大学物理题库-振动与波动
大学物理振动与波练习题与答案

【解】:(1) y 5cos(20 4x) 厘米
(2) y 5cos(3t 11) 厘米
(3) y 5cos3(t 4 x 5) , c 3 (cm/ s)
33
4
(4) y 5cos(3t 9) , yI 15 sin(3t 9) 0
23、一平面简谐波沿 x 轴正方向传播,波速 c=8 m/s, 若 t=0 时的波形曲线如图 2-23 所示 (1)写出波动方程 (2)画出 t=1.25 s 时的波形曲线 【解】:
t=0 时,y=0, v>0 cm T=5s
所以 2 。 波长= 40
y 4.0 cos[0.4t ] (cm) 2
B 点的振动方程
yA
(t)
5 c os [10
(t
20) 300
2
]
5 c os (10t
7 6
)cm
(2)
A,B 相位相同
(3) 或 O 点的振动方程
yo
(t)
5
cos(10t
2
)
(cm)
O 点相位
o
2
OB,OA 间的相位差
oA
oB
2 3
O 比 A 超前
oA
o
A
2 3
A
7 6
同时 B 点
13、已知一个谐振动的振幅 A 0.02 米,园频率 4 弧度/秒,初相 / 2 。 (1)
写出谐振动方程; (2) 以位移为纵坐标,时间为横坐标,画出谐振动曲线。
【解】: x 0.02cos(4 t 2) (m) ,
T
2
1 2
大学物理A-振动波动练习题

8*、一平面简谐波,其振辐为A,频率为,沿X轴正向传播.设
t=t0时刻波形如所示.则X=0处质点振动方程为:
(A) y =Acos[2 (t +t0) + /2]; (B) y =Acos[2 (t -t0) + /2]; (C) y =Acos[2 (t -t0) - /2]; (D) y =Acos[2 (t -t0) + ]。
答案:[(C)]
4、图a为某质点振动图线,其初相记为1,图b为某列行波在
t=0时的波形曲线,0点处质点振动的初相记为2;图C为另一
行波在t=T/4时刻的波形曲线,0点处质点振动的初相为3,
则:
(A) 1 =2 =3 = / 2;
Y
(B) 1 =3 /2,2 =3 = / 2 ;
(C) 1 =2 =3 = 3 /2 ; (D) 1 =3 /2,2 = /2 ,3 =0 。
8m
6m
X
C
B
A
答案.:y =510 -2 cos( 4 t+0.2 x);
y =510 -2 cos( 4 t+0.2 x -1.2 ); y =510 -2 cos( 4 t-2.8 )。
11*、一平面简谐波在空中传播。己知波线上P点的振动规律为: y =Acos (t + );根据图中所示两种情况,分别列出以O点为 原点时的波动方程。对于图a是: 对于图b是:
3
Байду номын сангаас
(D)0 =- /2,2 = /2 ,3 = 。 0 1 2 4
u X(m)
答案:[(C)]
7*、一质点沿Y方向振动,振辐为A,周期为T,平衡位置在坐标原 点,己知t=0时刻质点向y轴负方向运动,由该点发出的波波长为, 则沿X轴正向传播的简谐波波动方程为:
大学物理 振动与波、波动光学练习题

06振动与波、波动光学练习题 一、选择题 1 一物体作简谐振动,振动方程为)4cos(πω+=t A y在4T t =(T 为周期)时刻,物体的加速度为 [ ]2222321)(,321)(,221)(,221)(ωωωωA D A C A B A A -- 2 两个质点各自作简谐振动,它们的振幅相同、周期相同,第一个质点的振动方程为)cos(1αω+=t A y 。
当第一个质点从相对平衡位置的正位移处回到平衡位置时,第二个质点正在最大位移处,则第二个质点的振动方程为 [ ])cos()(),23cos()()2cos()(),2cos()(2222παωπαωπαωπαω++=-+=-+=++=t A y D t A y C t A y B t A y A 3一质点沿y 轴作简谐振动,振动方程为)SI (),32cos(1042παπ++⨯=-t y ,从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为[ ]s 61)(s,31)(s,21)(s,41)(s,81)(E D C B A 4 已知两个简谐振动曲线如图所示,1x 相位比2x 的相位 [ ]ππππ超前,落后,超前,落后)()(2)(2)(D C B A5题图 7题图5 一质点作简谐振动,周期为T 。
质点由平衡位置向X 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为 [ ],8)(6)(12)(4)(T D T C T B T A ,,, 6 在下面几种说法中,正确的说法是: [ ](A )波源不动时,波源的振动周期与波动的周期在数值上是不同的,(B )波源振动的速度与波速相同,(C) 在波传播方向上的任一质点的振动相位总是比波源的相位滞后,(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前。
7一平面简谐波,沿X 轴负方向传播,角频率为ω,波速为u 。
设4T t =时刻的波形如图所示,则该波的表达式为: [ ]])(cos[)(),(cos )(]21)(cos[)(),(cos )(πωωπωω++=+=+-=-=ux t A y D u x t A y G u x t A y B ux t A y A 8 当机械波在媒质中传播时,一媒质质元的最大变形量发生在 [ ](A)媒质质元离开其平衡位置最大位移处,(B )媒质质元离开其平衡位置)2/2(A 处,(C )媒质质元在其平衡位置处,(D )媒质质元离开其平衡位置A/2处(A 是振动振幅)。
大连工业大学大学物理学振动与波动题库

(C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、 两分振动方程分别为 x1=3cos (50πt+π/4) ㎝ 和 x2=4cos (50πt+3π/4)㎝, 则它们的合振动的振幅为 ( (A) 1 ㎝ (B)3 ㎝ (C)5 ㎝ (D)7 ㎝ 6、一平面简谐波,波速为 =5 cm/s,设t= 3 s时刻的波形 如图所示,则x=0处的质点的振动方程为 ( - (A) y=2×10 2cos (πt/2-π/2) (m) - (B) y=2×10 2cos (πt + π) (m) -2 (C) y=2×10 cos(πt/2+π/2) (m) -2 (D) y=2×10 cos (πt-3π/2) (m) )
