新定义数列问题赏析

合集下载

2021届高考数学总复习:数列的新定义问题

2021届高考数学总复习:数列的新定义问题

2021届高考数学总复习:数列的新定义问题一、知识点新定义型数学试题,背景新颖、构思巧妙,主要通过定义一个新概念或约定一种新运算,或给定一个新模型来创设新的问题情境,要求我们在充分阅读题意的基础上,依据题中提供的信息,联系所学的知识和方法,实现信息的迁移,从而顺利地解决问题,这类题型能有效地区分学生的思维能力和学习能力。

【典例】定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数。

若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个【解析】解法一:列表法根据题意得,必有a1=0,a8=1,则将0,1进行具体的排法一一列表如下:由上述表格可知,不同的“规范01数列”共有14个。

解法二:列举法根据题意可得,必有a1=0,a8=1,而其余的各项:a2,a3,…,a7中有三个0和三个1,并且满足对任意k≤8,a1,a2,…,a8中“0”的个数不少于“1”的个数。

可以一一列举出不同“规范01数列”,除第一项和第八项外,中间六项的排列如下:000111,001011,001101,001110,010011,010101,010110,011001,0110 10,100011,100101,100110,101001,101010,共14个。

【答案】 C可以从以下三个方面解决此类问题1.提取新定义的信息,明确新定义的名称和符号。

2.深刻理解新定义的概念、法则、性质,纵横联系探求解题方法,比较相近知识点,明确不同点。

3.对新定义中提取的知识进行等价转换,其中提取、化归与转化是解题的关键,也是解题的难点。

新定义问题的解题思路为:(1)若新定义是运算法则,直接按照运算法则计算即可;(2)若新定义是性质,要判断性质的适用性,能否利用定义外延;也可用特殊值排除等方法。

【变式训练】由n(n≥2)个不同的数构成的数列a1,a2,…,a n中,若1≤i<j≤n时,a j<a i(即后面的项a j小于前面的项a i),则称a i与a j构成一个逆序,一个有穷数列的全部逆序的总数称为该数列的逆序数。

高中数学新定义型问题(解析版)

高中数学新定义型问题(解析版)

