为薄膜状结构(生物膜)。
生物膜滞留时间长,对环境变化响应迅速,也比传统生物反应器有更高的降解效率。
BFR可以应用于各种废水处理场所,如城市污水处理厂、饮料厂、餐饮服务业、农业生态渔场等。
同时,BFR也可以应用于水质的改善、水体的脱氮脱磷以及生物膜制备等方面。
但是,BFR还存在着很多技术瓶颈,包括水动力设计、水质调控、滞留时间、反应器配置等等。
基于这些技术瓶颈,对BFR的优化研究就显得格外重要。
水动力设计水动力设计是BFR设计中的一个重要部分。
水动力设计考虑的是反应器的水流性能,包括混合、颗粒输送和质量扩散等。
BFR设计中的水动力学参数和设计参数(如滞留时间、水力周期和水力加载率等)对反应器的性能和污染物降解有着很大的影响。
因此,如何控制水动力学参数,在保证污染物降解效率的同时保证反应器的稳定性成为优化研究的一个重要方向。
为此,实验研究和理论计算相结合是一个很好的解决方法。
比如,实验室中可以通过高精度的控制系统来研究不同水力加载率下的降解效率、固-液相转换的规律等,从而为BFR设计提供理论基础支持。
水质调控由于水质是决定BFR反应效率的主要因素,因此产生了如何控制水质的问题。
BFR反应器中要控制的水质有氨氮、总氮、总磷、COD和BOD等。
BFR的水质控制具体包括几个方面:1.预处理:在BFR反应器之前进行预处理可以降低BFR系统中污染物的浓度。
预处理技术包括去除颗粒物、调整PH值、氧化去除有机物等。
2.添加特定的细菌群:有些污染物BFR系统中因为缺乏对应的微生物而难以迅速降解。
污水处理技术中的高效生物反应器研究

污水处理技术中的高效生物反应器研究一、引言污水处理技术是环保领域中非常重要的一个专业领域,其中高效生物反应器是一种关键的技术手段。
本文将从高效生物反应器的定义、研究历史、优势和发展前景等多个方面介绍该技术的相关知识。
二、高效生物反应器的定义高效生物反应器是污水处理技术中的一种用于生物处理污水的设备。
其通过菌类在生物膜内附着生长吸附、吸收和转化有害物质,将污染物质分解为无害物质,达到治理环境的目的。
该技术亦称高效生物接触氧化法,是利用微生物的吸附和附着能力,将废水中的有害物质转化为无害物质的一种处理方式。
三、高效生物反应器的研究历史早在20世纪60年代,高效生物反应器技术被广泛应用于下水道和排水处理中。
60年代末至70年代初的德国、美国、日本、加拿大等国,为了解决城市污染水处理的问题不断地开发和研究高效生物反应器技术。
近年来高效生物反应器技术逐渐成为国际上新兴的废水处理技术,已逐渐成为我国小型污水处理工程中使用的一项重要技术。
高效生物反应器技术在实践应用中也不断升级改进,提高其处理效率。
四、高效生物反应器的优势相较于其他的污水处理方法,高效生物反应器具有以下优势:1. 高处理效率:高效生物反应器的反应器容积较小,能快速地对废水进行处理,运营成本相对较低。
2. 适应性强:高效生物反应器技术可以处理各种不同性质的废水,应用范围广。
3. 净化效果好:高效生物反应器技术经过一段时间的运作后,废水的有害物质已经被生物降解吸收或氧化,水的净化效果明显可见,处理后的废水质量稳定可靠。
4. 维护方便:高效生物反应器的结构简单,设备维护管理相对较方便。
五、高效生物反应器的发展前景随着世界人才经济社会的快速发展,环境治理和保护更为重要,高效生物反应器技术将逐渐得到广泛应用。
未来,高效生物反应器技术将朝着更智能化、更高效率、更低成本以及更安全的方向发展。
在中国,随着全国纳污水处理厂的逐步扩建和改造,高效生物反应器技术将会取得更大的进步。
生物反应器研究进展

工作原理
高分子有机物的厌氧降解过程可以被分为四个阶段:水 解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。
水解阶段
发酵阶段
产甲烷阶段
产乙酸阶段
第一代生物反应器
• AF——厌氧消化池
第二代生物反应器
•生物滤池