y
u
A X -A
17.一平面简谐波,沿 X 轴负方向传播,波长λ=8 m。已知 x=2 m 处质点的振动方程为 y 4 cos(10t
5 x ) ; 8 12 2 (C) y 4 cos(10 t x ); 4 3
(A)
) , 则该波的波动方程为( 6
(B)
20.在驻波中,两个相邻波节间各质点的振动(
1、一个弹簧振子和一个单摆,在地面上的固有振动周期分别为 T1 和 T2,将它们拿到月球上去,相应 的周期分别为 1 和 2 ,则它们之间的关系为 1 T1 且 2 T2 。 。
2、一弹簧振子的周期为T,现将弹簧截去一半,下面仍挂原来的物体,则其振动的周期变为 3、一平面简谐波的波动方程为 y 0.08cos 4 πt 2 πx
大学物理习题解答8第八章振动与波动 (2)

第七章 电磁感应本章提要1. 法拉第电磁感应定律· 当穿过闭合导体回路所包围面积的磁通量发生变化时,导体回路中就将产生电流,这种现象称为电磁感应现象,此时产生的电流称为感应电流。
· 法拉第电磁感应定律表述为:通过导体回路所包围面积的磁通量发生变化石,回路中产生地感应电动势i e 与磁通量m Φ变化率的关系为d d t=-F e其中Φ为磁链,负号表示感应电动势的方向。
对螺线管有N 匝线圈,可以有m N Φ=Φ。
2. 楞次定律· 楞次定律可直接判断感应电流方向,其表述为:闭合回路中感应电流的方向总是要用自己激发的磁场来阻碍引起感应电流的磁通量的变化。
3. 动生电动势· 磁感应强度不变,回路或回路的一部分相对于磁场运动,这样产生的电动势称为动生电动势。
动生电动势可以看成是洛仑兹力引起的。
· 由动生电动势的定义可得:()d bab ae 醋ò=v B l· 洛伦兹力不做功,但起能量转换的作用。
4. 感生电动势·当导体回路静止,而通过导体回路磁通量的变化仅由磁场的变化引起时,导体中产生的电动势称为感生电动势。
d dd d d d L S t te F =??蝌Ñ-=-i E r B S 其中E i 为感生电场强度。
5. 自感· 当回路中的电流发生变化,它所激发的磁场产生的通过自身回路的磁通量也会发生变化,此变化将在自身回路中产生感应电动势,这种现象称为自感现象,产生的电动势为自感电动势,其表达式为:d d L iL te =-(L 一定时)负号表明自感电动势阻碍回路中电流的变化,比例系数L 称为电感或自感系数。
· 自感系数表达式为:L iY =· 自感磁能212m W LI =6. 互感· 对于两个临近的载流回路,当其中一回路中的电流变化时,电流所激发的变化磁场在另一回路中产生感应电动势。
大学物理振动与波题库及答案

⼤学物理振动与波题库及答案⼀、选择题:(每题3分)1、把单摆摆球从平衡位置向位移正⽅向拉开,使摆线与竖直⽅向成⼀微⼩⾓度θ,然后由静⽌放⼿任其振动,从放⼿时开始计时.若⽤余弦函数表⽰其运动⽅程,则该单摆振动的初相为(A) π. (B) π/2.(C) 0 . (D) θ.[2、两个质点各⾃作简谐振动,它们的振幅相同、周期相同.第⼀个质点的振动⽅程为x 1 = A cos(ωt + α).当第⼀个质点从相对于其平衡位置的正位移处回到平衡位置时,第⼆个质点正在最⼤正位移处.则第⼆个质点的振动⽅程为(A) )π21cos(2++=αωt A x . (B) )π21cos(2-+=αωt A x . (C) )π23cos(2-+=αωt A x . (D) )cos(2π++=αωt A x .[]3、⼀个弹簧振⼦和⼀个单摆(只考虑⼩幅度摆动),在地⾯上的固有振动周期分别为T 1和T 2.将它们拿到⽉球上去,相应的周期分别为1T '和2T '.则有(A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'.(C) 11T T ='且22T T ='. (D) 11T T ='且22T T >'.[]4、⼀弹簧振⼦,重物的质量为m ,弹簧的劲度系数为k ,该振⼦作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正⽅向运动时,开始计时.则其振动⽅程为:(A) )21/(cos π+=t m k A x (B) )21/cos(π-=t m k A x (C) )π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x (E) t m /k A x cos = []5、⼀物体作简谐振动,振动⽅程为)41cos(π+=t A x ω.在 t = T /4(T 为周期)时刻,物体的加速度为(A) 2221ωA -. (B) 2221ωA . (C) 2321ωA -. (D) 2321ωA .[]6、⼀质点作简谐振动,振动⽅程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A .(C) φωcos A -. (D) φωcos A .[]7、⼀质点作简谐振动,周期为T .当它由平衡位置向x 轴正⽅向运动时,从⼆分之⼀最⼤位移处到最⼤位移处这段路程所需要的时间为(A) T /12. (B) T /8.(C) T /6. (D) T /4.[]8、两个同周期简谐振动曲线如图所⽰.x 1的相位⽐x 2的相位 (A) 落后π/2. (B) 超前π/2. (C) 落后π. (D) 超前π.[]9、⼀质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是(A) 4f . (B) 2 f . (C) f .(D) 2/f . (E) f /4 []10、⼀弹簧振⼦作简谐振动,当位移为振幅的⼀半时,其动能为总能量的(A) 1/4. (B) 1/2. (C) 2/1. (D) 3/4. (E) 2/3. []11、⼀弹簧振⼦作简谐振动,当其偏离平衡位置的位移的⼤⼩为振幅的1/4时,其动能为振动总能量的(A) 7/16. (B) 9/16. (C) 11/16.(D) 13/16. (E) 15/16. []12 ⼀质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是(A) T /4. (B) 2/T . (C) T .(D) 2 T . (E) 4T .[]13、当质点以频率ν作简谐振动时,它的动能的变化频率为(A) 4 ν. (B) 2 ν. (C) ν. (D) ν21.