新定义型问题1(新高考北京卷)生物丰富度指数d =S -1ln N是河流水质的一个评价指标,其中S ,N 分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d 越大,水质越好.如果某河流治理前后的生物种类数S 没有变化,生物个体总数由N 1变为N 2,生物丰富度指数由2.1提高到3.15,则()A.3N 2=2N 1B.2N 2=3N 1C.N 22=N 31 D.N 32=N 21【答案】D【分析】根据题意分析可得S -1ln N 1=2.1,S -1ln N 2=3.15,消去S 即可求解.【详解】由题意得S -1ln N 1=2.1,S -1ln N 2=3.15,则2.1ln N 1=3.15ln N 2,即2ln N 1=3ln N 2,所以N 32=N 21.故选:D .2(新高考上海卷)定义一个集合Ω,集合中的元素是空间内的点集,任取P 1,P 2,P 3∈Ω,存在不全为0的实数λ1,λ2,λ3,使得λ1OP 1+λ2OP 2 +λ3OP 3 =0.已知(1,0,0)∈Ω,则(0,0,1)∉Ω的充分条件是()A.0,0,0 ∈Ω B.-1,0,0 ∈ΩC.0,1,0 ∈ΩD.0,0,-1 ∈Ω【答案】C【分析】首先分析出三个向量共面,显然当1,0,0 ,0,0,1 ,0,1,0 ∈Ω时,三个向量构成空间的一个基底,则即可分析出正确答案.【详解】由题意知这三个向量OP 1,OP 2 ,OP 3 共面,即这三个向量不能构成空间的一个基底,对A ,由空间直角坐标系易知0,0,0 ,(1,0,0),(0,0,1)三个向量共面,则当-1,0,0 ,(1,0,0)∈Ω无法推出(0,0,1)∉Ω,故A 错误;对B ,由空间直角坐标系易知-1,0,0 ,(1,0,0),(0,0,1)三个向量共面,则当0,0,0 ,(1,0,0)∈Ω无法推出(0,0,1)∉Ω,故A 错误;对C , 由空间直角坐标系易知1,0,0 ,0,0,1 ,0,1,0 三个向量不共面,可构成空间的一个基底,则由1,0,0 ,0,1,0 ∈Ω能推出0,0,1 ∉Ω,对D ,由空间直角坐标系易知1,0,0 ,0,0,1 ,0,0,-1 三个向量共面,则当0,0,-1 (1,0,0)∈Ω无法推出(0,0,1)∉Ω,故D 错误.故选:C .3(新高考上海卷)已知函数f (x )的定义域为R ,定义集合M =x 0x 0∈R ,x ∈-∞,x 0 ,f x <f x 0 ,在使得M =-1,1 的所有f x 中,下列成立的是()A.存在f x 是偶函数B.存在f x 在x =2处取最大值C.存在f x 是严格增函数D.存在f x 在x =-1处取到极小值【答案】B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数f x =-2,x <-1x ,-1≤x ≤11,x >1即可判断.【详解】对于A ,若存在 y =f (x ) 是偶函数, 取 x 0=1∈[-1,1],则对于任意 x ∈(-∞,1),f (x )<f (1), 而 f (-1)=f (1), 矛盾, 故 A 错误;对于B ,可构造函数f x =-2,x <-1,x ,-1≤x ≤1,1,x >1,满足集合M =-1,1 ,当x <-1时,则f x =-2,当-1≤x ≤1时,f x ∈-1,1 ,当x >1时,f x =1,则该函数f x 的最大值是f 2 ,则B 正确;对C ,假设存在f x ,使得f x 严格递增,则M =R ,与已知M =-1,1 矛盾,则C 错误;对D ,假设存在f x ,使得f x 在x =-1处取极小值,则在-1的左侧附近存在n ,使得f n >f -1 ,这与已知集合M 的定义矛盾,故D 错误;故选:B .4(新高考上海卷)无穷等比数列a n 满足首项a 1>0,q >1,记I n =x -y x ,y ∈a 1,a 2 ∪a n ,a n +1 ,若对任意正整数n 集合I n 是闭区间,则q 的取值范围是.【答案】q ≥2【分析】当n ≥2时,不妨设x ≥y ,则x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,结合I n 为闭区间可得q -2≥-1qn -2对任意的n ≥2恒成立,故可求q 的取值范围.【详解】由题设有a n =a 1q n -1,因为a 1>0,q >1,故a n +1>a n ,故a n ,a n +1 =a 1q n -1,a 1q n ,当n =1时,x ,y ∈a 1,a 2 ,故x -y ∈a 1-a 2,a 2-a 1 ,此时I 1为闭区间,当n ≥2时,不妨设x ≥y ,若x ,y ∈a 1,a 2 ,则x -y ∈0,a 2-a 1 ,若y ∈a 1,a 2 ,x ∈a n ,a n +1 ,则x -y ∈a n -a 2,a n +1-a 1 ,若x ,y ∈a n ,a n +1 ,则x -y ∈0,a n +1-a n ,综上,x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,又I n 为闭区间等价于0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n 为闭区间,而a n +1-a 1>a n +1-a n >a 2-a 1,故a n +1-a n ≥a n -a 2对任意n ≥2恒成立,故a n +1-2a n +a 2≥0即a 1q n -1q -2 +a 2≥0,故q n -2q -2 +1≥0,故q -2≥-1qn -2对任意的n ≥2恒成立,因q >1,故当n →+∞时,-1qn -2→0,故q -2≥0即q ≥2.故答案为:q ≥2.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.5(新课标全国Ⅰ卷)设m 为正整数,数列a 1,a 2,...,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,...,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使数列a 1,a 2,...,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,...,a 4m +2是2,13 -可分数列;(3)从1,2,...,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,...,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)1,2 ,1,6 ,5,6 (2)证明见解析(3)证明见解析【分析】(1)直接根据i ,j -可分数列的定义即可;(2)根据i ,j -可分数列的定义即可验证结论;(3)证明使得原数列是i ,j -可分数列的i ,j 至少有m +1 2-m 个,再使用概率的定义.【详解】(1)首先,我们设数列a 1,a 2,...,a 4m +2的公差为d ,则d ≠0.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形a k =a k -a 1d+1k =1,2,...,4m +2 ,得到新数列a k =k k =1,2,...,4m +2 ,然后对a 1,a 2,...,a 4m +2进行相应的讨论即可.换言之,我们可以不妨设a k =k k =1,2,...,4m +2 ,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和j i <j ,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的i ,j 就是1,2 ,1,6 ,5,6 .(2)由于从数列1,2,...,4m +2中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①1,4,7,10 ,3,6,9,12 ,5,8,11,14 ,共3组;②15,16,17,18 ,19,20,21,22 ,...,4m -1,4m ,4m +1,4m +2 ,共m -3组.(如果m -3=0,则忽略②)故数列1,2,...,4m +2是2,13 -可分数列.(3)定义集合A =4k +1 k =0,1,2,...,m =1,5,9,13,...,4m +1 ,B =4k +2 k =0,1,2,...,m =2,6,10,14,...,4m+2.下面证明,对1≤i<j≤4m+2,如果下面两个命题同时成立,则数列1,2,...,4m+2一定是i,j-可分数列:命题1:i∈A,j∈B或i∈B,j∈A;命题2:j-i≠3.我们分两种情况证明这个结论.第一种情况:如果i∈A,j∈B,且j-i≠3.此时设i=4k1+1,j=4k2+2,k1,k2∈0,1,2,...,m.则由i<j可知4k1+1<4k2+2,即k2-k1>-14,故k2≥k1.此时,由于从数列1,2,...,4m+2中取出i=4k1+1和j=4k2+2后,剩余的4m个数可以分为以下三个部分,共m组,使得每组成等差数列:①1,2,3,4,5,6,7,8,...,4k1-3,4k1-2,4k1-1,4k1,共k1组;②4k1+2,4k1+3,4k1+4,4k1+5,4k1+6,4k1+7,4k1+8,4k1+9,...,4k2-2,4k2-1,4k2,4k2+1,共k2-k1组;③4k2+3,4k2+4,4k2+5,4k2+6,4k2+7,4k2+8,4k2+9,4k2+10,...,4m-1,4m,4m+1,4m+2,共m-k2组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,4m+2是i,j-可分数列.第二种情况:如果i∈B,j∈A,且j-i≠3.此时设i=4k1+2,j=4k2+1,k1,k2∈0,1,2,...,m.则由i<j可知4k1+2<4k2+1,即k2-k1>14,故k2>k1.由于j-i≠3,故4k2+1-4k1+2≠3,从而k2-k1≠1,这就意味着k2-k1≥2.此时,由于从数列1,2,...,4m+2中取出i=4k1+2和j=4k2+1后,剩余的4m个数可以分为以下四个部分,共m组,使得每组成等差数列:①1,2,3,4,5,6,7,8,...,4k1-3,4k1-2,4k1-1,4k1,共k1组;②4k1+1,3k1+k2+1,2k1+2k2+1,k1+3k2+1,3k1+k2+2,2k1+2k2+2,k1+3k2+2,4k2+2,共2组;③全体4k1+p,3k1+k2+p,2k1+2k2+p,k1+3k2+p,其中p=3,4,...,k2-k1,共k2-k1-2组;④4k2+3,4k2+4,4k2+5,4k2+6,4k2+7,4k2+8,4k2+9,4k2+10,...,4m-1,4m,4m+1,4m+2,共m-k2组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含k2-k1-2个行,4个列的数表以后,4个列分别是下面这些数:4k1+3,4k1+4,...,3k1+k2,3k1+k2+3,3k1+k2+4,...,2k1+2k2,2k1+2k2+3,2k1+2k2+3,...,k1+3k2,k1+3k2+3,k1+3k2+4,...,4k2.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍4k1+1,4k1+2,...,4k2+2中除开五个集合4k1+1,4k1+2,3k1+k2+1,3k1+k2+2,2k1+2k2+1,2k1+2k2+2,k1+3k2+1,k1+3k2+2,4k2+1,4k2+2中的十个元素以外的所有数.而这十个数中,除开已经去掉的4k1+2和4k2+1以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,4m+2是i,j-可分数列.至此,我们证明了:对1≤i<j≤4m+2,如果前述命题1和命题2同时成立,则数列1,2,...,4m+2一定是i,j-可分数列.然后我们来考虑这样的i,j的个数.首先,由于A∩B=∅,A和B各有m+1个元素,故满足命题1的i,j总共有m+12个;而如果j-i=3,假设i∈A,j∈B,则可设i=4k1+1,j=4k2+2,代入得4k2+2-4k1+1=3.但这导致k2-k1=12,矛盾,所以i∈B,j∈A.设i=4k1+2,j=4k2+1,k1,k2∈0,1,2,...,m,则4k2+1-4k1+2=3,即k2-k1=1.所以可能的k1,k2恰好就是0,1,1,2,...,m-1,m,对应的i,j分别是2,5,6,9,..., 4m-2,4m+1,总共m个.所以这m+12个满足命题1的i,j中,不满足命题2的恰好有m个.这就得到同时满足命题1和命题2的i,j的个数为m+12-m.当我们从1,2,...,4m+2中一次任取两个数i和j i<j时,总的选取方式的个数等于4m+24m+12=2m+14m+1.而根据之前的结论,使得数列a1,a2,...,a4m+2是i,j-可分数列的i,j至少有m+12-m个.所以数列a1,a2,...,a4m+2是i,j-可分数列的概率P m一定满足P m≥m+12-m2m+14m+1=m2+m+12m+14m+1>m2+m+142m+14m+2=m+12222m+12m+1=18.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.6(新课标全国Ⅱ卷)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...,过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n.(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意的正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n的取值为与n无关的定值即可.思路二:使用等差数列工具,证明S n的取值为与n无关的定值即可.【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C的不同于P n的交点为Q n2ky n-x n-k2x n1-k2,y n+k2y n-2kx n1-k2,而注意到Q n的横坐标亦可通过韦达定理表示为-y n-kx n2-91-k2x n,故Q n一定在C的左支上.所以P n+1x n+k2x n-2ky n1-k2,y n+k2y n-2kx n1-k2.这就得到x n+1=x n+k2x n-2ky n1-k2,y n+1=y n+k2y n-2kx n1-k2.所以x n+1-y n+1=x n+k2x n-2ky n1-k2-y n+k2y n-2kx n1-k2=x n+k2x n+2kx n1-k2-y n+k2y n+2ky n1-k2=1+k2+2k1-k2x n-y n=1+k1-kx n-y n.再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2.这就表明Sn 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.7(新高考北京卷)设集合M =i ,j ,s ,t i ∈1,2 ,j ∈3,4 ,s ∈5,6 ,t ∈7,8 ,2i +j +s +t .对于给定有穷数列A :a n 1≤n ≤8 ,及序列Ω:ω1,ω2,...,ωs ,ωk =i k ,j k ,s k ,t k ∈M ,定义变换T :将数列A 的第i 1,j 1,s 1,t 1项加1,得到数列T 1A ;将数列T 1A 的第i 2,j 2,s 2,t 2列加1,得到数列T 2T 1A ⋯;重复上述操作,得到数列T s ...T 2T 1A ,记为ΩA .(1)给定数列A :1,3,2,4,6,3,1,9和序列Ω:1,3,5,7 ,2,4,6,8 ,1,3,5,7 ,写出ΩA ;(2)是否存在序列Ω,使得ΩA 为a 1+2,a 2+6,a 3+4,a 4+2,a 5+8,a 6+2,a 7+4,a 8+4,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且a 1+a 3+a 5+a 7为偶数,证明:“存在序列Ω,使得ΩA 为常数列”的充要条件为“a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8”.【答案】(1)ΩA :3,4,4,5,8,4,3,10(2)不存在符合条件的Ω,理由见解析(3)证明见解析【分析】(1)直接按照ΩA 的定义写出ΩA 即可;(2)利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;(3)分充分性和必要性两方面论证.【详解】(1)由题意得ΩA :3,4,4,5,8,4,3,10;(2)假设存在符合条件的Ω,可知ΩA 的第1,2项之和为a 1+a 2+s ,第3,4项之和为a 3+a 4+s ,则a 1+2 +a 2+6 =a 1+a 2+sa 3+4 +a 4+2 =a 3+a 4+s,而该方程组无解,故假设不成立,故不存在符合条件的Ω;(3)我们设序列T k ...T 2T 1A 为a k ,n 1≤n ≤8 ,特别规定a 0,n =a n 1≤n ≤8 .必要性:若存在序列Ω:ω1,ω2,...,ωs ,使得ΩA 为常数列.则a s ,1=a s ,2=a s ,3=a s ,4=a s ,5=a s ,6=a s ,7=a s ,8,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.根据T k ...T 2T 1A 的定义,显然有a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....所以不断使用该式就得到,a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,必要性得证.充分性:若a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8.由已知,a 1+a 3+a 5+a 7为偶数,而a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,所以a 2+a 4+a 6+a 8=4a 1+a 2 -a 1+a 3+a 5+a 7 也是偶数.我们设T s ...T 2T 1A 是通过合法的序列Ω的变换能得到的所有可能的数列ΩA 中,使得a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 最小的一个.上面已经证明a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....从而由a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8可得a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.同时,由于i k +j k +s k +t k 总是偶数,所以a k ,1+a k ,3+a k ,5+a k ,7和a k ,2+a k ,4+a k ,6+a k ,8的奇偶性保持不变,从而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数.下面证明不存在j =1,2,3,4使得a s ,2j -1-a s ,2j ≥2.假设存在,根据对称性,不妨设j =1,a s ,2j -1-a s ,2j ≥2,即a s ,1-a s ,2≥2.情况1:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 =0,则由a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,知a s ,1-a s ,2≥4.对该数列连续作四次变换2,3,5,8 ,2,4,6,8 ,2,3,6,7 ,2,4,5,7 后,新的a s +4,1-a s +4,2 +a s +4,3-a s +4,4 +a s +4,5-a s +4,6 +a s +4,7-a s +4,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 减少4,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 >0,不妨设a s ,3-a s ,4 >0.情况2-1:如果a s ,3-a s ,4≥1,则对该数列连续作两次变换2,4,5,7 ,2,4,6,8 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2-2:如果a s ,4-a s ,3≥1,则对该数列连续作两次变换2,3,5,8 ,2,3,6,7 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的j =1,2,3,4都有a s ,2j -1-a s ,2j ≤1.假设存在j =1,2,3,4使得a s ,2j -1-a s ,2j =1,则a s ,2j -1+a s ,2j 是奇数,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8都是奇数,设为2N +1.则此时对任意j =1,2,3,4,由a s ,2j -1-a s ,2j ≤1可知必有a s ,2j -1,a s ,2j =N ,N +1 .而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,故集合m a s ,m =N 中的四个元素i ,j ,s ,t 之和为偶数,对该数列进行一次变换i ,j ,s ,t ,则该数列成为常数列,新的a s +1,1-a s +1,2 +a s +1,3-a s +1,4 +a s +1,5-a s +1,6 +a s +1,7-a s +1,8 等于零,比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 更小,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.综上,只可能a s ,2j -1-a s ,2j =0j =1,2,3,4 ,而a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8,故a s ,n =ΩA 是常数列,充分性得证.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.8(新高考上海卷)对于一个函数f x 和一个点M a ,b ,令s x =(x -a )2+f x -b 2,若P x 0,f x 0 是s x 取到最小值的点,则称P 是M 在f x 的“最近点”.(1)对于f (x )=1x(x >0),求证:对于点M 0,0 ,存在点P ,使得点P 是M 在f x 的“最近点”;(2)对于f x =e x ,M 1,0 ,请判断是否存在一个点P ,它是M 在f x 的“最近点”,且直线MP 与y =f (x )在点P 处的切线垂直;(3)已知y =f (x )在定义域R 上存在导函数f (x ),且函数g (x )在定义域R 上恒正,设点M 1t -1,f t -g t ,M 2t +1,f t +g t .若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,试判断f x 的单调性.【答案】(1)证明见解析(2)存在,P 0,1 (3)严格单调递减【分析】(1)代入M (0,0),利用基本不等式即可;(2)由题得s x =(x -1)2+e 2x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到s 1 x 0 =s 2 x 0 =0,对两等式化简得f x 0 =-1g (t ),再利用“最近点”的定义得到不等式组,即可证明x 0=t ,最后得到函数单调性.【详解】(1)当M (0,0)时,s x =(x -0)2+1x -02=x 2+1x2≥2x 2⋅1x 2=2,当且仅当x2=1x2即x=1时取等号,故对于点M0,0,存在点P1,1,使得该点是M0,0在f x 的“最近点”.