1、厌氧消化池原理 在微生物作用下通过液化、酸性发酵和碱性发酵三个阶段后产生沼气的过程。 2、厌氧消化池的作用 ①将污泥中的一部分有机物转化为沼气; ②将污泥中的一部分有机物转化成为稳定性良好的腐殖质; ③提高污泥的脱水性能; ④使得污泥的体积减少1/2以上; ⑤使污泥中的致病微生物得到一定程度的灭活,有利于污泥的进一步处理和利用。 3、优点: 适用于高浓度废水和好氧难降解的有机废水。 有一定杀菌作用,生产灵活、适应性强。 可季节性、间歇性运转,可产生有价值的副产物:如沼气。 4、缺点: 厌氧微生物生长繁殖慢,设备启动、处理时间长。出水水质达不到排放标准,需进 一步好氧处理。操作控制因素比较复杂。
第三代生物反应器
• UBF——厌氧上流污泥床-过滤器 • 是在AF和UASB基础上开发出来的,其下 层为UASB,上层为AF。
第三代生物反应器
• ASBR—atching
钢化粪池
亚洲最大卵形污泥厌氧消化池在武汉建成
• UASB反应器:即升流式厌氧污泥床,由进 水和配水系统、反应器的池体和三相分离器 组成。
工作原理
污水向上通过污泥床,在厌氧 状态下会产生沼气(主要是甲烷和 二氧化碳)引起了内部的循环,这 对于颗粒污泥的形成和维持有利。 在污泥层形成的一些气体附着在 污泥颗粒上,附着和没有附着的 气体向反应器顶部上升。上升到 表面的污泥撞击三相反应器气体 发射器的底部,引起部分附着气 泡的污泥絮体脱气。气泡释放后 污泥颗粒将沉淀到污泥床的表面, 其余气体被收集到反应器顶部的 三相分离器的集气室。置于集气 室单元缝隙之下的挡板的作用为 气体发射器和防止沼气气泡进入 沉淀区,否则将引起沉淀区的絮 动,会阻碍颗粒沉淀。进入沉淀 区组成包含一些剩余固体和污泥 颗粒的液体。
生物反应器ppt课件

精选编辑ppt
37
技术参数:
标准配置:
1、罐体系统:
罐体全容积:5L;工作容积:2~4L
罐体材质:硼硅玻璃+316L不锈钢;罐盖材质: 316L不锈钢
罐体设计压力:0.1Mpa;夹套设计压力: 0.25Mpa
罐盖结构:标准温度、PH、 DO 传感器插口各1 个;标准泡沫电极插口1个;通用补料接口2个; 接种口1个;排气口1个;取样管口1个
35
发酵罐 发酵罐若
根据其使用对象区分, 可有:嫌气发酵罐、好 气发酵罐、污水生物处 理装置等。
其中嫌气发酵罐最为
简单,生产中不必导入 空气,仅为立式或卧式 的筒形容器,可借发酵 中产生的二氧化碳搅拌 液体。(见彩图)
精选编辑ppt
36
产品名称:5L离位灭菌自动台式发酵罐 型 号: SY-3005QB
精选编辑ppt
8
3、植物细胞培养的特殊条件
(1)光照:离体培养的植物细胞对光照条件不严格, 因为细胞生长所需要的物质主要是靠培养基供给, 但光照不但与光合作用有关,而且与细胞分化有关。
(2)激素:植物细胞的分裂和生长特别需要植物激 素的调节,促进生长的生长素和促进细胞分裂的分 裂素是最基本的激素。
10
(二)描述方法
动力学的研究目的是定量地描述过程 的速率以及影响过程速率的诸多因素。
生物过程动力学研究的主要问题是生物 反应的速率,特别是细胞生长的速率、各 种基质组分的消耗速率、代谢产物的生成 速率。
精选编辑ppt
11
常用的有:
⑴反应速率:单位时间物质浓度的变化量。如:细胞
的生长速率、代谢产物的生成速率等。
产生的(开始时需接入菌种),为防止杂菌污染和活 性衰退,一般采用分批釜式反应器;
生物反应器稳定性及其影响因素分析

生物反应器稳定性及其影响因素分析随着科技的不断发展与人们环保意识的逐渐提高,环境污染问题愈加严重,使得环境保护成为全社会非常关注的问题。
其中,生物反应器作为一种有效的废气废水处理设备,扮演着重要的角色。
但是,生物反应器运行稳定性是影响其处理效果的一个重要因素。
本文将重点分析生物反应器稳定性及其影响因素。
一、生物反应器运行稳定性生物反应器运行稳定性是指生物反应器在长时间运行过程中,处理效果的稳定性和生物活性的稳定性。
稳定性不足会导致基础生物膜的破坏和废水处理效果下降,从而影响工程项目的安全和稳定运行。
二、生物反应器运行中影响稳定性的因素1.水质参数水质是影响生物反应器运行稳定性的最主要因素,其中影响反应器运行稳定性的水质参数主要包括溶解氧、温度、pH值、COD 和TOC等多个参数。