[]14、图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) π23. (B) π. (C) π21. (D) 0.[]15、若⼀平⾯简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则(A) 波速为C . (B) 周期为1/B .(C) 波长为 2π /C . (D) ⾓频率为2π /B .[]16、下列函数f (x , t )可表⽰弹性介质中的⼀维波动,式中A 、a 和b 是正的常量.其中哪个函数表⽰沿x 轴负向传播的⾏波?(A) )cos(),(bt ax A t x f +=. (B) )cos(),(bt ax A t x f -=.(C) bt ax A t x f cos cos ),(?=. (D) bt ax A t x f sin sin ),(?=.[]17、频率为 100 Hz ,传播速度为300 m/s 的平⾯简谐波,波线上距离⼩于波长的两点振动的相位差为π31,则此两点相距(A) 2.86 m . (B) 2.19 m .A/ -(C) 0.5 m . (D) 0.25 m .[]18、已知⼀平⾯简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则(A) 波的频率为a . (B) 波的传播速度为 b/a .(C) 波长为π / b . (D) 波的周期为2π / a .[]19、⼀平⾯简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所⽰,则(A) O 点的振幅为-0.1 m .(B) 波长为3 m . (C) a 、b 两点间相位差为π21 . (D) 波速为9 m/s .[]20、机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则 (A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播.[]21、图为沿x 轴负⽅向传播的平⾯简谐波在t = 0时刻的波形.若波的表达式以余弦函数表⽰,则O 点处质点振动的初相为(A) 0.(B) π21. (C) π. (D) π23.[]22、⼀横波沿x 轴负⽅向传播,若t 时刻波形曲线如图所⽰,则在t + T /4时刻x 轴上的1、2、3三点的振动位移分别是 (A) A ,0,-A. (B) -A ,0,A. (C) 0,A ,0. (D) 0,-A ,0. []23⼀平⾯简谐波表达式为 )2(sin 05.0x t y -π-= (SI),则该波的频率ν (Hz),波速u (m/s)及波线上各点振动的振幅 A (m)依次为(A) 21,21,-0.05. (B) 21,1,-0.05. (C) 21,21,0.05. (D) 2,2,0.05.[]24、在下⾯⼏种说法中,正确的说法是:(A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的.(B) 波源振动的速度与波速相同.(C) 在波传播⽅向上的任⼀质点振动相位总是⽐波源的相位滞后(按差值不⼤于π计).(D) 在波传播⽅向上的任⼀质点的振动相位总是⽐波源的相位超前.(按差值不⼤于π计) []25、在简谐波传播过程中,沿传播⽅向相距为λ21(λ为波长)的两点的振动速度必定x y O u(A) ⼤⼩相同,⽽⽅向相反. (B) ⼤⼩和⽅向均相同.(C) ⼤⼩不同,⽅向相同. (D) ⼤⼩不同,⽽⽅向相反.[]26、⼀平⾯简谐波沿x 轴负⽅向传播.已知 x = x 0处质点的振动⽅程为)c o s (0φω+=t A y .若波速为u ,则此波的表达式为(A) }]/)([cos{00φω+--=u x x t A y . (B) }]/)([cos{00φω+--=u x x t A y . (C) }]/)[(cos{00φω+--=u x x t A y . (D) }]/)[(cos{00φω+-+=u x x t A y .[]27、⼀平⾯简谐波,其振幅为A ,频率为ν.波沿x 轴正⽅向传播.设t = t 0时刻波形如图所⽰.则x = 0处质点的振动⽅程为(A) ]21)(2cos[0π++π=t t A y ν. (B) ]21)(2cos[0π+-π=t t A y ν. (C) ]21)(2cos[0π--π=t t A y ν. (D) ])(2cos[0π+-π=t t A y ν.[]28、⼀平⾯简谐波的表达式为 )/(2c o s λνx t A y -π=.在t = 1 /ν时刻,x 1 = 3λ /4与x 2 = λ /4⼆点处质元速度之⽐是(A) -1. (B) 31. (C) 1. (D) 3 []29、在同⼀媒质中两列相⼲的平⾯简谐波的强度之⽐是I 1 / I 2 = 4,则两列波的振幅之⽐是(A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4.[]30、如图所⽰,两列波长为λ的相⼲波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是⼲涉极⼤的条件为:(A) λk r r =-12. (B) π=-k 212φφ. (C) π=-π+-k r r 2/)(21212λφφ. (D) π=-π+-k r r 2/)(22112λφφ.[]31、沿着相反⽅向传播的两列相⼲波,其表达式为)/(2c o s1λνx t A y -π= 和 )/(2c o s 2λνx t A y +π=.叠加后形成的驻波中,波节的位置坐标为 (A) λk x ±=. (B) λk x 21±=. (C) λ)12(21+±=k x . (D) 4/)12(λ+±=k x . x y t =t 0u O其中的k = 0,1,2,3, ….[]32、有两列沿相反⽅向传播的相⼲波,其表达式为)/(2c o s1λνx t A y -π= 和 )/(2c o s 2λνx t A y +π=.叠加后形成驻波,其波腹位置的坐标为:(A) x =±k λ. (B) λ)12(21+±=k x . (C) λk x 21±=. (D) 4/)12(λ+±=k x .其中的k = 0,1,2,3, …. [ ]33某时刻驻波波形曲线如图所⽰,则a 、b 两点振动的相位差是(A) 0 (B) π21(C) π. (D) 5π/4.