(2)由题设可得s x =(x-1)2+e x-02=(x-1)2+e2x,则s x =2x-1+2e2x,因为y=2x-1,y=2e2x均为R上单调递增函数,则s x =2x-1+2e2x在R上为严格增函数,而s 0 =0,故当x<0时,s x <0,当x>0时,s x >0,故s x min=s0 =2,此时P0,1,而f x =e x,k=f 0 =1,故f x 在点P处的切线方程为y=x+1.而k MP=0-11-0=-1,故k MP⋅k=-1,故直线MP与y=f x 在点P处的切线垂直.(3)设s1x =(x-t+1)2+f x -f t +g t2,s2x =(x-t-1)2+f x -f t -g t2,而s 1x =2(x-t+1)+2f x -f t +g tf x ,s 2x =2(x-t-1)+2f x -f t -g tf x ,若对任意的t∈R,存在点P同时是M1,M2在f x 的“最近点”,设P x0,y0,则x0既是s1x 的最小值点,也是s2x 的最小值点,因为两函数的定义域均为R,则x0也是两函数的极小值点,则存在x0,使得s1 x0=s2 x0=0,即s1 x0=2x0-t+1+2f x0f x0-f(t)+g(t)=0①s2 x0=2x0-t-1+2f x0f x0-f(t)-g(t)=0②由①②相等得4+4g(t)⋅f x0=0,即1+f x0g(t)=0,即f x0=-1g(t),又因为函数g(x)在定义域R上恒正,则f x0=-1g(t)<0恒成立,接下来证明x0=t,因为x0既是s1x 的最小值点,也是s2x 的最小值点,则s1x0≤s(t),s2x0≤s(t),即x0-t+12+f x0-f t +g t2≤1+g t2,③x0-t-12+f x0-f t -g t2≤1+g t2,④③+④得2x0-t2+2+2f x0-f(t)2+2g2(t)≤2+2g2(t)即x0-t2+f x0-f t2≤0,因为x0-t2≥0,f x0-f t2≥0则x0-t=0f x0-f t =0,解得x=t,则f t =-1g(t)<0恒成立,因为t的任意性,则f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到f x 0 =-1g (t ),再利用最值点定义得到x 0=t 即可.一、单选题1(2024·湖南怀化·二模)给定整数n ≥3,有n 个实数元素的集合S ,定义其相伴数集T =a -b a ,b ∈S ,a ≠b ,如果min T =1,则称集合S 为一个n 元规范数集.(注:min X 表示数集X 中的最小数).对于集合M =-0.1,-1.1,2,2.5 、N =-1.5,-0.5,0.5,1.5 ,则()A.M 是规范数集,N 不是规范数集B.M 是规范数集,N 是规范数集C.M 不是规范数集,N 是规范数集D.M 不是规范数集,N 不是规范数集【答案】C【分析】利用规范数集的定义,逐项判断即可得解.【详解】集合M =-0.1,-1.1,2,2.5 中,2∈M ,2.5∈M ,则|2-2.5|=0.5<1,即M 的相伴数集中的最小数不是1,因此M 不是规范数集;集合N =-1.5,-0.5,0.5,1.5 ,|-1.5-(-0.5)|=1,|-0.5-0.5|=1,|0.5-1.5|=1,|-1.5-0.5|=|-0.5-1.5|=2,|-1.5-1.5|=3,即N 的相伴数集中的最小数是1,因此N 是规范数集.故选:C2(2024·四川绵阳·模拟预测)一般地,任意给定一个角α∈R ,它的终边OP 与单位圆的交点P 的坐标,无论是横坐标x 还是纵坐标y ,都是唯一确定的,所以点P 的横坐标x 、纵坐标y 都是关于角α的函数.下面给出这些函数的定义:①把点P 的纵坐标y 叫作α的正弦函数,记作sin α,即sin α=y ;②把点P 的横坐标x 叫作α的余弦函数,记作cos α,即cos α=x ;③把点P 的纵坐标y 的倒数叫作α的余割函数,记作csc α,即csc α=1y ;④把点P 的横坐标x 的倒数叫作α的正割函数,记作sec α,即sec α=1x.下列结论错误的是()A.sin α⋅csc α=1B.sec2π3=-2C.函数f x =sec x 的定义域为x x ≠k π,k ∈Z D.sec 2α+sin 2α+csc 2α+cos 2α≥5【答案】C【分析】根据定义可判断A ;利用定义转化为余弦求解可判断B ;转化为余弦表示,根据分母不为0求解可判断C ;转化为正弦和余弦,利用平方关系和二倍角公式化简,由正弦函数性质可判断D .【详解】由题知,csc α=1sin α,sec α=1cos α,对于A ,sin α⋅csc α=y ⋅1y=1,A 正确;对于B ,sec2π3=1x =1cos 2π3=1cos π-π3 =1-cos π3=-2,B 正确;对于C ,函数f x =sec x =1cos x ,由cos x ≠0得x ≠k π+π2,k ∈Z所以f x 的定义域为x x ≠k π+π2,k ∈Z ,C 错误;对于D ,sec 2α+sin 2α+csc 2α+cos 2α=1+1cos 2α+1sin 2α=1+1sin 2αcos 2α=1+4sin 22α≥5,当sin2α=±1时,等号成立,D 正确.故选:C .3(2024·河北邯郸·二模)对任意两个非零的平面向量a 和b ,定义:a ⊕b =a ⋅ba 2+b2,a ⊙b=a ⋅bb2.若平面向量a ,b 满足a >b >0,且a ⊕b 和a ⊙b 都在集合n 4|n ∈Z ,0<n ≤4 中,则a ⊕b +a ⊙b =()A.1B.32C.1或74D.1或54【答案】D【分析】根据a >b >0,得到a 2+b 2>2a b ,再利用题设中的定义及向量夹角的范围,得到a ⊕b <12,a ⊙b >12,再结合条件,即可求出结果.【详解】因为n 4|n ∈Z ,0<n ≤4=14,12,34,1,设向量a 和b 的夹角为θ,因为a >b >0,所以a 2+b 2>2a b,得到a⊕b =a ⋅b a 2+b 2=a b cos θa 2+b 2<a b cos θ2a ⋅b=cos θ2,又θ∈0,π ,所以cos θ2≤12,又a ⊕b 在集合n 4|n ∈Z ,0<n ≤4 中,所以cos θ2>14,即cos θ>12,得到a ⊕b =14,又因为a ⊙b =a ⋅b b 2=a ⋅b cos θb 2=a b cos θ>cos θ>12,所以a ⊙b =34或1,所以a ⊕b +a ⊙b =1或54,故选:D .4(2024·上海杨浦·二模)平面上的向量a 、b 满足:a =3,b =4,a ⊥b.定义该平面上的向量集合A ={x ||x +a |<|x +b |,x ⋅a >x ⋅b}.给出如下两个结论:①对任意c ∈A ,存在该平面的向量d ∈A ,满足c -d=0.5②对任意c ∈A ,存在该平面向量d ∉A ,满足c -d =0.5则下面判断正确的为()A.①正确,②错误B.①错误,②正确C.①正确,②正确D.①错误,②错误【答案】C【分析】根据给定条件,令a =(3,0),b =(0,4),设x =(m ,n ),利用向量模及数量积的坐标表示探求m ,n 的关系,再借助平行线间距离分析判断得解.【详解】由|a |=3,|b |=4,a ⊥b ,不妨令a =(3,0),b =(0,4),设x=(m ,n ),|x +a |<|x +b |,得|x +a |2<|x +b |2,而x +a =(m +3,n ),x +b =(m ,n +4),则(m +3)2+n 2<m 2+(n +4)2,整理得6m -8n -7<0,由x ⋅a >x ⋅b,得3m -4n >0,平行直线6m -8n -7=0和3m -4n =0间的距离为d =0-(-7)62+82=0.7,到直线6m -8n -7=0和直线3m -4n =0距离相等的点到这两条直线的距离为0.35,如图,阴影部分表示的区域为集合A ,因此无论d 是否属于A ,都有c -d=0.5,所以命题①②都正确.故选:C【点睛】思路点睛:已知几个向量的模,探求向量问题,可以在平面直角坐标系中,借助向量的坐标表示,利用代数方法解决.5(2024·甘肃兰州·一模)球面上两点间距离的定义为:经过球面上两点的大圆在这两点间劣弧的长度(大圆就是经过球心的平面截球面所得的圆).设地球的半径为R ,若甲地位于北纬45°东经120°,乙地位于北纬45°西经60°,则甲、乙两地的球面距离为()A.2π6R B.2π3R C.π2R D.2π2R 【答案】C【分析】分析甲、乙两地的球心角,即可得解.【详解】甲、乙两地在北纬45°线上,所对圆心角为120°+60°=180°,即甲、乙两地在北纬45°线所在小圆的直径的两端,且小圆的半径r =R sin45°=22R ,则R 2+R 2=2R 2,所以甲、乙两地的球心角为π2,故甲、乙两地的球面距离为π2R .故选:C .二、多选题6(2024·安徽芜湖·二模)在平面直角坐标系xOy 中,角θ以坐标原点O 为顶点,以x 轴的非负半轴为始边,其终边经过点M a ,b ,OM =m m ≠0 ,定义f θ =b +a m ,g θ =b -am,则()A.f π6 +g π6 =1 B.f θ +f 2θ ≥0C.若f θg θ=2,则sin2θ=35 D.f θ g θ 是周期函数【答案】ACD【分析】根据题意分别求出cos θ=a m ,sin θ=b m ,则f θ =2sin θ+π4 ,g θ =2sin θ-π4,从而可对A 判断求解,利用换元法令t =sin θ+cos θ=2sin θ+π4 ∈-2,2 可对B 判断求解,由f θ g θ=tan θ+1tan θ-1=2求出tan θ=3,并结合sin2θ==2tan θtan 2θ+1从而可对C 判断求解,由f θ g θ =-cos2θ可对D 判断求解.【详解】由题意得M a ,b 在角θ的终边上,且OM =m ,所以cos θ=a m ,sin θ=b m,则f θ =b +a m =sin θ+cos θ=2sin θ+π4 ,g θ =b -a m =sin θ-cos θ=2sin θ-π4,对A :f π6+g π6 =sin π6+cos π6+sin π6-cos π6=1,故A 正确;对B :f θ +f 2θ =sin θ+cos θ+sin θ+cos θ 2,令t =sin θ+cos θ=2sin θ+π4∈-2,2 ,所以f θ +f 2θ =t +t 2=t +122-14≥-14,故B 错误;对C :f θ g θ =sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=2,解得tan θ=3,又由sin2θ=2sin θcos θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=2×332+1=35,故C 正确;对D :f θ g θ =sin θ+cos θ sin θ-cos θ =sin 2θ-cos 2θ=-cos2θ,因为y =cos2θ为周期函数,故D 正确.故选:ACD .7(2024·全国·模拟预测)已知函数f x 和实数m ,n ,则下列说法正确的是()A.定义在R 上的函数f x 恒有f x =f m -nx ,则当n =1时,函数的图象有对称轴B.定义在R 上的函数f x 恒有f x =f m -nx ,则当n =-1时,函数具有周期性C.若m =1,n =2,f x =-3x 2+2x ,x ≤13f m -nx ,x >13,则∀t ∈-∞,13 ,f t >f 23-t 恒成立D.若m =4,n =1,f x =ln x -a ,x ∈0,2 f m -nx ,x ∈2,4,且f x 的4个不同的零点分别为x 1,x 2,x 3x 4,且x 1<x 2<x 3<x 4,则x 1x 2+x 3x 4-4x 3+x 4 =-14【答案】ACD【分析】根据函数的对称性和周期性可分别判断AB ;求出x >13时的解析式,然后根据自变量范围代入相应表达式解不等式即可判断C ;将问题转化为直线y =a 与函数g x =ln x ,x ∈0,2ln 4-x ,x ∈2,4 有四个交点,结合图象求得四根的关系即可判断D .【详解】对于A ,若n =1,则f x =f m -x ,所以函数f x 的图象的对称轴为直线x =m2,故A 正确.对于B ,当n =-1时,f x =f m +x .若m =0,则f x =f x ,函数不具有周期性,故B 错误.对于C ,若m =1,n =2,则f x =-3x 2+2x ,x ≤13f 1-2x ,x >13,当x >13时,1-2x <13,则f x =-31-2x 2+21-2x =-34x 2-4x +1 +21-2x =-12x 2+8x -1,即当x >13时,f x =-12x 2+8x -1.当t ∈-∞,13 时,23-t ∈13,+∞ ,所以f t -f 23-t=-3t 2+2t --1223-t 2+823-t -1 =9t 2-6t +1=3t -1 2>0,所以f t >f 23-t恒成立,C 正确.对于D ,当x ∈2,4 时,4-x ∈0,2 ,则f x =ln x -a ,x ∈0,2ln 4-x -a ,x ∈2,4 ,令g x =ln x ,x ∈0,2ln 4-x ,x ∈2,4,作出函数g x 的图象和直线y =a ,如图.要使f x 有4个不同的零点,则函数g x 的图象与直线y =a 有4个不同的交点.又x 1<x 2<x 3<x 4,则-ln x 1=ln x 2=ln 4-x 3 =-ln 4-x 4 ,所以ln x 1+ln x 2=0,ln 4-x 3 +ln 4-x 4 =0, 所以x 1x 2=1,4-x 3 4-x 4 =1,则16-4x 3+x 4 +x 3x 4=1,所以x 1x 2+x 3x 4-4x 3+x 4 =-14,D 正确.故选:ACD .【点睛】思路点睛:关于函数零点个数的有关问题,一般转化为两个函数图象交点问题,利用函数图象分析求解即可.8(2024·浙江绍兴·模拟预测)对于任意的两点A x 1,y 1 ,B x 2,y 2 ,定义A ,B 间的折线距离d AB =x 1-x 2 +y 1-y 2 ,反折线距离l AB =x 1-y 2 +x 2-y 1 ,O 表示坐标原点. 下列说法正确的是()A.d AB +d BC ≥d AC .B.若d AB <l AB ,则y 1-x 1 y 2-x 2 ≥0.C.若AB 斜率为k ,d AB =1+k1+k2AB .D.若存在四个点P x ,y 使得d OP =1,且x 2+y -r 2=r 2r >0 ,则r 的取值范围2-1,12 .【答案】ABD【分析】对于A ,直接使用绝对值不等式即可证明;对于B ,在使用绝对值不等式的同时考虑到绝对值不等式取等的条件(即a +b =a +b ,a +b ≥a -b ,ab ≥0两两等价,对两个不等式两边同时平方即得结论),即可判断;对于C ,举出一个反例即可否定;对于D ,先将问题转化为方程组的解的个数问题,然后利用解析几何工具直观理解,猜出答案,最后再严格论证结果即可.【详解】对于A ,设C x 3,y 3 ,我们有d AB +d BC =x 1-x 2 +y 1-y 2 +x 2-x 3 +y 2-y 3 =x 1-x 2 +x 2-x 3 +y 1-y 2 +y 2-y 3 ≥x 1-x 2 +x 2-x 3 +y 1-y 2 +y 2-y 3 =x 1-x 3 +y 1-y 3 =d AC ,故A 正确;对于B ,若d AB <l AB ,则l AB >d AB =x 1-x 2 +y 1-y 2 ≥x 1-x 2 +y 1-y 2 =x 1-y 2 +y 1-x 2 ,这意味着x 1-y 2 +y 1-x 2 =x 1-y 2 +x 2-y 1 =l AB >x 1-y 2 +y 1-x 2 .从而由x 1-y 2 +y 1-x 2 >x 1-y 2 +y 1-x 2 ,知x 1-y 2 y 1-x 2 <0,即y 2-x 1 y 1-x 2 >0,所以y 2-x 1 +y 1-x 2 =y 2-x 1 +y 1-x 2 .故y 1-x 1 +y 2-x 2 =y 2-x 1 +y 1-x 2 =y 2-x 1 +y 1-x 2 =l AB .而d AB =x 1-x 2 +y 1-y 2 ≥y 1-y 2 -x 1-x 2 =y 1-x 1 -y 2-x 2 .故y 1-x 1 +y 2-x 2 =l AB >d AB ≥y 1-x 1 -y 2-x 2 .从而由y 1-x 1 +y 2-x 2 >y 1-x 1 -y 2-x 2 ,知y 1-x 1 y 2-x 2 ≥0,故B 正确;对于C ,考虑A 1,0 ,B 0,1 ,此时k =-1,所以1+k1+k 2AB =0.但d AB =1-0 +0-1 =2>0,故C 错误;对于D ,条件等价于关于x ,y 的方程组x +y =1x 2+y -r 2=r2,即x +y =1x 2+y 2=2ry 有四个解.如下图所示,该方程组可以直观地理解为正方形x +y =1和圆x 2+y 2=2ry 有四个公共点,直观的理解即为圆x 2+y 2=2ry 与矩形上方的两条边所在的直线均相交,且交点都在边的内部,而当r =2-1时,圆与上方的两条边相切,当r =12时,圆与上方的边的交点恰落在端点上,故可猜测取值范围是2-1,12,下面再使用二次方程工具严格证明此结论(也可以使用距离公式等其它方法证明).若x ,y 满足原方程组,则y =x 2+y 22r>0,故x +y =1.而r 2=x 2+y -r 2=x 2+1-x -r 2=2x 2-21-r x +1-r 2,故2x 2-21-r x +1-2r =0,同时还有x =1-y ≤1.由于当x 确定后,y 只有唯一可能的取值1-x ,而方程组有四个解,所以使得相应的y 存在的x 至少有四个.根据前面的讨论,这样的x 必满足2x 2-21-r x +1-2r =0,且x ≤1,所以方程2x 2-21-r x +1-2r =0必定在-1,1 上有四个解.这表明关于t 的方程2t 2-21-r t +1-2r =0在0,1 上一定有两个解,所以首先有判别式为正数,结合Δ=41-r 2-81-2r =41-2r +r 2-2+4r =4r 2+2r -1 ,就有r >2-1.同时,由于两根都在0,1 内,故两根乘积为正数,故1-2r >0,即r <12.这就证明了2-1<r <12.最后,当2-1<r <12时,原方程组的确存在四组不同的解:x =1-r +r 2+2r -12y =1+r -r 2+2r -12,x =-1-r +r 2+2r -12y =1+r -r 2+2r -12,x =1-r -r 2+2r -12y =1+r +r 2+2r -12,x =-1-r -r 2+2r -12y =1+r +r 2+2r -12.所以r 的取值范围是2-1,12,D 正确.故选:ABD .三、填空题9(2024·湖南长沙·三模)已知函数y =f x ,任取t ∈R ,定义集合A t ={y ∣y =f x ,点P t ,f t 、Q x ,f x 满足PQ ≤2 . 设M t ,m t 分别表示集合A t 中元素的最大值和最小值,记h t =M t -m t ,试解答以下问题:(1)若函数f x =x 2,则h 0 =;(2)若函数f x =sin π2x ,则h t 的最小正周期为.【答案】12【分析】(1)把t =0代入,然后计算A t 的最大值和最小值即可.(2)先表示出P t ,sin π2t 、Q x ,sin π2x ,然后根据P 的位置分类分析M t ,m t 的值.【详解】对于 1 ,因为函数 f x =x 2,当 t =0 时,P 0,0 、Q x ,x 2 且 x -0 2+x 2-0 2≤2,即 x 2+x 4≤2,令 x 2=m ,即 m 2+m ≤2,解得 0≤m ≤1,所以 M t =1,m t =0,所以 h 0 =1-0=1 ;对于 2 ,如图所示,若函数 f x =sin π2x ,此时,函数的最小正周期为 2ππ2=4,点 P t ,sin π2t 、Q x ,sin π2x ,当点 P 在 A 点时,点 Q 在曲线 OAB 上,M t =1,m t =0,h t =M t -m t =1;当点 P 在曲线上从 A 接近 B 时,h t 逐渐增大,当点 P 在 B 点时,M t =1,m t =-1h t =M t -m t =2;当点 P 在曲线上从 B 接近 C 时,h t 逐渐减小,当点 P 在 C 点时,M t =1,m t =0,h t =M t -m t =1;当点 P 在曲线上从 C 接近 D 时,h t 逐渐增大,当点 P 在 D 点时,M t =1,m t =-1,h t =M t -m t =2;当点 P 在曲线上从 D 接近 E 时,h t 逐渐减小,当点 P 在 E 点时,M t =1,m t =0,h t =M t -m t =1;依此类推,发现 h t 的最小正周期为 2 ,故答案为:(1)1;(2)2.10(2024·四川成都·模拟预测)定义在封闭的平面区域D 内任意两点的距离的最大值称为平面区域D 的“直径”.如图,已知锐角三角形的三个顶点A ,B ,C 在半径为1的圆上,角的对边分别为a ,b ,c ,A =π3.分别以△ABC 各边为直径向外作三个半圆,这三个半圆和△ABC 构成平面区域D ,则平面区域D 的“直径”的取值范围是.【答案】3+32,332【分析】(1)根据给定条件,利用正弦定理边化角,结合和角的正弦公式求出A ;(2)利用向量线性运算,结合向量的三角不等式求出区域D 的“直径”关系式,再利用三角恒等变换结合正弦函数性质求出范围即得.【详解】如图,F ,G 是AC ,BC 的中点,E ,F ,G ,H 四点共线,设P ,Q 分别为BC 、AC 上任意一点,PQ =PG +GF +FQ,PQ =PG +GF +FQ ≤PG +GF +FQ=HG +GF +FE =HE =a +b +c2,即PQ 的长小于等于△ABC 周长的一半,当PQ 与HE 重合时取等,同理,三个半圆上任意两点的距离最大值等于△ABC 周长的一半,因此区域D 的“直径”为△ABC 的周长l 的一半,由正弦定理得:a =2sinπ3=3,b =2sin B ,c =2sin C ,则l =3+2sin B +2sin 2π3-B =3+3sin B +3cos B =3+23sin B +π6.由△ABC 为锐角三角形,得0<B <π20<2π3-B <π2 ,即π6<B <π2,则π3<B +π6<2π3,32<sin B +π6≤1,于是3+3<l ≤33,所以平面区域D 的“直径”的取值范围是3+32,332.故答案为:3+32,332.11(2024·广东佛山·二模)近年,我国短板农机装备取得突破,科技和装备支撑稳步增强,现代农业建设扎实推进.农用机械中常见有控制设备周期性开闭的装置.如图所示,单位圆O 绕圆心做逆时针匀速圆周运动,角速度大小为2πrad /s ,圆上两点A ,B 始终满足∠AOB =2π3,随着圆O 的旋转,A ,B 两点的位置关系呈现周期性变化.现定义:A ,B 两点的竖直距离为A ,B 两点相对于水平面的高度差的绝对值.假设运动开始时刻,即t =0秒时,点A 位于圆心正下方:则t =秒时,A ,B 两点的竖直距离第一次为0;A ,B 两点的竖直距离关于时间t 的函数解析式为f t =.【答案】133sin 2πt +π3【分析】以O 为原点,以OA 所在直线为y 轴建立平面直角坐标系,利用三角函数定义表示点A ,B 的坐标,由已知结合和角的正弦公式化简即得.【详解】以O 为原点,以OA 所在直线为y 轴,建立平面直角坐标系,由于角速ω=2πrad /s ,设点A cos 2πt -π2 ,sin 2πt -π2 ,圆上两点A 、B 始终保持∠AOB =2π3,则B cos 2πt +π6 ,sin 2πt +π6,要使A 、B 两点的竖直距高为0,则sin 2πt -π2 =sin 2πt +π6 ,第一次为0时,4πt -π3=π,解得t =13,f (t )=sin 2πt +π6 -sin 2πt -π2=32sin2πt +12cos2πt +cos2πt=32sin2πt +32cos2πt=3sin 2πt +π3.故答案为:13;3sin 2πt +π3【点睛】关键点点睛:涉及三角函数实际应用问题,探求动点坐标,找出该点所在射线为终边对应的角是关键,特别注意,始边是x 轴非负半轴.12(2024·山东枣庄·模拟预测)设A x 1,y 1 ,B x 2,y 2 为平面上两点,定义d (A ,B )=x 1-x 2 +y 1-y 2 、已知点P 为抛物线C :x 2=2py (p >0)上一动点,点Q (3,0),d (P ,Q )的最小值为2,则p =;若斜率为32的直线l 过点Q ,点M 是直线l 上一动点,则d (P ,M )的最小值为.【答案】 232【分析】利用定义结合二次函数求最值计算即可得第一空,过P 作PN ⎳x 并构造直角三角形,根据d (P ,M )。