其中,温度、pH值和溶解氧是影响生物活性的关键因素,这些参数不应出现剧烈波动,以免影响微生物的生存和活动。
2.洗涤物洗涤物是指排放到生物反应器中的含有重金属、难以降解物等有害成分的液体,这些物质可能会对生物膜造成损伤,进而导致反应器运行不稳定。
因此,需要在反应器中添加一种特别的吸附剂以去除洗涤剂,在反应器中去除这些剂可以提高生物薄膜的稳定性。
3.营养物营养物是指对微生物生长有重要作用的物质,包括碳源、氮源和磷源等。
如果营养物不足或者过多,都会导致反应器运行不稳定。
通常微生物在生长过程中需要的碳、氮、磷比例为C:N:P=100:5:1。
反应器中的营养物浓度应该保持稳定。
4.反应器液位反应器液位也是影响反应器运行稳定性的关键因素之一。
由于液位的变化会影响到反应器中氧气流量的分配和微生物的生活环境,所以需要定期检查反应器的液位情况,并及时调整。
5.水力负荷水力负荷是指反应器中进出水流量的比例,过高的水力负荷可能会导致微生物被冲走,从而导致生物反应器的稳定性降低。
因此,在生物反应器运行的过程中,要定期检测水力负荷情况,并适时进行调整。
《生物反应器》PPT课件

发酵罐结构尺寸:V体积=V发酵液量/φ(0.850.9)
发酵罐罐数确定:N=(nt/24)+1(个) n----每天加料的罐数,t---一次发酵周期所需
时间 发酵罐冷却面积计算:A=Q/K△Tm (m2 )
完整版课件ppt
8
第二节 啤酒发酵设备
1、前发酵设备 传统的前发酵槽均置于发酵室内, 发酵槽大部分为开口式。 前发酵槽可由钢板或钢筋混凝土 制成,形式以长方形或方形为主。 了防止啤酒中有机酸对各种材质 的腐蚀,前发酵槽内均要涂布一 层特殊涂料作为保护层。
(5)厌氧发酵的培养基应先通过加热或喷入无
氧气体来预还原。完整版课件ppt
5
第一节 酒精发酵设备
酒精发酵罐的结构必须首先满足 工艺要求。此外,从结构上还应考 虑有利于发酵液的排出、设备的清 洗、维修以及设备制造安装方便等 问题。
完整版课件ppt
6
1.冷却水入口 2.取样口
酒精发酵罐
3.压力表
生物反应器的设计
生物反应器设计的重要方面包 括改善生物催化剂,更好的进行过 程控制,有更好的无菌条件以及能 克服速度限制因素(特别是热量和 质量传递)等。
微生物反应器设计的基本要求
(1)避免将需蒸汽灭菌的部件与其
它部件连接,因为即使阀门关闭,细
菌也可在阀门内生长;
完整版课件ppt
1
(2)尽量减少法兰连接,因为设备震动和 热膨胀会引起连接处的移位,导致染菌。如 有可能,应采用全部焊接结构,焊接部位一 定要确实磨光,以消除积蓄耐灭菌的固体物 质的场所;
(2)罐内的发酵液应尽量装满,以便减少上层 气相的影响。
(3)使用大剂量接种(一般接种量为总操作体 积的10~20%),使培养物迅速生长,减少
生物反应器的工作原理及应用

生物反应器的工作原理及应用生物反应器是一种用于生物工程学实验和研究的仪器设备,它使用微生物、细胞或其他生物体来生产有用化合物和产品。
生物反应器在制药、食品、化学等领域都有着广泛的应用,成为了现代生物技术行业必不可少的设备之一。
一、生物反应器的基本原理生物反应器的基本原理是利用微生物在适宜的环境中进行代谢,从而生产有用的活性物质。
这个过程中,微生物进入反应器中,通过呼吸代谢过程吸收营养,释放废物。
营养成分是微生物繁殖和生产的原料,而废物是代谢产物,必须及时排出反应器,以避免毒性产物的积累。
反应器的外部有一套控制系统,可清除废物,维持反应器内部的温度、压力和物质的浓度。
对反应器的控制非常重要,如果控制失误,反应器内部会出现废物积聚、温度失控等问题,严重时会使微生物死亡,导致产品销毁或者严重缩水。
二、生物反应器的基本组成生物反应器基本由反应室、进料系统、排出系统、控制系统和取样系统组成。
这些系统分别完成进料、排出、控制、采样等操作,在反应器的正常运行过程中扮演着重要的角色。
1. 反应室:生物反应器的核心设备,相当于一个容器或者瓶子,微生物在其中进行生长、繁殖、代谢等过程。
2. 进料系统:用于提供反应室内的养分原料、营养液等,进料系统包括喷泉、泵、管道、阀门等,可根据实际需要配置。