[]34、沿着相反⽅向传播的两列相⼲波,其表达式为)/(2c o s1λνx t A y -π= 和 )/(2c o s 2λνx t A y +π=.在叠加后形成的驻波中,各处简谐振动的振幅是(A) A . (B) 2A .(C) )/2cos(2λx A π. (D) |)/2cos(2|λx A π.[]35、在波长为λ的驻波中,两个相邻波腹之间的距离为(A) λ /4. (B) λ /2.(C) 3λ /4. (D) λ.[]36、在波长为λ的驻波中两个相邻波节之间的距离为(A) λ. (B) 3λ /4.(C) λ /2. (D) λ /4.[]37在真空中沿着x 轴正⽅向传播的平⾯电磁波,其电场强度波的表达式是)/(2c o s 0λνx t E E z -π=,则磁场强度波的表达式是:(A) )/(2cos /000λνµεx t E H y -π=. (B) )/(2cos /000λνµεx t E H z -π=.(C) )/(2cos /000λνµεx t E H y -π-=. (D) )/(2cos /000λνµεx t E H y +π-=.[]38、在真空中沿着z 轴负⽅向传播的平⾯电磁波,其磁场强度波的表达式为)/(co s 0c z t H H x +-=ω,则电场强度波的表达式为:(A) )/(cos /000c z t H E y +=ωεµ. (B) )/(cos /000c z t H E x +=ωεµ. (C) )/(cos /000c z t H E y +-=ωεµ.(D) )/(cos /000c z t H E y --=ωεµ.[]39、电磁波的电场强度E 、磁场强度 H 和传播速度 u 的关系是:(A) 三者互相垂直,⽽E 和H 位相相差π21. (B) 三者互相垂直,⽽且E 、H 、 u 构成右旋直⾓坐标系. (C) 三者中E 和H 是同⽅向的,但都与 u 垂直. (D) 三者中E 和H 可以是任意⽅向的,但都必须与 u 垂直.[]40、电磁波在⾃由空间传播时,电场强度E 和磁场强度H(A) 在垂直于传播⽅向的同⼀条直线上.(B) 朝互相垂直的两个⽅向传播.(C) 互相垂直,且都垂直于传播⽅向.(D) 有相位差π21.[]⼆、填空题:(每题4分)41、⼀弹簧振⼦作简谐振动,振幅为A ,周期为T ,其运动⽅程⽤余弦函数表⽰.若t = 0时,(1) 振⼦在负的最⼤位移处,则初相为______________________;(2) 振⼦在平衡位置向正⽅向运动,则初相为________________;(3) 振⼦在位移为A /2处,且向负⽅向运动,则初相为______.42、三个简谐振动⽅程分别为 )21c o s (1π+=t A x ω,)67cos(2π+=t A x ω和)611cos(3π+=t A x ω画出它们的旋转⽮量图,并在同⼀坐标上画出它们的振动曲线.43、⼀物体作余弦振动,振幅为15×10-2 m ,⾓频率为6π s -1,初相为0.5 π,则振动⽅程为x = ________________________(SI).44、⼀质点沿x 轴作简谐振动,振动范围的中⼼点为x 轴的原点.已知周期为T ,振幅为A .(1) 若t = 0时质点过x = 0处且朝x 轴正⽅向运动,则振动⽅程为x =_____________________________.(2) 若t = 0时质点处于A x 21=处且向x 轴负⽅向运动,则振动⽅程为 x =_____________________________.45、⼀弹簧振⼦,弹簧的劲度系数为k ,重物的质量为m ,则此系统的固有振动周期为______________________.46、在两个相同的弹簧下各悬⼀物体,两物体的质量⽐为4∶1,则⼆者作简谐振动的周期之⽐为_______________________.47、⼀简谐振动的表达式为)3cos(φ+=t A x ,已知 t = 0时的初位移为0.04 m ,初速度为0.09 m/s ,则振幅A=_____________ ,初相φ =________________.48、⼀质点作简谐振动,速度最⼤值v m = 5 cm/s ,振幅A = 2 cm .若令速度具有正最⼤值的那⼀时刻为t = 0,则振动表达式为_________________________.49、两个简谐振动曲线如图所⽰,则两个简谐振动的频率之⽐ν1∶ν2=__________________,加速度最⼤值之⽐a 1m ∶a 2m =__________________________,初始速率之⽐v 10∶v 20=____________________.50、有简谐振动⽅程为x = 1×10-2cos(π t +φ)(SI),初相分别为φ1 = π/2,φ2 = π,φ3 = -π/2的三个振动.试在同⼀个坐标上画出上述三个振动曲线.51、⼀简谐振动曲线如图所⽰,则由图可确定在t = 2s时刻质点的位移为 ____________________,速度为 __________________.52、已知两个简谐振动的振动曲线如图所⽰.两简谐振动的最⼤速率之⽐为_________________.53、⼀⽔平弹簧简谐振⼦的振动曲线如图所⽰.当振⼦处在位移为零、速度为-ωA 、加速度为零和弹性⼒为零的状态时,应对应于曲线上的________点.当振⼦处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性⼒为-kA 的状态时,应对应于曲线上的____________点.x (cm)t (s)O- x (cm)54、⼀简谐振动⽤余弦函数表⽰,其振动曲线如图所⽰,则此简谐振动的三个特征量为A =_____________;ω =________________;φ =_______________.55、已知两个简谐振动曲线如图所⽰.x 1的相位⽐x 2 的相位超前_______.56、两个简谐振动⽅程分别为 t A x ωcos 1=,)31cos(2π+=t A x ω在同⼀坐标上画出两者的x —t 曲线.xtO57、已知⼀简谐振动曲线如图所⽰,由图确定振⼦:(1) 在_____________s 时速度为零.(2)在____________ s 时动能最⼤.