数列新题型——新定义数列

数列新题型——新定义数列

数列新题型——新定义数列作者:陈安心来源:《广东教育·高中》2009年第01期数列是高考的必考内容,在高考中通常以一道大题一道小题的形式出现,小题大多考查等差数列、等比数列及其性质、求和等,大题则大多与函数、不等式、解析几何等综合起来考查.近年来,高考中逐渐兴起一种新定义数列问题,这类问题新颖别致,对思维能力及迁移能力要求较高,能够较好地考查考生的综合素质,因此逐渐成为命题者的新宠.下面我们来看看近年来活跃在各地模拟试题中的一些新定义数列问题.一、等和数列例1 若数列{an}满足an+an+1=P(P是常数,n∈N*),那么数列{an}称为“等和数列”,且常数P叫该数列的公和.已知数列{bn}是等和数列,b1=1,公和是3,求{bn}的前n项和Sn.【新题探密】课本上给出过等差数列、等比数列的定义,本题定义一个“等和数列”,是指一个数列的每一项与它的后一项的和都为同一个常数,其本质是相邻两项的和为定值,掌握了这一点,问题即可迎刃而解.【试题解密】∵数列{bn}是等和数列,b1=1,公和是3,即数列{bn}首项为1,第二项为2,根据公和的定义,可以依次推得:数列{bn}的奇数项为1,偶数项为2,∴bn=1,n为奇数;2,n为偶数.∴当n为偶数时,Sn=1+2+1+2+…+1+2=;当n为奇数时,Sn=1+2+1+2+…+1+2+1=×3+1=,∴Sn=,n为偶数;,n为奇数.【高考链接】“等和数列”这一概念最早出现在2004年高考北京卷理科第14题,原题给出“等和数列”的定义,然后求其中某一项的值及前项和的计算式.这种定义简洁直观,理解了定义即可快速得出结果.二、等方差数列例2 若数列{an}满足a2n+1-an2=d(d为常数,n∈N*),则称{an}为“等方差数列”.甲:数列{an}是等方差数列;乙:数列{an}是等差数列,则A. 甲是乙的充分条件但不是必要条件;B. 甲是乙的必要条件但不是充分条件;C. 甲是乙的充要条件;D. 甲既不是乙的充分条件也不是乙的必要条件.【新题探密】所谓“等方差数列”,根据定义式,其实质就是一个数列的相邻两项的平方的差是一个定值,根据这一点,即可判断等差数列与等方差数列的关系.【试题解密】设数列{an}是等方差数列,d=1,若an>0,其前四项是0、1、、.显然此数列不是等差数列,即命题甲推不出命题乙;设数列{an}是等差数列,其通项公式为an=n,若an >0,则a2n+1-an2=(n+1)2-n2 =2n+1不是常数,故乙也推不出甲,故选D.【高考链接】与“等方差数列”和“等差比数列”类似的新定义数列是2007年高考湖北卷理科第6题,该题定义一个满足关系式=p的数列{an}为“等方比数列”,然后判断等比数列与等方比数列的关系.解决它的突破口同样是理解定义,也可以举例判断.三、对称数列例3 如果有穷数列a1,a2,…,an(n∈N*),满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我们称其为“对称数列”.例如,数列1,2,3,4,3,2,1就是“对称数列”.已知数列{bn}是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中前连续的m项,则数列{bn}的前2008项和S2008可以是:①22008-1;②2(22008-1);③3·2m-1-22m-2009-1;④2m+1-22m-2008-1.其中命题正确的个数为()A. 1 B. 2 C. 3 D. 4【新题揭密】从定义上来看,所谓的“对称数列”,其实质是首末两项相等的有限数列,抓住这一特点,与“对称数列”有关的问题即可迎刃而解.【试题解密】本题中所有可能的“对称数列”是:(1)1,2,22,23,…,2m-2,2m-1,2m-2,…,22,2,1;(2)1,2,22,23,…,2m-2,2m-1,2m-1,2m-2,…,22,2,1.对于(1),当2008≤m时,数列{bn}的前2008项均为首项为1,公比为2的等比数列,∴S2008=1+21+22+…+22008==22008-1.当m<2008<2m时,数列{bn}的前m项均为首项为1,公比为2的等比数列,后2008-m 项是首项为bm=2m-2,公比为的等比数列,S2008=1+2+…+2m-2+2m-1+2m-2+…+22m-2009=+=2m-1+2m-1-22m-2009=3×2m-1-22m-2009-1.对于(2),当2008≤m时,S2008=22008-1.当m<2008<2m时,数列{bn}的前m项均为首项为1,公比为2的等比数列,后2008-m 项是首项为bm=2m-1,公比为的等比数列,∴S2008=1+21+22+…+2m+2m+1+…+22008=2(1+21+22+…+2m)-(1+21+22+…+22m-2008)=2×+=2m+1-22m-2008-1.当2m=2008时,数列{bn}刚好是一个2008项的对称数列,其前1004项是一个首项为1,公比为2的等比数列,后1004项是一个首项为b1005=21004,公比为的等比数列,∴S2008=2×=2(21004-1).因此①③④均可能正确,故选C.【高考链接】“对称数列”这一新数列最早出现在2007年高考上海卷第20题上,本题即是该卷理科第(3)小题的改编.所谓“对称数列”,提法新颖,综合性强,本题虽然是一到小题,但其思维难度、计算量都很大,对解题能力要求很高.四、周期数列例4 在数列{an}中,如果存在非零常数T,使得am+T=am对任意正整数m均成立,那么就称{an}为“周期数列”,其中T叫做数列{an}的周期.已知数列{xn}满足xn+1=xn-xn-1(n≥2,n∈N*),且x1=1,x2=a(a≤1,a≠0),当数列{xn}周期为3时,则该数列的前2009项的和为()A. 668B. 669C. 1338D. 1339【新题揭密】在函数里我们学过周期函数,数列是一种特殊的函数,数列是否也有“周期数列”呢?本题,给出了“周期数列”的定义,从定义上看,所谓周期数列,就是指数列中的某几项在数列中连续顺序出现,这个性质跟周期函数是类似的.【试题解密】当T=3时,数列{an}为1,a,a-1,a-1-a,…,∴a-1-a=1,a-1=a±1,而a≤1,∴a-1<0,∴a-1=a+1,即1-a=a+1a=0,故数列{an}为:1,0,1,1,0,1,1,0,1,…∴数列{an}的前2009项的和为(1+0+1)×669+1+0=1339,故选D.【高考链接】高考中对“对称数列”这一定义暂时还没涉及,但对数列的通项中某一项是它的前面两项的差的绝对值的形式有所定义,在2006年全国高考北京卷理科第20题中,定义了一个“绝对差数列”,其定义即为an=an-1-an-2,今后类似问题还可以定义其他很多类似的新数列,这点需要引起我们注意.【变式思考】1.(等差数列接龙)对于数列a1,a2,…,ak,ak+1,ak+2,…,a2k,a2k+1,…而言,若a1,a2,…,ak是以公差为d1的等差数列,而ak,ak+1,ak+2,…,a2k是以公差为d2的等差数列,则称该数列为“等差数列接龙”.已知a1=1,d1=1,k=5,d2=2,d3=3,d4=4,则a17=()A. 17B. 38C. 36D. 292.(等差比数列)在数列{an}中,n∈N* ,都有=k(k为常数),则称{an}为“等差比数列”,下面是对“等差比数列”的判断:①k不可能为0;②等差数列一定是等差比数列;③等比数列一定是等差比数列;④等差比数列中可以有无穷项为0.其中正确的判断是()A. ①②B. ②③C. ③④D. ①④3.(等积数列)在一个数列中,若每一项与它的后一项的积都为同一个常数(有限数列的最后一项除外),则称该数列为“等积数列”,其中的常数称为公积.若数列{an}是等积数列,且a1=5,公积为10,则a1·a2·a3…a2009= .4.(差数列)对于数列{an},定义数列{an+1-an}为数列{an}的“差数列”,若a1=2,{an}的“差数列”的通项为2n,则数列{an}的前n项和Sn=.5.(差增数列)若数列{an}满足an+2-an+1>an+1-an(n∈N*),则称数列{an}为“差增数列”.若通项公式为an=λn2+2λ2n+3(n∈N*)的数列{an}为“差增数列”,则λ的取值范围是.【参考解答】1. 【新题揭密】单独一个等差数列的问题容易解决,但遇到多个等差数列混和起来该如何处理呢?本题中的“等差数列接龙”,实质是将几个等差数列放在一起,并且不打乱数列中各项的顺序,掌握了这一点,问题即可求解.【试题探源】解法一:∵a1=1,d1=1,∴a5=5.∵d2=2,∴a10=a5+(6-1)×2=15.∵d3=3,∴a15=a10+(6-1)×3=30.∵d4=4,∴a15=30+2×4=38,故选B.解法二:根据数列特征,依次写出该数列的前17项为:1,2,3,4,5,7,9,11,13,15,18,21,24,27,30,34,38,故选B.2.【新题揭密】本题中所定义的“等差比数列”,从定义式上看,是指相邻两项的差的比值,按照这个定义式的标准,即可判断等差数列和等比数列与“等差比数列”的关系.【试题解密】∵等差比的比值是k,∴k不能为0,①对;若等差数列为常数列,此时an+1-an=0,不能构成等差比数列,②错;若等比数列的公比为1时,an+1-an=0,不能构成等差比数列,③错;等差比数列虽然不能所有项为0,但可以有无穷项为0,此时,只要an+1-an≠0即可,如1,0,1,0,1,0…等,④正确,故选D.3.【新题探密】从题目意思看来,本题与前面的“等和数列”类似,是相邻两项的积为同一个常数,抓住这点即可得出答案.【试题解密】∵等积数列{an}的首项为a1=5,公积为10,则该数列为:5,2,5,2,5,…,5,2,…的形式,因此前2009项的积为10×5=5×101004,故填5×1004.4.【新题揭密】所谓“差数列”,即是一个数列的相邻两项的差衍生而成的新数列,抓住原来数列的特征,即可求解新得到的“差数列”的前n项和.【试题探源】∵an+1-an=2n,∴an=(an-an-1)+(an+1-an-2)+…+(a2-a1)+a1=2n-1+2n-2+…+22+2+2=+2=2n-2+2=2n,∴Sn==2n+1-2,故填2n+1-2.5.【新题揭密】函数有单调性,数列是一类特殊的函数,应该也有类似函数的单调性,所谓“差增数列”,实质就是跟数列的单调性相关的问题.掌握这一点,问题就简化了.【试题探源】∵an+2-an+1>an+1-an,∴[λ(n+2)2+2λ2(n+2)+3]-[λ(n+1)2+2λ2(n+1)+3]>[λ(n+1)2+2λ2(n+1)+3]-[λn2+2λ2n+3]λ(2n+3)>λ(2n+1)λ>0,故填(0,+∞).责任编校徐国坚注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。

中考试题中的“新定义”题型赏析

中考试题中的“新定义”题型赏析

中考数学试题中的——“新定义”题型赏析近几年来全国各地中考题中出现了一种“新定义”题型这种题型问题情境新颖,阅读量明了简短让答题者眼前一亮的同时犹如一股清新之风迎面吹来令人神清气爽.在领略了题目的真意之后更体会到了命题人的匠心独具和创新精神.“新定义”题型给出一种不同于常规的全新的运算法则,让学生仿此法则解决问题,旨在考查学生对数学基础知识、基本方法、基本技能的掌握情况,而且考查了学生的创新思维能力.正是由于这种总揽各种知识方法、能力的特点使得"新定义"题如同一朵清新的小花成为全国各地中考试题的新宠.每年总会在中考试题中大量涌出,现采撷几朵与同行交流欣赏.不妥之处请批评斧正.一、“新定义”方程(组)及不等式【例1】(2012年.山东莱芜)对于非零的两个实数a 、b ,规定a b b a 11-=⊕,若()1122=-⊕x ,则x 的值为:A .65 B . 45 C . 23 D .61- 【分析】 根据a b b a 11-=⊕得到()21121122--=-⊕x x .因为()1122=-⊕x 所以121121=--x 解得65=x ,经检验65=x 是原分式方程的解. 【答案】A【点评】本题考查对新运算的运算法则理解和应用以及分式方程的解法.解决此类问题的关键是能够运用新运算法则将()1122=-⊕x 转化为121121=--x .再用常规方法解决.作为中考试题,问题情境新颖加上难度不大学生易得分,使学生获得成就感的同时也增强了做中考试卷后续题型的信心和勇气.【例2】(2012年.四川省德阳市)为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收方由密文→明文(解密).已知加密规则为:明文a ,b ,c ,d 对应密文,b a 2+,c b +2,d c 32+,d 4.例如:明文1,2,3,4对应的密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为:A. 4,6,1,7B. 4,1,6,7C.6,4,1,7D.1,6,4,7【分析】根据对应关系:4d =28可以求得d =7;代入2c+3d =23得c =1;在代入2b+c =9得b =4;代入a+2b =14得a =6.【答案】C.【点评】本题实质是考查多元方程组的解法.从简单的一元一次方程入手,通过代入消元,求出各个未知量,渗透了把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法. 【例3】(2009•雅安)定义一种法则“⊕”如下:a ⊕b = ()()a a b b a b >⎧⎨≤⎩,例如:1⊕2=2,若(-2m-5)⊕3=3,则m 的取值范围是 m≥-4.【分析】先根据题中所给的条件判断a 、b 的大小后转化为关于m 的不等式,再求出m 的取值范围即可.【解答】∵1⊕2=2,若(-2m-5)⊕3=3则-2m-5≤3,解得m≥-4.故答案为:m≥-4.【点评】本题考查的是解一元一次不等式,通过分类思考分析得出正确的关于m 的不等式是解答此题的关键.二、“新定义”实数运算【例1】(2011•孝感)对实数a 、b,定义运算☆如下:a ☆b = (,0)(,0)b b a a b a a a b a -⎧>≠⎪⎨≤≠⎪⎩, 例如:2☆3=2-3=18;计算:[2☆(-4)]×[(-4)☆(-2)]= 1. 关键是对新定义正确的理解,并能透过现象看本质正确转化为幂的运算..式是③,⑤.①13=3+10;②25=9+16;③36=15+21;④49=18+31;⑤64=28+36.(2)请再写出一个符合这一规律的等式:25=10+15(答案不唯一)【分析】根据已知条件,得出自然数是 1 2 3 4 5 6 7 8,三角数是1 3 6 10 15 21 28 36,再从中找出规律,即可找出结果.【解答】其实三角形数是这样的:自然数是1 2 3 4 5 6 7 8;三角形数1 3 6 10 15 21 28 36第几个三角数就是它的位置之前的所有自然数与本身之和.正方形数1 4 9 16 25 36 49 64故答案为:③⑤【点评】此题是数列的应用并蕴含规律探索属高中知识渗透的新定义题型.考查了学生观察、分析、推理、归纳、仿练能力.四、“新定义”点【例1】(2012•厦门)如图:平面直角坐标系中,已知点A(2,3)、B(6,3),连接AB.如果点P在直线y=x-1上,且点P到直线AB的距离小于1,那么称点P是线段AB 的“临近点”.(1)判断点C(75,22)是否是线段AB的“临近点”,并说明理由;(2)若点Q(m,n)是线段AB的“临近点”,求m的取值范围.【分析】(1)根据A、B的坐标得出AB∥x轴,根据点P到直线AB的距离小于1,求出当纵坐标y在2<y<4范围内时,点是线段AB的“临近点”,看点的纵坐标是否在y的范围内即可;(2)根据线段AB 的“临近点”的纵坐标的范围是2<y <4,把y =2和y =4分别代入y =x-1,求出相应的x 值,即可得出点的横坐标x 的范围.【解答】(1)点C ( 75,22)是线段AB 的“临近点”.理由是:∵点P 到直线AB 的距离小于1,A 、B 的纵坐标都是3,∴AB ∥x 轴,3-1=2,3+1=4,∴当纵坐标y 在2<y <4范围内时,点是线段AB 的“临近点”,点C 的坐标是(75,22)∵52>2,且小于4,点C ( 75,22)是线段AB 的“临近点”.(2)由(1)知:线段AB 的“临近点”的纵坐标的范围是2<y <4,把y =2代入y =x-1得:x =3,把y =4代入y =x-1得:x =5,∴3<x <5,∵点Q (m ,n )是线段AB 的“临近点”,∴m 的取值范围是3<m <5.【点评】本题考查了一次函数的应用,深刻理解“临近点”找出符合条件的临近点的纵坐标取值范围是2<y <4问题(2)也迎刃而解了.【例2】(2012.湖北随州)定义:平面内的直线1l 与2l 相较于点O ,对于该平面内任意一点M ,点M 到直线1l ,2l 的距离分别为a 、b ,则称有序非负实数对(a,b )是点M 的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是( )A .2B .1C .4D .3【分析】根据定义“距离坐标”是(2,3)的点,说明M 到直线1l 与2l 的距离分别是2和3,平面被相交直线1l 与2l 分成四个区域,与直线1l 与2l 距离是2和3的直线各有2条故这些直线的交点有4个即符合条件的点共4个如下图.【答案】C【点评】此题考点是坐标确定位置;解题要注意两相交直线分平面成4个区域.五、“新定义”线【例】(2011年.武汉四月调考)如果抛物线1C 的顶点在抛物线2C 上,同时,抛物线2C 的顶点在抛物线1C 上,那么,我们称抛物线1C 与2C 关联.(1)已知抛物线①122-+=x x y ,判断下列抛物线②122++-=x x y ;③122++=x x y 与已知抛物线①是否关联,并说明理由.(2)抛物线1C :2)1(812-+=x y ,动点P 的坐标为(t ,2),将抛物线绕点P (t ,2)旋转︒180得到抛物线2C ,若抛物线1C 与2C 关联,求抛物线2C 的解析式.(3)点A 为抛物线1C :2)1(812-+=x y 的顶点,B 为与抛物线1C 关联的抛物线顶点,是否存在以AB 为斜边的等腰直角ABC Δ,使其直角顶点C 在y 轴上,若存在,求出C 点的坐标;若不存在,请说明理由.【分析】(1)首先求得抛物线①的顶点坐标,然后检验此点是否在抛物线②与③上,再求得抛物线②的顶点坐标,检验是否在抛物线①上即可求得答案;(2)首先求得抛物线C 1的顶点坐标,则可得:点P 在直线y =2上,可作辅助线:作M 关于P 的对称点N ,分别过点M 、N 作直线y =2的垂线,垂足为E ,F ,则可求得:点N 的坐标,利用顶点式即可求得结果;(3)分别从当A ,B ,C 逆时针分布时与当A ,B ,C 顺时针分布时分析,根据全等三角形的知识,即可求得点C 的坐标,注意别漏解.【解答】(1)∵①抛物线y =x 2+2x-1=(x+1)2-2的顶点坐标为M (-1,-2),∴②当x =-1时,y =-x 2+2x+1=-1-2+1=-2,∴点M 在抛物线②上;∵③当x =-1时,y =x 2+2x+1=1-2+1=0,∴点M 不在抛物线③上;抛物线②y =-x 2+2x+1=-(x-1)2+2,其顶点坐标为(1,2), 经验算:(1,2)在抛物线①上,∴抛物线①、②是关联的;(2)抛物线C 1:y =18(x+1)2-2的顶点M 的坐标为(-1,-2), ∵动点P 的坐标为(t ,2)∴点P 在直线y =2上,作M 关于P 的对称点N ,分别过点M 、N 作直线y =2的垂线,垂足为E ,F ,则ME =NF =3,∴点N 的纵坐标为6,当y =6时18(x+1)2-2=6解得:x 1=7,x 2=-9,①设抛物C 2的解析式为:y =a (x-7)2+6,∵点M (-1,-2)在抛物线C 2上,∴-2=a (-1-7)2+6∴a =18-∴抛物线C 2的解析式为:y =18-(x-7)2+6;②设抛物C 2的解析式为:y =a (x+9)2+6∵点M (-1,-2)在抛物线C 2上∴-2=a (-1+9)2+6,∴a =18-∴抛物线C 2的解析式为:y =18-(x+9)2+6. (3)点C 在y 轴上的一动点,以AC 为腰作等腰直角△ABC ,令C 的坐标为(0,c ),则点B 的坐标分两类:①当A ,B ,C 逆时针分布时,如图中B 点,过点A ,B 作y 轴的垂线,垂足分别为H ,F ,则△BCF ≌△CAH ,∴CF =AH =1,BF =CH =c+2,点B 的坐标为(c+2,c-1),当点B 在抛物线C 1:y =18(x+1)2-2上时,c-1=18(c+2+1)2-2,解得:c =1.②当A ,B ,C 顺时针分布时,如图中B′点,过点B′作y 轴的垂线,垂足为D ,同理可得:点B′的坐标为(-c-2,c+1),当点B′在抛物线C 1:y =18(x+1)2-2上时,c+1=18(-c-2+1)2-2,解得:c =3+42或c =3-42.综上所述,存在三个符合条件的等腰直角三角形,其中C 点的坐标分别为:C 1(0,1),C 2(0,3+42),C 3(0,3-42).【点评】新定义题型以不同形式呈现,从不同角度考查学生现有的数学知识.此题是道压轴题,三小问梯度呈现,第(1)问虽然是新定义的简单应用但要同学们将抛物线顶点坐标代入解析式验证后根据新定义法则做出判断;第(2)问融进了中心对称知识学生须画出对称点借助辅助线完成,难度加大,逐渐出现区分度;第(3)问要求学生在(2)问的基础上深刻理解关联抛物线的定义,作分类讨论,思维必须严谨否则易漏解,此问难度最大,得分率不高.总之此题不仅考察了待定系数法求二次函数的解析式以及二次函数的顶点坐标的求法,全等三角形的判定等知识.考查了学生阅读理解能力,灵活运用新知的应变能力、迁移能力寓数形结合思想与分类讨论思想于其中. 而且每问或明或暗设置了两个答案使试题偏难.六、“新定义”面【例】(2012年.陕西)如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是___________ 三角形;(2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值;(3)如图,△OAB 是抛物线()2=-+''>0y x bx b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由.【解析】(1)因为抛物线的顶点必在它与x 轴两个交点连线段的中垂线上,所以“抛物线三角形”一定是等腰三角形.(2)由条件得抛物线的顶点在第一象限,用b 的代数式表示出顶点坐标,当“抛物线三角形”是等腰直角三角形时,顶点的横纵坐标相等,列出方程求出b.(3)由题意若存在,则△OAB 为等边三角形,同(2)的办法求出'b .求出A 、B 两点坐标后得到C 、D 两点坐标,再由待定系数法求解.【解答】(1)等腰;(2)∵抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形, ∴该抛物线的顶点224b b ⎛⎫ ⎪⎝⎭,满足2=24b b ()>0b ∴=2b . (3)存在.如图,作△OCD 与△OAB 关于原点O 中心对称,则四边形ABCD 为平行四边形. 当=OA OB 时,平行四边形ABCD 为矩形.又∵=AO AB ∴△OAB 为等边三角形.作AE OB ⊥,垂足为E ∴=AE 3OE .∴()2''=3'>042b b b ;∴'=23b ∴)3A ,,()23B ,;∴()-3C ,,()-23D ,. 设过点O C D 、、三点的抛物线2=+y mx nx ,则12=03=-3.m m ⎧⎪⎨⎪⎩,解之,得=1m n ⎧⎪⎨⎪⎩,∴所求抛物线的表达式为2=y x .【点评】本题第(1)问同上题一样仍是“新定义”的简单应用,第(2)问学生必须抓住抛物线()2=-+>0y x bx b 是经过原点的抛物线的性质,则可在第(1)问基础上可推出“抛物线三角形”是等腰直角三角形因此直角顶点横纵坐标相等,运用抛物线顶点公式构造方程求解.第(3)问在前两小问考查了等腰三角形判定等腰直角三角形性质的基础上融进了中心对称知识点学生必须掌握矩形是特殊的平行四边形性质作出图形,再利用矩形的对角线相等得到“抛物线三角形”是等边三角形,运用等边三角形性质等知识求解.总之此题将综合考查二次函数的性质及其解析式的确定、等腰三角形的性质和判定、矩形的性质和判定等知识,放在新的问题情境中使得试题活泼新颖是一道二次函数和三角形、四边形的综合题,此题虽不是压轴题但也较难.综上新定义题型在中考试题中以选择题、填空题、解答题的形式出现,试题涉及到对纯代数或纯几何知识点或代数和几何相结合的综合题型的考查有种乱花渐欲迷人眼的感觉,但也有其解答策略.一般是运用新定义的法则转化成常规方法解答的题型即可对于新定义选择题可用我们大家熟知的排除法、特殊值法、直接法、图像法、验算法、估算法.填空题可用分析法、淘汰法、特例法、直接法、数形结合法等方法解答.解答题一般考查学生综合运用初中三年所学知识点的能力,常寓数形结合思想、类比思想、转化思想、分类讨论思想、方程思想、函数思想等于题型当中. “新定义“题型立足于课标,不拘泥于课标,新颖而迷人眼的问题情境要求教师培养学生透过现象看问题本质的方法;要求教师在完成教学任务同时注重学生创新思维能力的培养,也为教师日常教学工作指明了新的导向. 千变万化的题型,迥异的解答策略,是数学魅力所在,更是命题人的创新精神所在.也是我们教育工作者必备的精神品质.。