3. 排出系统:用于收集反应室中的废物产物和副产物,排出系统包括泵、管道、阀门等,需要定期清理和检修。
4. 控制系统:主要用于对反应器的温度、压力、气体含量、搅拌速度、pH值等进行调节控制,避免微生物死亡和产物损失。
5. 取样系统:用于取出反应室内的样品,以进行后续的分析和实验研究。
三、生物反应器的应用生物反应器在生物制药、食品工程、环境保护、合成化学等领域都有着广泛的应用。
1. 生物制药:生物反应器广泛应用于生产抗生素、酶、蛋白质等。
比如生产人胰岛素,就需要利用生物反应器培养细胞系统合成,随后分离纯化及检测。
2. 食品工程:大量的食品和饮料都需要微生物或酵素发酵才能制成,而反应器则是此过程的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11卷第2期2013年3月生物加工过程ChineseJournalofBioprocessEngineeringVol.11No.2Mar.2013
doi:10.3969/j.issn.1672-3678.2013.02.003
收稿日期:2012-12-18基金项目:国家高技术研究发展计划(863计划)(2012AA021201);国家重大科学仪器设备开发专项项目(2012YQ150087)作者简介:王永红(1966—),女,湖南省桂阳人,教授,研究方向:生物过程工程;张嗣良(联系人),教授,E-mail:siliangz@ecust.edu.cn
生物反应器及其研究技术进展王永红,夏建业,唐寅,杭海峰,易小萍,潘江,许建和,张嗣良(华东理工大学生物反应器工程国家重点实验室,上海200237)
摘要:阐述了生物反应器设计、放大的新理念及关键技术发展,并在此基础上综述了应用于生物技术产品生产的生物反应器的主要发展趋势,包括以代谢流分析为核心的生物反应器系统、基于计算流体力学模拟技术的传统发酵罐改良、微型生物反应器、动物细胞反应器和酶反应器。关键词:生物反应器;计算流体力学;微型生物反应器;动物细胞反应器;酶反应器中图分类号:TQ051文献标志码:A文章编号:1672-3678(2013)02-0014-10
RecentadvancesinbioreactoranditsengineeringWANGYonghong,XIAJianye,TANGYin,HANGHaifeng,YIXiaoping,PANJiang,XUJianhe,ZHANGSiliang
(StateKeyLaboratoryofBioreactorEngineering,EastChinaUniversityofScienceandTechnology,Shanghai200237,China)
Abstract:Theengineeringmethodologiesandkeytechnologiesforthebioreactordesignandthescale-upwerediscussed.Thedevelopmenttrendsinbioreactorsfortheproductionofbiotechnologyproductsweredescribed,includingabioreactorsystemfocusingonmetabolicfluxdetectionandanalysis,theimprovedstirred-tankbioreactorbasedoncomputationalfluiddynamics,microbioreactor,bioreactorformammaliancell,andenzymaticbioreactor.Keywords:bioreactors;computationalfluiddynamics;microbioreactors;bioreactormammaliancell;enzymaticbioreactors
1生物技术产业发展与生物反应器