(3) 在____________ s 时加速度取正的最⼤值.58、已知三个简谐振动曲线如图所⽰,则振动⽅程分别为: x 1 =______________________, x 2 =_____________________,x 3 =_______________________.59、图中⽤旋转⽮量法表⽰了⼀个简谐振动.旋转⽮量的长度为0.04 m ,旋转⾓速度ω = 4π rad/s .此简谐振动以余弦函数表 x (cm)t (s)O 12⽰的振动⽅程为x =__________________________(SI).60、⼀质点作简谐振动的⾓频率为ω、振幅为A .当t = 0时质点位于A x 21=处,且向x 正⽅向运动.试画出此振动的旋转⽮量图.61、两个同⽅向的简谐振动曲线如图所⽰.合振动的振幅为_______________________________,合振动的振动⽅程为________________________________. 62、⼀平⾯简谐波.波速为6.0 m/s ,振动周期为0.1 s ,则波长为___________.在波的传播⽅向上,有两质点(其间距离⼩于波长)的振动相位差为5π /6,则此两质点相距___________.63、⼀个余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所⽰.试分别指出图中A ,B ,C 各质点在该时刻的运动⽅向.A _____________;B _____________ ;C ______________ . 64、⼀横波的表达式是 )30/01.0/(2sin 2x t y -π=其中x 和y 的单位是厘⽶、t 的单位是秒,此波的波长是_________cm ,波速是_____________m/s .65、已知平⾯简谐波的表达式为 )cos(Cx Bt A y -=式中A 、B 、C 为正值常量,此波的波长是_________,波速是_____________.在波传播⽅向上相距为d 的两点的振动相位差是____________________.66、⼀声波在空⽓中的波长是0.25 m ,传播速度是340 m/s ,当它进⼊另⼀介质时,波长变成了0.37 m ,它在该介质中传播速度为______________.67、已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正⽅向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为__________.68、⼀平⾯简谐波沿x 轴正⽅向传播,波速 u = 100 m/s ,t = 0时刻的波形曲线如图所⽰.可知波长λ = ____________;振幅A = __________;频率ν = ____________.69、频率为500 Hz 的波,其波速为350 m/s ,相位差为2π/3 的两点间距离为________________________.70、⼀平⾯简谐波沿x 轴正⽅向传播.已知x = 0处的振动⽅程为 )cos(0φω+=t y ,波速为u .坐标为x 1和x 2的两点的振动初相位分别记为φ 1和φ 2,则相位差φ 1-φ 2 =_________________.·---71、已知⼀平⾯简谐波的波长λ = 1 m ,振幅A = 0.1 m ,周期T = 0.5 s .选波的传播⽅向为x 轴正⽅向,并以振动初相为零的点为x 轴原点,则波动表达式为y = _____________________________________(SI).72、⼀横波的表达式是)4.0100(2sin 02.0π-π=t y (SI),则振幅是________,波长是_________,频率是__________,波的传播速度是______________.77、已知⼀平⾯简谐波的表达式为 )cos(bx at A -,(a 、b 均为正值常量),则波沿x 轴传播的速度为___________________.74、⼀简谐波的频率为 5×104 Hz ,波速为 1.5×103 m/s .在传播路径上相距5×10-3 m 的两点之间的振动相位差为_______________.75、⼀简谐波沿BP ⽅向传播,它在B 点引起的振动⽅程为 t A y π=2cos 11.另⼀简谐波沿CP ⽅向传播,它在C 点引起的振动⽅程为)2cos(22π+π=t A y .P 点与B 点相距0.40 m ,与C 点相距0.5 m (如图).波速均为u = 0.20 m/s .则两波在P 点的相位差为______________________.76、已知⼀平⾯简谐波的表达式为 )cos(Ex Dt A y -=,式中A 、D 、E 为正值常量,则在传播⽅向上相距为a 的两点的相位差为______________.77、在简谐波的⼀条射线上,相距0.2 m 两点的振动相位差为π /6.⼜知振动周期为0.4 s ,则波长为_________________,波速为________________.78、⼀声纳装置向海⽔中发出超声波,其波的表达式为)2201014.3cos(102.153x t y -??=- (SI)则此波的频率ν = _________________ ,波长λ = __________________,海⽔中声速u = __________________.79、已知14℃时的空⽓中声速为340 m/s .⼈可以听到频率为20 Hz ⾄20000 Hz 范围内的声波.可以引起听觉的声波在空⽓中波长的范围约为______________________________.80、⼀平⾯简谐波(机械波)沿x 轴正⽅向传播,波动表达式为)21cos(2.0x t y π-π= (SI),则x = -3 m 处媒质质点的振动加速度a 的表达式为________________________________________.。
大学物理习题解答8第八章振动与波动(1)
第八章 振动与波动本章提要1. 简谐振动· 物体在一定位置附近所作的周期性往复运动称为机械振动。
· 简谐振动运动方程()cos x A t ωϕ=+其中A 为振幅,ω 为角频率,(ωt+ϕ)称为谐振动的相位,t =0时的相位ϕ 称为初相位。
· 简谐振动速度方程d ()d sin xv A t tωωϕ==-+ · 简谐振动加速度方程222d ()d cos xa A t tωωϕ==-+· 简谐振动可用旋转矢量法表示。