微专题5 数列中的新定义问题

微专题5  数列中的新定义问题

微专题5 数列中的新定义问题〖真题感悟〗1.【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }()n *∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }()n *∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和.求数列{b n }的通项公式;【解析】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q >0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”.(2)因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .(1)若等差数列{}n a 是“λ–1”数列,求λ的值;(2)若数列{}n a 是2”数列,且a n >0,求数列{}n a 的通项公式;【解析】(1)+111111101n n n n n n S S a a a a a λλλ++++-=∴==∴≡∴=/(2)11221100n n n n n a S S S S ++>∴>∴->,111222+1+1)n nn n S S S S -=- 1111112222222+1+1+11()()()3n n n n n n S S S S S S ∴-=-+1111111222222+1+1+1+11()=2=443n n n n n n n n n n S S S S S S S S S -∴-=+∴∴∴=111S a ==,14n n S -=,1224434,2n n n n a n ---∴=-=⋅≥21,134,2n n n a n -=⎧∴=⎨⋅≥⎩(3)假设存在三个不同的数列{}n a 为"3"λ-数列.111113333333+11+1+1()()n n n n n n n S S a S S S S λλ+-=∴-=- 1133+1n n S S ∴=或11221123333333+1+1+1()()n n n n n n S S S S S S λ-=+++1n n S S ∴=或22113333333+1+1(1)(1)(2)0n n n n SS S S λλλ-+-++=∵对于给定的λ,存在三个不同的数列{}n a 为"3"λ-数列,且0n a ≥1,10,2n n a n =⎧∴=⎨≥⎩或()22113333333+1+1(1)(1)(2)01n n n n S S S S λλλλ-+-++=≠有两个不等的正根.()22113333333+1+1(1)(1)(2)01n n n n S S SS λλλλ-+-++=≠可转化为()2133333+1+12133(1)(2)(1)01n n nnS S S S λλλλ-++-+=≠,不妨设()1310n n S x x S +⎛⎫=> ⎪⎝⎭,则()3233(1)(2)(1)01x x λλλλ-+++-=≠有两个不等正根,设()()3233(1)(2)(1)01f x x x λλλλ=-+++-=≠.① 当1λ<时,32323(2)4(1)004λλλ∆=+-->⇒<<,即01λ<<,此时()3010f λ=-<,33(2)02(1)x λλ+=->-对,满足题意.② 当1λ>时,32323(2)4(1)004λλλ∆=+-->⇒<<,即1λ<<()3010f λ=->,33(2)02(1)x λλ+=-<-对,此情况有两个不等负根,不满足题意舍去. 综上,01λ<< 〖典题导引〗例1 记m =d 1a 1+d 2a 2+…+d n a nn ,若{}d n 是等差数列,则称m 为数列{a n }的“d n 等差均值”;若{}d n 是等比数列,则称m 为数列{a n }的“d n 等比均值”.已知数列{a n }的“2n -1等差均值”为2,数列{b n }的“3n-1等比均值”为3.记c n =2a n+k log 3b n ,数列{}c n 的前n 项和为S n ,若对任意的正整数n 都有S n ≤S 6,求实数k 的取值范围. 【解析】由题意得2=a 1+3a 2+…+(2n -1)a nn ,所以a 1+3a 2+…+(2n -1)a n =2n ,所以a 1+3a 2+…+(2n -3)a n -1=2n -2(n ≥2,n ∈N *), 两式相减得a n =22n -1(n ≥2,n ∈N *).当n =1时,a 1=2,符合上式, 所以a n =22n -1(n ∈N *).又由题意得3=b 1+3b 2+…+3n -1b nn ,所以b 1+3b 2+…+3n -1b n =3n ,所以b 1+3b 2+…+3n -2b n -1=3n -3(n ≥2,n ∈N *), 两式相减得b n =32-n (n ≥2,n ∈N *). 当n =1时,b 1=3,符合上式, 所以b n =32-n (n ∈N *). 所以c n =(2-k )n +2k -1.因为对任意的正整数n 都有S n ≤S 6,所以⎩⎪⎨⎪⎧c 6≥0,c 7≤0,解得135≤k ≤114.变式跟踪1.给定一个数列{}a n ,在这个数列中,任取m (m ≥3,m ∈N *)项,并且不改变它们在数列{}a n中的先后次序,得到的数列{}a n 的一个m 阶子数列. 已知数列{}a n 的通项公式为a n =1n +a(n ∈N *,a 为常数),等差数列a 2,a 3,a 6是数列{}a n 的一个3阶子数列. (1) 求a 的值;(2)等差数列b 1,b 2,…,b m 是{}a n 的一个m (m ≥3,m ∈N *)阶子数列,且b 1=1k (k 为常数,k ∈N *,k ≥2),求证:m ≤k +1;【解析】(1) 因为a 2,a 3,a 6成等差数列,所以a 2-a 3=a 3-a 6.又因为a 2=12+a ,a 3=13+a ,a 6=16+a ,代入得12+a -13+a =13+a -16+a ,解得a =0.(2) 设等差数列b 1,b 2,…,b m 的公差为d . 因为b 1=1k ,所以b 2≤1k +1,从而d =b 2-b 1≤1k +1-1k =-1k (k +1).所以b m =b 1+(m -1)d ≤1k -m -1k (k +1).又因为b m >0,所以1k -m -1k (k +1)>0.即m -1<k +1.所以m <k +2. 又因为m ,k ∈N *,所以m ≤k +1.例2 若数列{a n }满足条件:对任意的m ,n ∈N *,都有a n +m ≥a n +a m ,则称数列{a n }具有性质P .(1) 已知等差数列{a n }的前n 项的和为S n ,且a 1=1,a 2+a 3=8,求证:数列{S n }具有性质P ;(2) 已知各项均为正数的等比数列{a n }具有性质P ,求数列{a n }的公比q 的最小值; 【解析】(1) 设数列{a n }的公差为d ,由a 1=1,a 2+a 3=8,得d =2,所以a n =2n -1, 因此S n =n 2,所以S n +m -S m -S n = (m +n )2-m 2-n 2=2mn >0,即S n +m >S n +S m ,所以数列{S n }具有性质P .(2) 因为数列{a n }是各项均为正数的等比数列,且{a n }具有性质P , 所以a 2≥a 1+a 1,即q ≥2.当q =2时,a n =2n -1a 1,不妨设m ≥n ≥1, 此时a n +m -a m -a n =2m+n -1a 1-2m -1a 1-2n -1a 1=2n -1a 1(2m -2m -n -1)=2n -1a 1(2m -1-2m -n +2m -1-1)≥0, 所以{a n }具有性质P ,所以数列{a n }的公比q 的最小值为2. 变式跟踪1.若无穷数列}{n a 满足:0>n a ,且对任意n l k s <<<,l k n s +≥+(*∈N n l k s ,,,)都有l k n s a a a a +≥+,则称数列}{n a 为“T ”数列. (1)证明:正项无穷等差数列}{n a 是“T ”数列;(2)记正项等比数列}{n b 的前n 项之和为n S ,若数列}{n S 是“T ”数列,求数列}{n b 公比的取值范围;【证明】(1)证明:l k n s a a a a --+=d l k n s )(--+ 因为正项无穷等差数列}{n a ,所以d>0,且l k n s +≥+, 所以l k n s a a a a +≥+所以正项无穷等差数列}{n a 是“T ”数列(2)1°q =1时l k n s S S S S --+0)(1≥--+=a l k n s 成立,所以q=1; 2°q>1时l k n s S S S S --+)(11s n l k q q q q q a --+-=)1(11--+-=---s n s l s k s q q q q qa因为l k n s +≥+,所以s l k n -+≥,又因为q>1,所以s l s k s l k s n q q q q ---+-⋅=≥2 所以1--+---s n s l s k q q q 1-⋅-+≤----s l s k s l s k q q q q )1)(1(s l s k q q ----=<0 所以l k n s S S S S --+)1(11--+-=---s n s l sk s q q q q qa >0,所以q>1 3°0<q<1时l k n s S S S S --+)(11s n l k q q q q qa --+-=)1(11--+-=---ns n l n k n q q q q q a)1111(11-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-=---sn ln kn n q q q q q a因为l k n s +≥+,所以s l k n -+≥,又因为0<q<1,所以sl sk sn q q q ---⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫⎝⎛≥⎪⎪⎭⎫⎝⎛111所以1111-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛---sn ln kn q q q sl s k ls ks q q q q ----⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛≤11111]11][11[-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=--sl sk q q <0所以l k n s S S S S --+)1111(11ln kn sn n q q q q q a ---⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=<0舍去综上:q ≥1例3 设数列{a n }的前n 项和为S n ,如果S nS 2n为常数,则称数列{a n }为“幸福数列”.(1)等差数列{b n }的首项为1,公差不为零,若{b n }为“幸福数列”,求{b n }的通项公式;【解析】(1)设等差数列{b n }的公差为d (d ≠0),其前n 项和为B n ,B nB 2n=k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎡⎦⎤2n +12·2n (2n -1)d , 即2+(n -1)d =4k +2k (2n -1)d ,整理得(4k -1)dn +(2k -1)(2-d )=0. 因为对任意正整数n 上式恒成立,则⎩⎪⎨⎪⎧d (4k -1)=0,(2k -1)(2-d )=0,解得⎩⎪⎨⎪⎧d =2,k =14.故数列{b n }的通项公式是b n =2n -1.(2)由题意知,当n =1时,c 31=T 21=c 21.因为c 1>0,所以c 1=1.当n ≥2时,c 31+c 32+c 33+…+c 3n =T 2n ,c 31+c 32+c 33+…+c 3n -1=T 2n -1.因为c n >0,所以c 2n =T n +T n -1=2T n -c n . 显然c 1=1适合上式,所以当n ≥2时,c 2n -1=2T n -1-c n -1.于是c 2n -c 2n -1=2(T n -T n -1)-c n +c n -1=2c n -c n +c n -1=c n +c n -1.因为c n +c n -1>0,所以c n -c n -1=1,所以数列{c n }是首项为1,公差为1的等差数列, 所以c n =n ,T n =n (n +1)2.所以T nT 2n =n (n +1)2n (2n +1)=n +14n +2不为常数,故数列{c n }不是“幸福数列”. 〖新题在线〗1. (2020姜堰中学)在一个有穷数列的每相邻两项之间添加一项,使其等于两相邻项的和,我们把这样的操作叫做该数列的一次“H 扩展”.已知数列1,2第一次“H 扩展”后得到数列1,3,2,第二次“H 扩展”后得到数列1,4,3,5,2,那么第10次“H 扩展”后得到的数列的所有项的和为( )A .88 572B .88 575C .29 523D .29 526【答案】B【解析】记第n 次“H 扩展”后得到的数列所有项的和为H n ,则H 1=1+2+3=6,H 2=1+3+2+4+5=15,H 3=15+5+7+8+7=42,从中发现H 3-H 2=27=33,H 2-H 1=9=32,归纳得H n -H n -1=3n(n ≥2),利用累加法求和得H n =3n +1+32,n ≥2,所以H 10=311+32=88 575,故选B .2.(2020海门中学检测)对于数列{a n },定义H n =a 1+2a 2+…+2n -1a nn 为{a n }的“优值”,现在已知某数列{a n }的“优值”H n =2n +1,记数列{a n -kn }的前n 项和为S n ,若S n ≤S 5对任意的n ∈N *恒成立,则实数k 的取值范围为________. 【答案】⎣⎡⎦⎤73,125【解析】由题意知H n =a 1+2a 2+…+2n -1a n n =2n +1,所以a 1+2a 2+…+2n -1a n =n ×2n +1,①,当n ≥2时,a 1+2a 2+…+2n -2a n -1=(n -1)×2n ,②,①-②得:2n -1a n =n ×2n +1-(n -1)×2n ,解得a n =2n +2,n ≥2,当n =1时,a 1=4也满足上式,所以数列{a n }的通项公式为a n =2n +2,且数列{a n }为等差数列,公差为2.令b n =a n -kn =(2-k )n +2,则数列{b n }也是等差数列,由S n ≤S 5对任意的n ∈N *恒成立,知2-k <0,且b 5=12-5k ≥0,b 6=14-6k ≤0,解得73≤k ≤125. 3.(2020南京一模)定义:若无穷数列{a n }满足{a n +1-a n }是公比为q 的等比数列,则称数列{a n }为“M (q )数列”.设数列{b n }中b 1=1,b 3=7.(1)若b 2=4,且数列{b n }是“M (q )数列”,求数列{b n }的通项公式;(2)设数列{b n }的前n 项和为S n ,且b n +1=2S n -12n +λ,请判断数列{b n }是否为“M (q )数列”,并说明理由;【解析】(1)因为b 2=4,且数列{b n }是“M (q )数列”,所以q =b 3-b 2b 2-b 1=7-44-1=1,所以b n +1-b nb n -b n -1=1,n ≥2,即b n +1-b n =b n -b n -1 ,n ≥2,所以数列{b n }是等差数列,其公差为b 2-b 1=3,所以数列{b n }通项公式为b n =1+(n -1)×3,即b n =3n -2. (2)由b n +1=2S n -12n +λ,得b 2=32+λ,b 3=4+3λ=7,故λ=1.