随着全球社会经济快速发展,现有石油煤炭等化石资源的充分供应变得不可持续,难以支撑人类社会的高级发展目标。人类社会发展将从依赖于化石燃料等碳氢化合物资源转变为依靠淀粉、纤维素、多糖、植物和微生物油脂等可利用太阳能持续合成的碳水化合物资源。这种能源和资源结构的转变将为生物技术及其产业发展带来极大机遇和挑战。借助于各种生物系统可利用碳水化合物来规模生产现代社会所需的化学品和能源。这些生物系统包括酶、微生物、动物细胞、植物细胞和动植物组织。而生物系统进行物质转化的生化反应是在生物反应器这个相对封闭的小生境中进行的。生物反应器为生物系统的生化反应提供了可控的环境条件以促使生物过程高效进行,例如,温度、pH、溶氧、混合、剪切、补料等。另外,生物反应器系统供氧与混合效率、操作稳定性和可靠性与生物制造过程节能降耗密切相关,对生物产品生产成本产生很大影响。因而生物反应器设计、放大和操作优化技术及其产业化生产在生物产业发展中起着重要作用。传统反应器一般包括悬浮培养系统反应器和固定化培养系统反应器。前者主要包括搅拌式反应器、气升式反应器;后者主要包括膜反应器、填充床反应器。随着全球对生物技术包括生物基产品需求的快速增长和生物技术相关学科发展,生物反应器出现了一些新的发展趋势,主要表现为高通量、微型化生物反应器应用于生物过程工艺快速开发和优化;工业规模生物反应器朝着大型化、自动化方向发展,并且计算流体力学技术被应用于反应器设计与放大,增强了对于生物反应器供氧、混合与剪切性能的可预期性;对于生物加工过程高密度高产率要求,使得包含新型空气分布系统与搅拌系统有机组合的生物反应器得到了广泛的应用,极大地提高了能源使用效率;多种先进传感技术被运用于生物过程的在线测定,提高了对于生物过程生理代谢状态认识的准确性和即时性;而针对具体培养对象的特殊性,出现了一些专门反应器,如光生物反应器、动物细胞一次性反应器、酶反应器等,这些新型生物反应器也正逐步实现工业规模应用。另外,不同于一般化学或物理过程,生物反应过程涉及基因、蛋白、代谢以及细胞与环境相互作用相关的关系,因而很难用普适公式来总结描述其过程并为生物加工过程相关工程及反应器设计提供理论依据。继续研究生物反应过程基本规律及其新的表征方法是生物反应器工程及其应用获得根本重大进展的基础。在目前阶段,发展生物加工过程新型传感技术、研究可对生物过程进行表征的状态参数群并确定影响工艺优化及反应器放大的敏感参数,已被证明是针对生物加工过程的一种行之有效的工程学方法[1]。笔者在关注生物反应器设计、放大和检测、控制等关键技术的同时,着重阐述应用于生物技术产品生产的生物反应器的主要发展趋势。2以代谢流分析为核心的生物反应器系统2.1系统设计原理及构成生物过程是生物系统在生物反应器中进行生化反应的过程。生物反应器中生物系统及其所处环境构成了相对封闭的生态系统。在这一生态系统中,生物系统与环境因子间存在相互作用。生物系统,特别是以细胞为主体的生物系统,其表型不仅与基因型密切相关,也与细胞所处的微观或宏观环境条件(营养种类、pH、温度、溶解氧、生物反应器的混合与传递特性等)密切相关,也就是说基因型与环境共同决定了生物系统的表型特征。另一方面,生物过程具有高度非线性和时变性特征,难以用环境操作参数的检测与控制为目的的宏观动力学来表征其复杂的本体特征。既然以环境操作参数的检测与控制为目的的宏观动力学研究并不能真正代表生物细胞体复杂的本体特征,因而所开展的过程优化就可能成为无本之木、无水之源。有研究者提出应该结合发酵过程中参数相关的代谢特性,系统地分析细胞的代谢变化,强调细胞的生理状态与参数相关是生物反应器中物料、能量或信息传递、转换以及平衡作用的结果。随着系统生物学和合成生物学研究的深入,也有人提出环境组学研究,Klumpp等[2]开展“垂直研究”(verticalapproach)来补充组学(omics)“水平研究”(horizontalapproach)的不足。因此,尽管其微观影