2. 简谐振动的能量· 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为212k E mv =· 弹簧的势能为212p E kx =· 振子总能量为P22222211()+()221=2sin cos k E E E m A t kA t kA ωωϕωϕ=+=++3. 阻尼振动· 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。
· 阻尼振动的动力学方程为222d d 20d d x x x t tβω++= 其中,γ是阻尼系数,2mγβ=。
(1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。
(2) 当22ωβ=时,不再出现振荡,称临界阻尼。
(3) 当22ωβ<时,不出现振荡,称过阻尼。
4. 受迫振动· 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力 · 受迫振动的运动方程为22P 2d d 2d d cos x x F x t t t mβωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。
· 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。
大学物理题库-振动与波动之令狐文艳创作
振动与波动题库令狐文艳一、选择题(每题3分)1、当质点以频率ν 作简谐振动时,它的动能的变化频率为( )(A ) 2v(B )v (C )v 2 (D )v 42、一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。
当0=t 时, 位移为cm 6,且向x 轴正方向运动。
则振动表达式为( ) (A) )(3cos 12.0ππ-=t x (B ))(3cos12.0ππ+=t x (C ))(32cos 12.0ππ-=t x (D ))(32cos 12.0ππ+=t x3、 有一弹簧振子,总能量为E ,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量变为 ( )(A )2E (B )4E (C )E /2 (D )E /44、机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则( )(A) 波长为100 m (B) 波速为10 m·s-1(C) 周期为1/3 s (D) 波沿x 轴正方向传播5、两分振动方程分别为x 1=3cos (50πt+π/4) ㎝ 和x 2=4cos (50πt+3π/4)㎝,则它们的合振动的振幅为( )(A) 1㎝ (B )3㎝ (C )5 ㎝ (D )7 ㎝6、一平面简谐波,波速为μ=5cm/s ,设t= 3 s 时刻的波形如图所示,则x=0处的质点的振动方程为( )(A) y=2×10-2cos (πt/2-π/2)(m)(B) y=2×10-2cos (πt + π) (m)(C) y=2×10-2cos(πt/2+π/2) (m)(D) y=2×10-2cos (πt-3π/2) (m)7、一平面简谐波,沿X 轴负方向传播。
x=0处的质点的振动曲线如图所示,若波函数用余弦函数表示,则该波的初位相为( )(A )0(B )π(C) π /2(D) - π /28、有一单摆,摆长m 0.1=l ,小球质量g 100=m 。
大学物理习题册---振动与波
一 选择题 (共60分)1. (本题 3分)(0327) 一轻弹簧,上端固定,下端挂有质量为m 的重物,其自由振动的周期为T .今已知振子离开平衡位置为x 时,其振动速度为v ,加速度为a .则下列计算该振子劲度系数的公式中,错误的是:(A) 2max 2max/x m k v =. (B) x mg k /=. (C) 22/4T m k π=. (D) x ma k /=. [ ]2. (本题 3分)(3255) 如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为4m 的物体,最后将此弹簧截断为两个等长的弹簧并联后悬挂质量为m 的物体,则这三个系统的周期值之比为(A) 1∶2∶2/1. (B) 1∶21∶2 . (C) 1∶2∶21. (D) 1∶2∶1/4 . [ ]3. (本题 3分)(3256) 图(a)、(b)、(c)为三个不同的简谐振动系统.组成各系统的各弹簧的原长、各弹簧的劲度系数及重物质量均相同.(a)、(b)、(c)三个振动系统的ω2(ω为固有角频率)值之比为(A) 2∶1∶21. (B) 1∶2∶4 .(C) 2∶2∶1 . (D) 1∶1∶2 .[ ](a)(b)4. (本题 3分)(5507) 图中三条曲线分别表示简谐振动中的位移x ,速度v ,和加速度a .下列说法中哪一个是正确的?(A) 曲线3,1,2分别表示x ,v ,a 曲线;(B) 曲线2,1,3分别表示x ,v ,a 曲线; (C) 曲线1,3,2分别表示x ,v ,a 曲线; (D) 曲线2,3,1分别表示x ,v ,a 曲线;(E) 曲线1,2,3分别表示x ,v ,a 曲线. [ ]x, v , at O123已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为:(A) )3232cos(2π+π=t x .(B) )3232cos(2π−π=t x .(C) )3234cos(2π+π=t x .(D) )3234cos(2π−π=t x .(E) )4134cos(2π−π=t x . [ ]6. (本题 3分)(3028) 一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为 (A) E 1/4. (B) E 1/2.(C) 2E 1. (D) 4 E 1 . [ ]7. (本题 3分)(3023) 一弹簧振子,当把它水平放置时,它可以作简谐振动.若把它竖直放置或放在固定的光滑斜面上,试判断下面哪种情况是正确的:(A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动. (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动.(C) 两种情况都可作简谐振动.