方法一:由b n +1=2S n -12n +1,得b n +2=2S n +1-12(n +1)+1,两式作差得b n +2-b n +1=2b n +1-12,即b n +2=3b n +1-12,n ∈N *.又b 2=52,所以b 2=3b 1-12,所以b n +1=3b n -12对n ∈N *恒成立,则b n +1-14=3(b n -14).因为b 1-14=34≠0,所以b n -14≠0,所以b n +1-14b n -14=3,即{b n -14}是等比数列,所以b n -14=(1-14)×3n -1=14×3n ,即b n =14×3n +14,所以b n +2-b n +1b n +1-b n=(14×3n +2+14)-(14×3n +1+14)(14×3n +1+14)-(14×3n +14)=3,所以{b n +1-b n }是公比为3的等比数列,故数列{b n }是“M (q )数列”. 方法二:同方法一得b n +1=3b n -12对n ∈N *恒成立,则b n +2=3b n +1-12,两式作差得b n +2-b n +1=3(b n +1-b n ).因为b 2-b 1=32≠0,所以b n +1-b n ≠0,所以b n +2-b n +1b n +1-b n=3,所以{b n +1-b n }是公比为3的等比数列,故数列{b n }是“M (q )数列”.〖作业反馈〗 1.若数列{a n }满足1a n +1-1a n =d (n ∈N *,d 为常数),则称数列{a n }为调和数列,已知数列⎩⎨⎧⎭⎬⎫1x n 为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=( ).A .10B .20C .30D .40【答案】B 【解析】依题意,11x n +1-11x n=x n +1-x n =d ,∴{x n }是等差数列.又x 1+x 2+…+x 20=20(x 1+x 20)2=200.∴x 1+x 20=20,从而x 5+x 16=x 1+x 20=20.2. 定义:在数列{a n }中,若满足a n +2a n +1-a n +1a n =d (n ∈N *,d 为常数),称{a n }为“等差比数列”.已知在“等差比数列”{a n }中,a 1=a 2=1,a 3=3,则a 2 021a 2019等于( ).A .4×2 0212-1B .4×2 0202-1C .4×2 0192-1D .4×2 0192 【答案】C【解析】由题意知⎩⎨⎧⎭⎬⎫a n +1a n 是首项为1,公差为2的等差数列,则a n +1a n =2n -1,所以a n =a n a n -1×a n -1a n -2×…×a 2a 1×a 1=(2n -3)×(2n -5)×…×1.所以a 2 021a 2 019=(2×2021-3)(2×2021-5)×…×1(2×2019-3)(2×2019-5)×…×1=4039×4037=(4038+1)(4038-1)=40382-1=4×20192-1.3.对于一切实数x ,令[x ]为不大于x 的最大整数,则函数f (x )=[x ]称为高斯函数或取整函数.若a n =f ⎝⎛⎭⎫n 3,n ∈N *,S n 为数列{a n }的前n 项和,则S 3n =( ). A .32n 2-12nB .32n 2+12nC .3n 2-2nD .92n 2-32n【答案】A【解析】由题意,当n =3k ,n =3k +1,n =3k +2时均有a n =f ⎝⎛⎭⎫n 3=⎣⎡⎦⎤n 3=k ,所以S 3n =0+0+1+1+1,3个+2+2+2,3个+…+n -1+n -1+n -1,3个+n =3×1+n -12×(n -1)+n =32n 2-12n .4.设[x ]表示不超过x 的最大整数,已知数列{a n }中,a 1=2,且a n +1=a n (a n +1),若⎣⎡⎦⎤a 1a 1+1+a 2a 2+1+…+a n a n +1=100,则整数n 等于( ).A .99B .100C .101D .102 【答案】C【解析】因为a n +1=a n (a n +1)=a 2n +a n ,所以a n +1-a n =a 2n >0,故数列{a n }是递增数列,且1a n >0,又由a n +1=a n (a n +1)可得1a n +1=1a n -1a n +1,即1a n +1=1a n -1a n +1,而a n a n +1=a n +1-1a n +1=1-1a n +1, 从而a 1a 1+1+a 2a 2+1+…+a n a n +1=n -⎝⎛⎭⎫1a 1-1a n +1,所以⎣⎡⎦⎤a 1a 1+1+a 2a 2+1+…+a n a n +1=⎣⎡⎦⎤n -⎝⎛⎭⎫1a 1-1a n +1,又0<1a 1-1a n +1<1a 1=12,所以⎣⎡⎦⎤n -⎝⎛⎭⎫1a 1-1a n +1=n -1=100,所以n =101.5. (多选)对于数列{a n },若存在正整数k (k ≥2),使得a k <a k ﹣1,a k <a k +1,则称a k 是数列{a n }的“谷值”,k 是数列{a n }的“谷值点”,在数列{a n }中,若a n =|n +9n −8|,下列数不能作为数列{a n }的“谷值点”的是( ). A .3 B .2 C .7 D .5【答案】AD【解析】由a n =|n +9n −8|,则a 1=2,a 2=32,a 3=2,a 4=74,a 5=65,a 6=12,a 7=27,a 8=98,所以n =2,7是数列{a n }的“谷值点”,当n =3,5不是数列{a n }的“谷值点”,故选AD . 6.(多选)在数列{}n a 中,*n N ∈,若211(n n n na a k k a a +++-=-为常数),则称{}n a 为“等差比数列”,下列对“等差比数列”的判断正确的为( ). A .k 不可能为0B .等差数列一定是“等差比数列”C .等比数列一定是“等差比数列”D .“等差比数列”中可以有无数项为0 【答案】ACD【解析】对于A ,k 不可能为0正确;对于B ,1n a =时,{}n a 为等差数列,但不是等差比数列;对于C ,若等比数列11n n a a q -=,则2110n n n na a k q a a +++-==≠-,所以{}n a 为等差比数列;对于D ,数列0,1,0,1,0,1,⋯,0,1.是等差比数列,且有无数项为0,故选ACD . 7.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=1,{a n }的“差数列”的通项公式为a n +1-a n =2n ,则数列{a n }的前n 项和S n =________. 【答案】2n +1-n -2【解析】因为a n +1-a n =2n ,应用累加法可得a n =2n -1,所以S n =a 1+a 2+a 3+…+a n =2+22+23+…+2n -n =2(1-2n )1-2-n =2n +1-n -2.8. 若无穷数列{a n }满足:a 1≥0,当n ∈N *,n ≥2时,|a n −a n−1| =max {a 1,a 2,⋯,a n−1}(其中max {a 1,a 2,⋯,a n−1}表示a 1,a 2,…,a n−1中的最大项),有以下结论: ① 若数列{a n }是常数列,则a n =0(n ∈N *); ② 若数列{a n }是公差d ≠0的等差数列,则d <0; ③ 若数列{a n }是公比为q 的等比数列,则q >1:④ 若存在正整数T ,对任意n ∈N *,都有a n+7=a n ,则a 1是数列{a n }的最大项.其中正确结论的序号是____(写出所有正确结论的序号). 【答案】①②③④【解析】①若数列{a n }是常数列,则|a n −a n−1|=max{a 1,a 2,…,a n−1}=0,所以a n =0(n ∈N *),①正确;②若数列{a n }是公差d ≠0的等差数列,则|a n −a n−1|=max{a 1,a 2,…,a n−1}=|d |,所以a n 有最大值,因此a n 不可能递增且d ≠0,所以d <0,②正确;③若数列{a n }是公比为q 的等比数列,则a 1>0,且|a 2−a 1|=a 1=|q −1|a 1,所以|q −1|=1,所以q =2或q =0,又因为q ≠0,所以q =2,所以q >1,③正确;④若存在正整数T ,对任意n ∈N *,都有a n+T =a n ,假设在a 1,a 2…a T 中a k 最大,则a 1,a 2…a n 中都是a k 最大,则|a 2−a 1|=a 1,且|a T+2−a T+1|=a k ,即|a 2−a 1|=a k ,所以a k =a 1,所以a 1是数列{a n }的最大项,④正确.故答案为:①②③④.9. 若数列{a n }满足:对任意的n ∈N *,只有有限个正整数m 使得a m <n 成立,记这样的m 的个数为(a n )*,则得到一个新数列{(a n )*}.例如,若数列{a n }是1,2,3,…,n ,…,则数列{(a n )*}是0,1,2,…,n -1,….已知对任意的n ∈N *,a n =n 2,则(a 5)*=________,((a n )*)*=________. 【答案】2 n 2【解析】因为a m <5,而a n =n 2,所以m =1,2,所以(a 5)*=2.因为(a 1)*=0,(a 2)*=1,(a 3)*=1,(a 4)*=1,(a 5)*=2,(a 6)*=2,(a 7)*=2,(a 8)*=2,(a 9)*=2,(a 10)*=3,(a 11)*=3,(a 12)*=3,(a 13)*=3,(a 14)*=3,(a 15)*=3,(a 16)*=3,所以((a 1)*)*=1,((a 2)*)*=4,((a 3)*)*=9,((a 4)*)*=16,猜想((a n )*)*=n 2.10. 若数列{}n a 中不超过)(m f 的项数恰为m b (*N m ∈),则称数列{}m b 是数列{}n a 的生成数列,称相应的函数)(m f 是数列{}n a 生成{}m b 的控制函数.(1)已知2n a n =,且2)(m m f =,写出1b 、2b 、3b ;(2)已知n a n 2=,且m m f =)(,求{}m b 的前m 项和m S ;【解析】(1)1m =,则111a =≤ 11b ∴=;2m =,则114a =<,244a =≤ 22b ∴= 3m =,则119a =<,249a =< 399a =≤ 33b ∴=;(2)m 为偶数时,则2n m ≤,则2m m b =;m 为奇数时,则21n m ≤-,则12m m b -=;1()2()2为奇数为偶数m m m b m m -⎧⎪⎪∴=⎨⎪⎪⎩m 为偶数时,则21211(12)2224m m m m S b b b m =+++=+++-⨯=; m 为奇数时,则221211(1)11424m m m m m m m S b b b S b ++++-=+++=-=-=; 221()4()4为奇数为偶数m m m S m m ⎧-⎪⎪∴=⎨⎪⎪⎩ 11.设任意一个数列{a n }的前n 项积为T n .若对任意正整数n ,T n 总是数列{a n }中的某一项,则称数列{a n }是“苹果数列”.(1) 若数列{a n }的通项公式为a n =2n (n ∈N *),求证:{a n }是“苹果数列”;(2) 若数列{a n }的通项公式为a n =n +2n -1(n ∈N *),判断数列{a n }是不是“苹果数列”,并说明理由.【解答】(1) 因为数列{a n }的通项公式为a n =2n (n ∈N *),对任意正整数n ,因为n (n +1)2∈N *,若令m =n (n +1)2,则满足T n =2n (n +1)2=a m ,所以对任意正整数n ,T n 总是数列{a n }中的某一项, 所以{a n }是“苹果数列”. (2) 假设数列{a n }是“苹果数列”,则对任意正整数n ,T n 总是数列{a n }中的某一项,取n =1,存在m =1,满足:1+20=a 1,取n =2,存在正整数m ≥2,满足:(1+20)(2+21)=a m , 即8=m +2m -1,即8-m =2m -1, 因为m ≥2,所以8-m ≤6,2m -1≥2, 所以2≤2m -1≤6,所以m =2或3, 所以8-2=22-1或8-3=23-1.因为8-2≠22-1且8-3≠23-1,所以与8-2=22-1或8-3=23-1矛盾,所以假设不成立,故数列{a n }不是“苹果数列”. 12.如果数列{}n a 满足:1230n a a a a ++++=且()*12313,n a a a a n n N ++++=∈≥,则称数列{}n a 为n 阶“归化数列”.【解析】(1)设4321,,,a a a a 成公比为q 的等比数列,显然1≠q ,则由04321=+++a a a a ,得()01141=--q q a ,解得1-=q ,由14321=+++a a a a 得141=a ,解得411±=a , 所以数列1111,,,4444--或1111,,,4444--为所求四阶“归化数列”; (2)设等差数列12311,,,,a a a a 的公差为d ,由123110a a a a ++++=,所以111101102da ⨯+=,所以150a d +=,即60a =, 当0d =时,与归化数列的条件相矛盾, 当0d >时,由12561,02a a a a +++=-=,所以111,306d a ==-,所以116(,11).63030n n n a n N n *--=-+=∈≤ 当0d <时,由12561,02a a a a +++==,所以111,306d a =-=,所以30630161--=--=n n a n (n ∈N *,n ≤11),所以60306030n n d a n d -⎧>⎪⎪=⎨-⎪-<⎪⎩(n ∈N *,n ≤11),。

拓展深化5 数列新定义及子数列问题.pptx

拓展深化5 数列新定义及子数列问题.pptx
又m<n<k,m,n,k∈N*, 所以2n-m-1≥1,n-m+1≥1,k-1≥1,k-m≥1. 所以22n-m-1+2n-m+1-2k-1-2k-m为偶数,与22n-m-1+2n-m+1-2k-1-2k-m=1矛盾. 所以数列{an}中不存在任何三项,按一定次序排列构成等比数列. 综上,可得数列{an}不是“等比源数列”.
9
@《创新设计》
@《创新设计》
同理,k2>3.
若 k2=4,则由 a4=4,得 q=2,此时 akn=2·2n-1,因为 akn=23(kn+2),所以23(kn+2)= 2n,即 kn=3·2n-1-2.
所以最小的公比q=2,此时kn=3·2n-1-2.
10
@《创新设计》
【例 2-3】 已知数列{an}中,a1=1,an+1=13an+n,n为奇数, an-3n,n为偶数.
则 S6=6a1+12×6×5d=22, 解得 d=23,所以 Sn=n(n+ 3 5).
8
(2)由(1)得 an=23(n+2).
因为数列{an}是正项递增的等差数列, 所以数列{akn}的公比q>1.
若 k2=2,则由 a2=83,得 q=aa21=43, 此时 ak3=2×432=392,由392=23(n+2), 解得 n=130∉N*,所以 k2>2.
5
(2)数列{an}既是“P(2)数列”,又是“P(3)数列”,因此, 当n≥3时,an-2+an-1+an+1+an+2=4an,① 当n≥4时,an-3+an-2+an-1+an+1+an+2+an+3=6an.② 由①知,an-3+an-2=4an-1-(an+an+1),③ an+2+an+3=4an+1-(an-1+an).④ 将③④代入②,得an-1+an+1=2an,其中n≥4, 所以a3,a4,a5,…是等差数列,设其公差为d′. 在①中,取n=4,则a2+a3+a5+a6=4a4, 所以a2=a3-d′(利用a3,a4,a5,…成等差), 在①中,取n=3,则a1+a2+a4+a5=4a3, 所以a1=a3-2d′,所以数列{an}是等差数列.