响因素也许只是发生在基因、酶、细胞或反应器水平的某一个尺度上,但最终会在宏观过程中有所反映,这为研究生物反应器中不同尺度的数据关联分析方法提供了线索。因此,张嗣良等[3]提出了生物反应器生物过程的多尺度问题,认为以细胞为主体的细胞大规模培养的生物反应过程呈现出基因分子尺度、细胞尺度与生物反应器尺度的网络结构,且不同尺度的网络间有着输入输出关系,存在着信息流、物质流与能量流,不同尺度的参数相关关系更能反映生物过程的本质特征,找到影响细胞代谢流的敏感参数是生物过程控制和优化的关键。而理想的生物反应器系统应该要尽可能对于不同尺度操作参数和状态参数进行检测和分析,从而有可能构建一种优化的外在环境,使微生物的基因表达及代谢调控最有利于某种目的产物的生物合成,最大限度地积累目的产物。以上表明了生物过程的工程科学问题,即由宏观动力学研究发展到基于生物过程信息处理的多尺度理论方法研究,由此来指导以生物反应器为核心的生物过程相关工程技术发展。基于上述观点,科技部国家生化工程技术研究中心(上海)设计了一种以代谢流分析为核心的生物反应器系统,已由上海国强生化工程装备有限公
51第2期王永红等:生物反应器及其研究技术进展司组织生产。该生物反应器系统包括各种用于细胞生理代谢特性检测的先进传感器、用于生物过程微观代谢流分析的传感反应器及控制系统、适用于细胞生理代谢参数相关分析的计算机软件包和用于发酵过程数据处理及远程分析的计算机互联网系统等。该系统能够尽可能多地获得生物加工过程各尺度的生物信息,然后基于多尺度参数相关原理,通过计算机软件的实时数据处理,在海量数据中找到以参数相关性特征为依据的过程优化关键参数,进而用来指导工艺操作、设备设计或菌种筛选改造,最终实现过程优化与放大。该系统先后成功地应用于青霉素、红霉素、鸟苷、金霉素、链霉素、黄霉素、泰乐霉素、克拉维酸、基因工程白蛋白、基因工程疟疾疫苗、基因工程可利霉素、重组植酸酶、头孢菌素C、辅酶Q和维生素B12等多种产品的生产过程优化,大幅提高了发酵单位的能力,其优化工艺一般可由几十升发酵罐直接放大到上百立方米的工业生产发酵罐。2.2先进在线仪表开发和应用以代谢流分析为核心的生物反应器系统配备了先进的传感系统。除了具有pH、温度、搅拌转速、溶氧、转子流量计等常规检测控制参数外,还根据精确测定生物过程氧消耗速率(OUR)和CO2释放速率(CER)的需要配置了热质量流量计(进行进气流量的精确测定和控制,保证其不受进气压力的影响)、发酵液称量系统、尾气氧和CO2测量仪(尾气成分测定仪或过程尾气质谱分析仪)、置顶式硅油压力传感器。还可根据需要配置微观代谢流分析传感反应器及控制系统、原位活细胞浓度在线测定仪、细胞形态在线显微观测仪等在线传感器。根据测定得到的直接参数,通过用于细胞生理代谢参数相关分析的计算机软件包,可以计算得到CER、OUR和RQ等重要生理代谢状态参数。过程尾气质谱分析仪主要用于尾气中O2、CO2和N2浓度测定。该质谱仪采用电子轰击离子源,来源于不同发酵罐的尾气经过在线预处理后,通过多通路旋转阀不断地输入电离室形成离子,利用带电粒子在电场中的运动规律,四极杆质量分析器将离子源产生的离子按其质荷比(质量和电荷的比,m/z)进行分离,测定离子质量强度分布,得到化合物种类及其浓度信息,准确反映发酵尾气成分变化。测量结果可被输入到针对发酵过程设计的专用软件包,实现与其他发酵参数的相关分析。尾气质谱仪对相对分子质量300以内的挥发性气体成分都可以进行测定,因此还可根据发酵需要对乙醇、甲醇等小分子物质进行检测。该仪器目前已由上海舜宇恒平科学仪器有限公司实现国产化。生物量是发酵过程重要参数。目前通常通过一些经典测定方法,如干质量、浊度等,进行离线测定而得到。原位活细胞浓度在线测定仪不但可以进行即时的在线测定,而且获得的是生物学意义更为丰富的活细胞浓度。这对于那些培养基中含有不溶固体物质的发酵过程尤为合适。活细胞测定仪原理是基于0.1~10MHz频率范围的交变电场中,发酵液中细胞表面如细胞膜会发生非导电极化,使得有完整原生质膜的活细胞基本上像一个电容器(一般脂质原生质膜的非传导性本质使得电荷增长),而死细胞、裂解细胞、细胞碎片、气泡和其他基质组分基本上不可极化。利用双电极施加上述频率范围交变电场,双电极之间的电容测量值依赖于细胞类型和细胞大小,并在一定范围内与活菌浓度成正比。原位活细胞浓度在线测定仪适用范围包括各种动植物细胞、酵母、细菌及藻类等。但对于那些需用酸碱作为目的产物中和剂的发酵过程不合适,因为发酵液中过大的离子强度会干扰电容的准确测定。