(D) 两种情况都不能作简谐振动. [ ]放在光滑斜面上8. (本题 3分)(5181) 一质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是 (A) 4f . (B) 2 f . (C) f .(D) 2/f . (E) f /4 [ ]9. (本题 3分)(3560) 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A) kA 2. (B) 221kA .(C) (1/4)kA 2. (D) 0. [ ]10. (本题 3分)(3066) 机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ ]一平面余弦波在t = 0时刻的波形曲线如图所示,则O 点的振动初相φ 为:(A) 0. (B) π21(C) π (D) π23(或π−21) [ ]xyOu12. (本题 3分)(3151) 图中画出一向右传播的简谐波在t 时刻的波形图,BC 为波密介质的反射面,波由P 点反射,则反射波在t 时刻的波形图为 [ ]13. (本题 3分)(3072) 如图所示,一平面简谐波沿x 轴正向传播,已知P 点的振动方程为)cos(0φω+=t A y ,则波的表达式为 (A) }]/)([cos{0φω+−−=u l x t A y . (B) })]/([cos{0φω+−=u x t A y .(C) )/(cos u x t A y −=ω.(D) }]/)([cos{0φω+−+=u l x t A y . [ ]14. (本题 3分)(3071) 一平面简谐波以速度u 沿x 轴正方向传播,在t = t '时波形曲线如图所示.则坐标原点O 的振动方程为 (A) 2)(cos[π+′−=t t b u a y . (B) ]2)(2cos[π−′−π=t t b u a y . (C) ]2)(cos[π+′+π=t tb u a y .(D) 2)(cos[π−′−π=t t b u a y . [ ]15. (本题 3分)(3286) 在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是(A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4. [ ]一列机械横波在t 时刻的波形曲线如图所示,则该时刻能量为最大值的媒质质元的位置是:(A) o ',b ,d ,f . (B) a ,c ,e ,g .(C) o ',d . (D) b ,f .[ ]17. (本题 3分)(3289) 图示一平面简谐机械波在t 时刻的波形曲线.若此时A 点处媒质质元的振动动能在增大,则(A) A 点处质元的弹性势能在减小. (B) 波沿x 轴负方向传播.(C) B 点处质元的振动动能在减小.(D)各点的波的能量密度都不随时间变化. [ ]18. (本题 3分)(3090) 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A) 它的动能转换成势能. (B) 它的势能转换成动能.(C) 它从相邻的一段质元获得能量其能量逐渐增大.(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小. [ ]19. (本题 3分)(5321) S 1和S 2是波长均为λ 的两个相干波的波源,相距3λ /4,S 1的相位比S 2超前π21.若两波单独传播时,在过S 1和S 2的直线上各点的强度相同,不随距离变化,且两波的强度都是I 0,则在S 1、S 2连线上S 1外侧和S 2外侧各点,合成波的强度分别是(A) 4I 0,4I 0. (B) 0,0.(C) 0,4I 0 . (D) 4I 0,0. [ ]20. (本题 3分)(3101) 在驻波中,两个相邻波节间各质点的振动(A) 振幅相同,相位相同. (B) 振幅不同,相位相同.(C) 振幅相同,相位不同. (D) 振幅不同,相位不同. [ ]二 填空题 (共81分)21. (本题 4分)(3010) 有两相同的弹簧,其劲度系数均为k .(1) 把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为___________________;(2) 把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为___________________________________.22. (本题 3分)(3041) 一简谐振动曲线如图所示,则由图可确定在t = 2s时刻质点的位移为 ____________________,速度为__________________.23. (本题 5分)(3398) 一质点作简谐振动.其振动曲线如图所示.根据此图,它的周期T =___________,用余弦函数描述时初相φ =_________________.24. (本题 5分)(3400) 试在下图中画出简谐振子的动能,振动势能和机械能随时间t 而变的三条曲线(设t = 0时物体经过平衡位置).EtTT/2T 为简谐振动的周期25. (本题 3分)(3569) 如图所示的是两个简谐振动的振动曲线,它们合成的余弦振动的初相为__________________.21−一质点同时参与了三个简谐振动,它们的振动方程分别为)31cos(1π+=t A x ω, )35cos(2π+=t A x ω, )cos(3π+=t A x ω其合成运动的运动方程为x = ______________.27. (本题 4分)(5315) 两个同方向同频率的简谐振动,其合振动的振幅为20 cm ,与第一个简谐振动的相位差为φ –φ1 = π/6.若第一个简谐振动的振幅为310 cm = 17.3 cm ,则第二个简谐振动的振幅为___________________ cm ,第一、二两个简谐振动的相位差φ1 − φ2为____________.28. (本题 5分)(3075) 一平面简谐波的表达式为 )37.0125cos(025.0x t y −= (SI),其角频率ω =__________________________,波速u =______________________,波长λ = _________________.29. (本题 4分)(3862) 一横波的表达式是 )30/01.0/(2sin 2x t y −π=其中x 和y 的单位是厘米、t 的单位是秒,此波的波长是_________cm ,波速是_____________m/s .30. (本题 5分)(3074) 一平面简谐波的表达式为 )/(cos u x t A y −=ω)/cos(u x t A ωω−= 其中x / u 表示_____________________________;ωx / u 表示________________________;y 表示______________________________.31. (本题 5分)(3863) 已知平面简谐波的表达式为 )cos(Cx Bt A y −=式中A 、B 、C 为正值常量,此波的波长是_________,波速是_____________.