探析高考数列新定义题-最新教育文档(可编辑修改word版)

探析高考数列新定义题一、数列在高考数学中的地位观察近10年全国各地的高考数学试题,越来越多将“新”溶于命题之中,比如数列。

数列是每年高考中考查的重点内容,就广东高考试卷来说,2012,2013年关于数列的内容均占了19分,约占总分的13%。

数列是高中数学的一个重要知识,也是高等数学如常微分方程、组合数学的基础,既是特殊的函数,也能构成各种各样的递推关系。

因此是高考数学中必考查的内容之一,题型也不再只是单一的考查基本知识,而是转化为与实际生活模型、新定义、高等数学等相交汇的题型。

通过定义一个新概念来创设问题情境,要求考生在阅读理解题意的基础上,善于观察问题的结构特征和本质,依据题中提供的信息,联系所学过的数学知识和方法,将新定义的数列题迁移到等差、等比或递推数列的知识上来,从而解决问题。

二、学生的困惑从表面上看,题目比较生疏,复习时没见过,考试没做过,考生的思维障碍往往在于阅读能力的欠缺,以及转译成数学语言的过程中发生差错。

但只要考生基础知识扎实,注重数学思辨,“生题”可以转化“熟题”,“无从下手”可以变为“游刃有余”,让“难题不怪、新题不难”,解决的途径本质上主要是要求考生不仅能理解概念、定义,掌握定理、公式,更重要的是能够应用所学的知识和方法解决数学新定义的题型。

三、各省市高考中的新定义题近10年各省市的高考试题中,一些新颖构思的新定义题数列经常出现,如“等和数列(2004北京卷)、”绝对差数列“(200 6北京卷)、“等比方数列”(2007湖北卷)、“对称数列”(2007上海卷)、“*数列”(2010湖南卷)、“数列”(2011北京卷)、“保等比数列函数”(2012湖北卷)、“面积数列”(2013新课标全国卷)。

【例1】(2004北京,理14)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列是等和数列,且,公和为5,那么的值为,这个数列的前项和的计算公式为.举一反三:定义“等积数列”:在一个数列中,如果每一项与它的后一项的积都为同一个不为0的常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积。

专题02 过“三关”破解数列新情境问题 (第三篇)(解析版)

最新高考数学压轴题命题区间探究与突破专题第三篇 数列专题02 过“三关”破解数列新情境问题一.方法综述新定义型数学试题,背景新颖、构思巧妙,主要通过定义一个新概念或约定一种新运算,或给定一个新模型来创设新的问题情境,要求我们在充分阅读题意的基础上,依据题中提供的信息,联系所学的知识和方法,实现信息的迁移,从而顺利地解决问题,这类题型能有效地区分学生的思维能力和学习能力.含“新信息”背景的数列问题,往往使人感到是难题.难点通常为:一是对于新的概念与规则,学生在处理时会有一个熟悉的过程,不易抓住信息的关键部分并用于解题之中,二是学生不易发现每一问所指向的知识点.传统题目通常在问法上就直接表明该用哪些知识进行处理,例如“求通项,求和”.但新信息问题所问的因为与新信息相关,所以要运用的知识隐藏的较深,不易让学生找到解题的方向.三是此类问题的解答题,往往设计成为“连环题”,即前面问题的处理是为了后一问做好铺垫.但学生不易发现其中联系,从而导致在处理最后一问时还要重整旗鼓,再加上可能要进行的分类讨论,解题难度陡然增加.本专题所说“三关”即解答应用题的“三关”:一是事理关,即读懂题目,理解题意,分清条件和结论,理清数量关系;二是文理关,即把文字语言、新情景转化为熟悉的数学语言;三是数理关,即构建相应的数学模型,利用已知的数列知识、解题的方法和技巧求解.下面通过例题说明应对数列新情境问题的方法与技巧.二.解题策略类型一 传统文化问题,过好“事理关”【例1】【2020·湖南衡阳一中期末】古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若使得该女子所织布的尺数不少于10尺,则该女子所需的天数至少为( ) A .8B .7C .6D .5【解析】由题意可知,女子每天织布数成等比数列{}n a ,且公比2q,55S =,()515113151a q S aq-∴===-,解得:1531a =,若()()1152110131n n n a q S q -==-≥-,解得:6n ≥,∴该女子所织布尺数不少于10尺,至少需要6天,故选C 【指点迷津】运用所学知识去分析解答日常生活和生活实际中的实际问题是学习数学的需要和学习数学的目的.这类问题要求运用所学的等差数列、等比数列知识去求解古代著名而古老是数学问题.解答时要求准确理解用古文语言给出的数学问题的含义是解答好本题的关键,熟练掌握等差数列、等比数列的通项公式及求和公式,既是基础又是有力保障. 【举一反三】【2020·陕西省铜川二中月考】《算法统宗》全称《新编直指算法统宗》,是屮国古代数学名著,程大位著.书中有如下问题:“今有五人均银四十两,甲得十两四钱,戊得五两六钱.问:次第均之,乙丙丁各该若干?”意思是:有5人分40两银子,甲分10两4钱,戊分5两6钱,且相邻两项差相等,则乙丙丁各分几两几钱?(注:1两等于10钱)( )A .乙分8两,丙分8两,丁分8两B .乙分8两2钱,丙分8两,丁分7两8钱C .乙分9两2钱,丙分8两,丁分6两8钱D .乙分9两,丙分8两,丁分7两 【答案】C【解析】由题意可得甲、乙、丙、丁、戊所得钱数成等差数列{}n a , 则110.4a =,5 5.6a =,设公差为d ,所以514 5.6a a d =+=, 即10.44 5.6d +=,解得 1.2d =-, 可得2110.4 1.29.2a a d =+=-=;31210.4 1.228a a d =+=-⨯=; 41310.4 1.23 6.8a a d =+=-⨯=,所以乙分9两2钱,丙分8两,丁分6两8钱,故选C.类型二 新定义问题,把好“数理关”【例2】【2020·湖北随州二中期末】下表中的数阵为“森德拉姆数筛”,其特点是每行每列都成等差数列,记第i 行第j 列的数为,i j a ,则7,8a =______,表中的数2021共出现______次.【答案】57 12【解析】根据题目所给表格规律,得到第i 行中的数为以1i为首项,i 为公差的等差数列,所以(),111i j a i j i ij =++-=+,所以7,878157a =⨯+=, 由,2021i j a =,得202012020202012101010102ij ==⨯=⨯=⨯=⨯4505505454044045=⨯=⨯=⨯=⨯10202202102010110120=⨯=⨯=⨯=⨯.所以共出现12次2021.【例3】【2019·上海中学期中】若一个整数数列的首项和末项都是1,且任意相邻两项之差的绝对值不大于1,则我们称这个数列为“好数列”,例如:1,2,2,3,4,3,2,1,1是一个好数列,若一个好数列的各项之和是2019,则这个数列至少有_______________项. 【答案】89【解析】根据题意得此数列一定含有一个“好数列”,可设这个“好数列”为: 1,2,,(1),,(1),2,1,n n n --这个“好数列”的各项之和为()()21112,2n n n n +--⨯+=而22441936,452025,2019193683==-=,而83可以表示为小于等于44的相邻的两数之和,即834142=+,所以这个数列至少有4443289++=,所以这个数列至少有89项,故答案为:89.【例4】【020·上海市进才中学期中】给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意的*n N ∈,都有||2n n b a -,则称{}n b 与{}n a “比较接近”.(1)设{}n a 是首项为1,公比为14的等比数列,*12,n n b a n N +=+∈,判断数列{}n b 是否与{}n a “比较接近”;(2)设数列{}n a 的前四项为:12342,4,8,16a a a a ====,{}n b 是一个与{}n a 比较接近的数列,记集合{}|,1,2,3,4i M x x b i ===,求M 中元素的个数m ;(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 较接近,且在213220192018,,,b b b b b b ---中至少有1009个为正,求d 的取值范围.【解析】(1)数列{}n b 与{}n a “比较接近”,理由如下:因为{}n a 是首项为1,公比为14的等比数列,所以114n n a -⎛⎫= ⎪⎝⎭, 又因为*12,n n b a n N +=+∈,所以11242n n nb a +⎛⎫+ ⎪⎝⎭=+=,所以11112232444n n nn n b a -⎛⎫⎛⎫⎛⎫-=+-=-⨯< ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,所以数列{}n b 与{}n a “比较接近”.(2)因为{}n b 是一个与{}n a 比较接近的数列,所以||2n n b a -≤,即22n n n a b a -≤≤+, 因为数列{}n a 的前四项为:12342,4,8,16a a a a ====,所以[]10,4b ∈,[]22,6b ∈,[]36,10b ∈,[]414,18b ∈,所以在1234,,,b b b b 中1b 与2b 可能相等,3b 与2b 可能相等,但1b 与3b 不可能相等,3b 与4b 不可能相等, 所以集合{}|,1,2,3,4i M x x b i ===,M 中元素的个数是3个或4个, 所以3m =或4m =;(3)因为{}n a 是公差为d 的等差数列,所以1(1)n a a n d =+-,①若0d >,取n n b a =,数列{}n b 满足:{}n b 与{}n a 较接近,且110n n n n b b a a d ++-=-=>, 则213220192018,,,b b b b b b ---中有2018个正数,满足题意;②若0d =,取1n n b a n=-,得112,*n n n n b a a a n N n n -=--=<∈,数列{}n b 满足:{}n b 与{}n a 较接近,11111111110111n n n n b b a a a a n n n n n n ++⎛⎫⎛⎫⎛⎫⎛⎫-=---=---=-> ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭, 则213220192018,,,b b b b b b ---中有2018个正数,满足题意;③若40d -<<,取2,*n n b a n N =-∈,且22,*n n n n b a a a n N -=--=∈ ,数列{}n b 满足:{}n b 与{}n a 较接近,则2121222,2n n n n b a b a --=-=+,所以2212212(2)40n n n n b b a a d ---=+--=+>, 则213220192018,,,b b b b b b ---中恰有1009个正数,满足题意;④若4d ≤-,若存在数列{}n b 满足:{}n b 与{}n a 较接近,即为11122,22n n n n n n a b a a b a +++-≤≤+-≤≤+,可得112(2)40n n n n b b a a d ++-≤+--=+≤, 则213220192018,,,b b b b b b ---中无正数,不符合题意。

人教课标版(B版)高中数学必修5拓展资料:常见的新定义数列问题

常见的新定义数列问题近年高考中,常常出现新定义数列的考题.题目常常给出一种新数列的定义,通过阅读与理解题意,完成相关的问题.这是一类创新题型,需要对已经学过的数列知识理解彻透,并学会灵活运用这些知识去解决相关问题. 一、等和数列【例1】 (北京)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和. 已知数列{}n a 是等和数列,且12a =,公和为5,那么18a 的值为 ,且这个数列的前21项和21S 的值为 .【分析】 先对等和数列进行一般性的探讨.设{}n a 是等和数列,公和为m ,则由等和数列的定义知,数列{}n a 的各项依次为1111a m a a m a --,,,,,即11n a a m a ⎧=⎨-⎩,,1122n n a m S mn ⎧-⎛⎫+ ⎪⎪⎪⎝⎭=⎨⎪⎪⎩,, 【解析】 因为12a =,公和为5m =,所以18523a =-=,2121125522S -=+⨯=. 二、等积数列【例2】 (保定市高考模拟)在一个数列中,若每一项与它的后一项的积都为同一个常数(有限数列的最后一项除外),则称该数列为等积数列,其中的常数称为公积.若数列{}n a 是等积数列,且102a =,公积为6,则1592005a a a a ⋅⋅⋅⋅=( ) A .5022B .5012C .5023D .5013【分析】 先对等积数列进行一般性的探讨.设{}n a 是等积数列,公积为m ,则由等积数列的定义知,数列{}n a 的各项依次为1111m m a a a a ,,,,,即11n a a m a ⎧⎪=⎨⎪⎩,,【解析】 由()2005114n =+-⋅可得:501n =,又因为102a =,公积为6,所以13a =,50215920053a a a a ⋅⋅⋅⋅=,故选C .n 为奇数;n 为偶数. n 为奇数; n 为偶数. n 为奇数;n 为偶数.三、等方比数列【例3】 (湖北)若数列{}n a 满足212n na p a +=,(p 为正常数,*n ∈N ),则称{}n a 为“等方比数列”.甲:数列{}n a 是等方比数列;乙:数列{}n a 是等比数列,则( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件 C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【解析】 由等比数列的定义数列,若乙:{}n a 是等比数列,公比为q ,即22112n n n na a q q a a ++=⇒=,则甲命题成立;反之,若甲:数列{}n a 是等方比数列,即22112n n n na a q q a a ++=⇒=±,即数列{}n a 公比不一定为q ,则命题乙不成立,故选B .四、绝对差数列【例4】 (北京)在数列{}n a 中,若12a a ,是正整数,且12n n n a a a --=-,345n =,,,,则称{}n a 为“绝对差数列”.⑴举出一个前五项不为零的“绝对差数列”(只要求写出前10项); ⑵若“绝对差数列”{}n a 中203a =,210a =,数列{}n b 满足12n n n n b a a a ++=++,123n =,,,,分别判断当n →∞时,n a 与n b 的极限是否存在,如果存在,求出其极限值;⑶证明任何“绝对差数列”中总含有无穷多个为零的项.【分析】 关键是读懂题目中“绝对差数列”的含义.【解析】 ⑴13a =,21a =,32a =,41a =,51a =,60a =,71a =,81a =,90a =,101a =.(答案不唯一);⑵在“绝对差数列”{}n a 中,因为203a =,210a =,所以自第20项开始,203a =,210a =,223a =,240a =,253a =,…,即每个相邻的项周期地取值3,0,3,所以当n →∞时,n a 的极限不存在,而当20n ≥时,126n n n n b a a a ++=++=,所以lim 6n x b →∞=.⑶证明 根据定义,数列{}n a 必在有限项后出现零项.证明如下:假设{}n a 中没有零项,由于12n n n a a a --=-,所以对任意的n ,都有1n a ≥,从而当12n n a a -->时,()12113n n n n a a a a n ---=--≤≥,当12n n a a --<时,()21213nn n n a a a n ---=--≤≥,即n a 的值要么比1n a -至少小1,要么比2n a -至少小1;令212122212n n n nn n a a a C a a a --->⎧=⎨<⎩,,123n =,,,,则()101234n n C C n -<<-=,,,由于1C 是确定的正整数,这样减少下去,必然存在0k C <,这与()0123n C n >=,,,,矛盾.所以{}n a 必有零项.若第一次出现的零项为第n 项,记()10n a A A -=≠,则自第n 项开始,第三个相邻的项周期地取值0,A ,A ,即30n k a +=,31n k a A ++=,32n k a A ++=,0123k =,,,,. 所以“绝对差数列”{}n a 中总含有无穷多个为零的项.五、对称数列【例5】 (上海)若有穷数列1a ,2a ,12n a a a ,,,(n 是正整数),满足1n a a =,21n a a -=,…,1n a a =,即1i n i a a -+=(i 是正整数,且1i n ≤≤),就称该数列为“对称数列”. ⑴已知数列{}n b 是项数为7的对称数列,且1234b b b b ,,,成等差数列,14211b b ==,,试写出{}n b 的每一项;⑵已知{}n c 是项数为()211k k -≥的对称数列,且121k k k c c c +-,,,构成首项为50,公差为4-的等差数列,数列{}n c 的前21k -项和为21k S -,则当k 为何值时,21k S -取到最大值?最大值为多少?⑶对于给定的正整数1m >,试写出所有项数不超过2m 的对称数列,使得211222m -,,,,成为数列中的连续项;当1500m >时,试求其中一个数列的前2008项和2008S .【解析】 ⑴设{}n b 的公差为d ,则4132311b b d d =+=+=,解得3d =,所以数列{}n b 为25811852,,,,,,. ⑵21121121k k k k k S c c c c c c --+-=+++++++()1212k k k k c c c c +-=+++-,()222141341350k S k -=--+⨯-,所以当13k =时,21k S -取得最大值.21k S -的最大值为626.⑶所有可能的“对称数列”是:①22122122222221m m m ---,,,,,,,,,,;②2211221222222221m m m m ----,,,,,,,,,,,; ③122221222212222m m m m ----,,,,,,,,,,; ④1222212222112222m m m m ----,,,,,,,,,,,. 对于①,当2008m ≥时,2200720082008122221S =+++++-.当15002007m <≤时,212220092008122222m m m m S ----=+++++++12200912200921222221m m m m m m ----=-+-=+--.对于②,当2008m ≥时,2008200821S =-. 当15002007m <≤时,1220082008221m m S +-=--. 对于③,当2008m ≥时,2008200822m m S -=-. 当15002007m <≤时,20092008223m m S -=+-. 对于④,当2008m ≥时,2008200822m m S -=-. 当15002007m <≤时,20082008222m m S -=+-.六、一阶差分数列【例6】 (青岛质检)对于数列{}n a ,定义{}n a ∆为数列{}n a 的“一阶差分数列”,其中()*1n n n a a a n +∆=-∈N .⑴若数列{}n a 的通项公式()2*51322n a n n n =-∈N ,求{}n a ∆的通项公式; ⑵若数列{}n a 的首项是1,且2n n n a a ∆-=,①证明数列2n n a ⎧⎫⎨⎬⎩⎭为等差数列;②求{}n a 的前n 项和n S .【解析】 ⑴依题意1n n n a a a +∆=-,所以()()2251351311542222n a n n n n n ⎡⎤∆=+-++-=-⎢⎥⎣⎦. ⑵①因为2n n n a a ∆-=,所以12n n n n a a a +--=,即122n n n a a +=+, 所以111222n n n na a ++=+,又因为1122a =, 所以2n n a ⎧⎫⎨⎬⎩⎭是以12为首项,12为公差的等差数列;②由①得:()1112222n n a nn =+-=. 所以1222n n n na n -=⋅=⋅. 所以1232n n S a a a n =++++⋅.错位相减得:()121n n S n =-⋅+.七、周期数列【例7】 在数列{}n a 中,如果存在非零常数T ,使得n T m a a +=对任意正整数m 均成立,那么就称{}n a 为“周期数列”,其中T 叫做数列{}n a 的周期.已知数列{}n x 满足()*112n n n x x x n n +-=-∈N ≥,,如果11x =,2x a =()10a a ≠≤,,当数列{}n x 周期为3时,则该数列的前2008项的和为( ) A .668B .669C .1338D .1339【解析】 由题知,3211x x x a =-=-,432111x x x a a x =-=--==,所以11a a -=+或11a a -=-,因为1a ≤,0a ≠,所以1a =,即得:123456110110x x x x x x ======,,,,,,,即数列{}n x 自第1项开始,每三个相邻的项周期地取值1,1,0. 而200836691=⨯+,所以2008266911339S =⨯+=,选D .。

数列综合问题中的新文化、新定义问题(典型例题+跟踪训练)【解答题抢分专题】备战2023年高考数学

【解答题抢分专题】备战2023年高考数学解答题典型例题+跟踪训练(新高考通用)专题14数列综合问题中的新文化、新定义问题目录一览一、典型例题讲解二、梳理必备知识三、基础知识过关四、解题技巧实战五、跟踪训练达标六、高考真题衔接1.数列中的新定义问题数列中的新定义问题主要是抓住新定义的意义,熟读多读题,了解新定义的内涵,本质考查的还是数列的基础知识!2.数列中的新文化问题立足文化背景,考查核心素养,发挥育人功能!一般当作背景考查,与实际生活的应用一般体现在“分期付款”,“产值增长”等模型中,抓住其中特征即可。

一、单选题1.对于一切实数x ,令[]x 为不大于x 的最大整数,则函数()[]f x x =称为高斯函数或取整函数.若3n n a f ⎛⎫= ⎪⎝⎭,*N n ∈,n S 为数列{}n a 的前n 项和,则3n S =()A .23122n n-B .23122n n+二、梳理必备知识三、基础知识过关C .232n n -D .29322n n-2.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,即()*21n n n a a a n N ++=+∈,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”.记2022a t =,则1352021a a a a +++⋅⋅⋅+=()A .2t B .1t -C .tD .1t +3.如果数列{}n a 满足211n n n nk a a +++-=(k 为常数),那么数列{}n a 叫做等比差数列,k 叫做公比差.下列四个结论中所有正确结论的序号是()①若数列{}n a 满足12n na n a +=,则该数列是等比差数列;②数列{}2nn ⋅是等比差数列;③所有的等比数列都是等比差数列;④存在等差数列是等比差数列.A .①②③B .①③④C .①②④D .②③④4.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即);2如果n是奇数,则将它乘3加1(即1+),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n(首项)按照上述规则施行变换后的第6项为1(注:1可以多次出现),则n的所有不同值的个数为()A.3B.4C.5D.32则n 的可能是4,也可能是5,也可能是32,故n 的所有可能的取值为{}4,5,32,故选:A.【点睛】本题主要考查数列的应用及简单的逻辑推理,属于中档题.5.已知(1)log (2)n n a n +=+*()n ∈N ,我们把使乘积123,,a a a …n a 为整数的数n 叫做“优数”,则在区间(1,2004)内的所有优数的和为A .1024B .2003C .2026D .20486.南宋数学家杨辉在《详解九章算法》中提出了垛积问题,涉及逐项差数之差或者高次差成等差数列的高阶等差数列.现有一个高阶等差数列的前6项分别为4,7,11,16,22,29,则该数列的第18项为()A .172B .183C .191D .211【答案】C【分析】由题意列出数列递推式,利用累加法求得数列通项公式,即可求得答案.【详解】设该数列为{}n a ,则11,(2)n n a a n n --=+≥,故112211()()()n n n n n a a a a a a a a ---=-+-++-+7.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项之差成等差数列.现有一高阶等差数列,其前7项分别为1,2,4,7,11,16,22,则该数列的第100项为()A .4923B .4933C .4941D .49518.定义:对于数列{}n a ,如果存在一个常数()*NT T ∈,使得对任意的正整数0n n≥恒有n T n a a +=,则称数列{}n a 是从第0n 项起的周期为T 的周期数列.已知周期数列{}n b 满足:11b =,23b =,12n n n b b b --=-(3n ≥),则2023b =()A .1-B .3-C .2-D .1【答案】D【分析】写出周期数列{}n b 的前几项,发现周期为6,进而求得2023b 的值.【详解】写出周期数列{}n b 的前几项:1,3,2,1-,3-,2-,1,3,2,1-,3-,2-,1,…,发现周期数列{}n b 是周期为6的周期数列,∴20233376111b b b ⨯+===.故选:D .二、填空题9.将正奇数排列如下表,其中第i 行第j 个数表示(),ija i j *∈N ,例如329a =,若2023ij a =,则i j +=______.10.任取一个正整数,若为奇数,就将该数乘3再加上1;若为偶数,就将该数除以2,反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这就是数学史上著名的“冰雹猜想”(又称为“角谷猜想”等).如取正整数6m =,根据上述运算法则得到6→3→10→5→16→8→4→2→1,共需经过8个步骤变成1(简称为8步“雹程”).现给出冰雹猜想的递进关系如下:已知数列{n a }满足1a m =(m 为正整数),,231,nn n n n a a a a a ⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,当9m =时,试确定使得1n a =需要雹程步数为_____________.【答案】19【分析】由题目中的递进关系依次计算即可.【详解】当9m =时,有9281472211341752261340→→→→→→→→→→→20105168421→→→→→→→→共19步.故答案为:19.11.音乐与数学有着密切的联系,我国春秋时期有个著名的“三分损益法”:以“宫”为基本音,“宫”经过一次“损”频率变为原来的32,得到“徵”;“徵”经过一次“益”,频率变为原来的34,得到“商”;……依次损益交替变化,获得了“宫、徵、商、羽、角”五个音阶,设“宫”的频率为1,则“角”的频率为________.12.被人们常常津津乐道的兔子数列是指这样的一个事例:一对幼兔正常情况下一年后可长成成兔,再过一年后可正常繁殖出一对新幼兔,新幼兔又如上成长,若不考虑其他意外因素,按此规律繁殖,则每年的兔子总对数可构成一奇妙的数列,兔子数列具有许多有趣的数学性质,该数列在西方又被称为斐波拉契数列,它最初记载于意大利数学家斐波拉契在1202年所著的《算盘全书》.现有一兔子数列{}12:1n F F F ==,12(2)n n n F F F n --=+>,若将数列{}n F 的每一项除以2所得的余数按原来项的顺序构成新的数列{}n a ,则数列{}n a 的前2021项和为_________.【答案】1348【解析】可写出数列的前若干项,找出具有周期性的规律,分组计算即可.【详解】兔子数列各项为:1,1,2,3,5,8,13,21,34,55⋅⋅⋅可得此数列被2除后的余数为:1,1,0,1,1,0,1,1,0⋅⋅由此可知{}n a 是以3为周期的周期数列,可得202021a a ==数列{}n a 的前2021项和为:267321348⨯+=故答案为:1348【点睛】遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、结合等差、等比数列的通项公式和求和公式,进行求解.【技巧实战1】2022北京冬奥会开幕式上,每个代表团都拥有一朵专属的“小雪花”,最终融合成一朵“大雪花”,形成了前所未有的冬奥主火炬,惊艳了全世界!(如图一),如图二是瑞典数学家科赫在1904年构造的能够描述雪花形状的图案.图形的作法是从一个正三角形开始,把每条边分成三等分,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,反复进行这一过程,就得到一个“雪花”状的图案.设原正三角形(图①)的边长为3,把图二中的①,②,③,④,……图形的周长依次记为1a ,2a ,3a ,4a ,…,得到数列{}n a .(1)直接写出2a ,3a 的值;(2)求数列{}n a 的通项公式.四、解题技巧实战,从而求出数列2.在(2)m m ≥个不同数的排列12m PP P 中,若1i j m ≤≤≤时i j P P >(即前面某数大于后面某数),则称i P 与j P 构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数.记排列(1)(1)321n n n +- 的逆序数为n a ,如排列21的逆序数11a =,排列321的逆序数23a =,排列4321的逆序数36a =.(1)求4a 、5a ,并写出n a 的表达式;(2)令1n n n a a b a a +=+,证明:12223,1,2,n n b b b n n <++<+= .新定义问题1.(2022·上海嘉定·统考一模)若数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,则称数列{}n a 为调和数列.若实数a b c 、、依次成调和数列,则称b 是a 和c 的调和中项.(1)求13和1的调和中项;(2)已知调和数列{}n a ,16a =,42a =,求{}n a 的通项公式.五、跟踪训练达标是等差数列,设出公差,由通项公式基本量计算得到公差,从而求出2.(2023·江苏·统考一模)在数列{}n a 中,若()*1123N n n a a a a a d n +-⋅⋅⋅=∈,则称数列{}n a 为“泛等差数列”,常数d 称为“泛差”.已知数列{}n a 是一个“泛等差数列”,数列{}n b 满足22212123n n n a a a a a a a b =⋅++⋅⋅⋅⋅-⋅+.(1)若数列{}n a 的“泛差”1d =,且1a ,2a ,3a 成等差数列,求1a ;(2)若数列{}n a 的“泛差”1d =-,且112a =,求数列{}nb 的通项n b .3.(2022·浙江绍兴·浙江省春晖中学校考模拟预测)已知数列{}n a 满足()*1:27N n n a a n n ++=+∈,且14a =.(1)求数列{}n a 的通项公式;(2)已知数列{}n b 满足()*21,1log, 2.Nn n n n b a nn +=⎧⎪=⎨≥∈⎪⎩,定义使()*123N k b b b b k ⋅⋅∈ 为整数的k 叫做“幸福数”,求区间[]1,2022内所有“幸福数"的和.【答案】(1)3n a n =+(2)1349【分析】(1)根据()*1:27N n n a a n n ++=+∈可得125n n a a n -+=+,两式相减可推得{}n a 的奇数项和偶数项各自成等差数列,由此求得答案;(2)利用(1)写出n b 的表达式,继而可得1234log (3)k b b b b k ⋅⋅=+ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列” 。
由于6 = q n所 以6 = g < 0 对 任 意 正 整数 都成立 , q  ̄ p = 0 , 所 以数 列 { 6 ) 是‘ ‘ p 一 摆 动
数列” 。
( 2 ) I  ̄ I Tc : 1 , c = 1

数列{ c l 为“ p 一 摆动数列 ” , 所 以存 在 常 数p 满 足 < p < 1 , 使 得 对
评注
新定义的‘ 一 摆 动 数列 ” } 的本 质 就是 : 数 列 的任 意相 邻 两项‰和
一个 比p
大, 一 个 比p 小 。第 ( 1 ) 小 题 运 用 定 义来 判 定 即可 , 第( 2 ) 小 题 根 据 定义 来 推 理 求值 , 第( 3 )
小题 需 要 合 理 利用 定 义 来 证 明。解 题 过 程 中涉及 “ 等” 与“ 不等” 的 相互 制 约 . 对 能 力 要 求
当n 为奇 数 时 , S = 一 n 递减 , 所 以 ≤. s 1 = 一 1 , 只要p > 一 1 即可 。 当 为偶 数 时 , . s n 递增 , 所 以S ≥. s 2 = 2, 只要p < 2 即可 。 综 上 可得 - l < p < 2 , 所 以p的值 范 围是 ( 一 1 , 2 ) 。
… c < t 9 。 于是 可 得c < p < c 又 由c < c + - ,即c 知 <


< c ,解得c > T X / 3 - - 1 即p≤T X / - - 5- 1


,解 得c 知 <
Wr 5 -_1




≥— V ̄






解 析 ( 1 ) 假设数列{ %} 是‘ ‘ p 一 摆动数列” , 即存 在 常 数p, 总有2 n - l < p < 2 n + l 对 任 意 正
整 数n 都成 立 。

取 = 1 时, 则1 < 3 ; 取 = 2 时, . ¥ 1 J 3 < p < 5 。显 然 常数p 不存 在 , 所 以数 列 ( %) 不是 ‘ ‘ p 一 摆 动

( 2 ) 已知 ‘ 一 摆 动数 列 ” { c ) 满 足C n + l = — , C l = 1 , 求 常
Cn + l
的值 。
( 3 ) 设 = ( 一 1 ) ・ ( 2 n 一 1 ) , 且数列{ } 的 前n 项 和 为S , 求证 : 数 列{ S n } 是“ p 一 摆动数列 ” , 并 求 出常数p 的取值 范 围。
任 意正 整 数凡 , 总有 ( c - t 9 ) ( c - - p) < 0 成立 , 且有 ( c + 2 - p)c - p) < 0 成立 , 则( c - p ) ・ ( c - - p)
> O 成 立 ,所 以c 1

c 3
… c > t 9 , c 2 < p c 4
解 析 ( 1 ) 数列 一 1
( 1 ) 分 别 写 出一 个单 调递 增 的3 阶和4 阶“ 期 待 数 列” 。 ( 2 ) 若  ̄2 k + l ( k∈N ) 阶“ 期待数列” 是等 差数 列 , 求 该数 列 的 通项 公 式 。
( 3 ) 记 n 阶 “ 期 待 数 列 ” 的 前 项 和 为 s ( 1 , 2 , … , n ) , 试 证 : ① I ≤ 丢 ; ② { 孚 l ≤ 丢 一 。
那 么我 们 称数 列{ } 为‘ 一 摆 动数 列” 。
( 1 ) i  ̄ a  ̄ = 2 n - 1 , b n : g ( 一 l < 9 < 0 ) , 凡f i i . N , 判 断数 列{ %} 、 { 6 } 是否为 ‘ ‘ p 一 摆 动数列” , 并 说
明理 由。
在 各种 考 试 中 , 新 定 义数 列 题 备 受命 题 者 的青 睐 。这 类 问题情 境 新 颖 , 内涵 丰 富 、 深 刻, 值 得 细细 品味 , 能 够 有效 地 考 查 同学 们 的学 习 能力 和解 决 问题 的应 变 能 力 , 有 较 好 的
区分 度 。碰 到新 定 义 数 列题 , 必 须 认 真 读题 , 对 新定 义 的 数 列 有 准确 的理 解 , 这 是 顺 利 解 题 的前 提 。 由于新 定 义数 列 题 的命 题 背景 仍 然是 课 本上 的某些 知 识 点 ,所 以 只需结 合 数


综 上 可 : — X / 5
_ -




( 3 ) 因 为 ( 一 1 ) ・ ( 2 n 一 1 ) , 可 求得S ( 一 1 ) ・ n , 显 然 存 在p = 0, 使 得 对 任 意 正 整数 n , 总有
。 l = ( 一 1 ) 。 ・ ( 十 1 ) < 0 成立 , 所 以数 列 } 是‘ 一 摆动 数 列 ” 。
列 的基 础 知 识 ( 等 差数 列 、 等 比数 列 、 数 列 的项 、 数列的和) 将 其 转 化 为 我 们 熟悉 的 问题 模 型, 就 可 以找 到合 适 的解 题 突破 E l 了。本 文对 几 道新 定 义数 例 题 进行 分 析 , 供 大家 参考 。
例1 定义数列{ } , 如 果 存 在 常数p, 使 对 任 意正 整 数 凡 , 总有 ( X n + l - p) ( x n - p) < 0 成立 ,
较高。
例2 设 满足 以下 两个条 件 的有 穷数 列o , o a , 0 , 3 , …, a n k ' n ( n = 2 , 3 , 4 , …) 阶“ 期待 数 列” :
①口 1 + a z + o e + …+ a n = 0 ; ②l a 1 I + l a 2 1 + l  ̄ l + …+ l a  ̄ l = 1 。
相关文档
最新文档