在波传播方向上相距为d 的两点的振动相位差是____________________.一简谐波沿BP 方向传播,它在B 点引起的振动方程为t A y π=2cos 11.另一简谐波沿CP 方向传播,它在C 点引起的振动方程为)2cos(22π+π=t A y .P 点与B 点相距0.40 m ,与C 点相距0.5 m (如图).波速均为u = 0.20 m/s .则两波在P 点的相位差为______________________.33. (本题 5分)(3063) 一平面简谐波沿x 轴正方向传播,波速 u = 100 m/s ,t = 0时刻的波形曲线如图所示.可知波长λ = ____________; 振幅A = __________;频率ν = ____________.34. (本题 5分)(3133) 一平面简谐波沿Ox 轴正方向传播,波长为λ.若如图P 1点处质点的振动方程为)2cos(1φν+π=t A y ,则P 2点处质点的振动方程为_________________________________;与P 1点处质点振动状态相同的那些点的位置是___________________________.OP 1P 235. (本题 3分)(3301) 如图所示,S 1和S 2为同相位的两相干波源,相距为L ,P 点距S 1为r ;波源S 1在P 点引起的振动振幅为A 1,波源S 2在P 点引起的振动振幅为A 2,两波波长都是λ,则P 点的振幅A = _________________________________________________________.1236. (本题 4分)(5517) S 1,S 2为振动频率、振动方向均相同的两个点波源,振动方向垂直纸面,两者相距λ23(λ为波长)如图.已知S 1的初相为π21.(1) 若使射线S 2C 上各点由两列波引起的振动均干涉相消,则S 2的初相应为________________________.(2) 若使S 1 S 2连线的中垂线MN 上各点由两列波引起的振动均干涉相消,则S 2的初位相应为_______________________.37. (本题 3分)(3595) 一驻波的表达式为 )2cos()/2cos(2t x A y νλππ=.两个相邻波腹之间的距离是___________________.一驻波表达式为t x A y ωλcos )/2cos(2π=,则λ21−=x 处质点的振动方程是___________________________________________;该质点的振动速度表达式是______________________________________.39. (本题 5分)(3107) 如果入射波的表达式是)(2cos 1λxT t A y +π=,在x = 0处发生反射后形成驻波,反射点为波腹.设反射后波的强度不变,则反射波的表达式y 2 =___________________________________________; 在x = 2λ /3处质点合振动的振幅等于______________________.40. (本题 3分)(3462) 在真空中一平面电磁波的电场强度波的表达式为:103(102cos[100.6882×−×π×=−xt E y (SI)则该平面电磁波的波长是____________________.三 计算题 (共74分)41. (本题10分)(3022) 一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.42. (本题 5分)(3045) 一质点作简谐振动,其振动方程为x = 0.24)3121cos(π+πt (SI),试用旋转矢量法求出质点由初始状态(t = 0的状态)运动到x = -0.12 m ,v < 0的状态所需最短时间∆t .43. (本题 5分)(3085) 在弹性媒质中有一沿x 轴正向传播的平面波,其表达式为)214cos(01.0π−π−=x t y (SI).若在x = 5.00 m 处有一媒质分界面,且在分界面处反射波相位突变π,设反射波的强度不变,试写出反射波的表达式.如图,一平面简谐波沿Ox 轴传播,波动表达式为])/(2cos[φλν+−π=x t A y (SI),求(1) P 处质点的振动方程;(2) 该质点的速度表达式与加速度表达式.OP45. (本题 5分)(3332) 如图所示,一简谐波向x 轴正向传播,波速u = 500 m/s ,x 0 = 1 m, P 点的振动方程为 )21500cos(03.0π−π=t y (SI).(1) 按图所示坐标系,写出相应的波的表达式;(2) 在图上画出t = 0时刻的波形曲线.46. (本题 8分)(5516) 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200m/s .在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度.47. (本题 8分)(3078) 一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示.求 (1) x = 0处质点振动方程;(2) 该波的表达式.xu O t =t ′y48. (本题 8分)(3138) 某质点作简谐振动,周期为2 s ,振幅为0.06 m ,t = 0 时刻,质点恰好处在负向最大位移处,求(1) 该质点的振动方程;(2) 此振动以波速u = 2 m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3) 该波的波长.49. (本题10分)(3146) 如图为一平面简谐波在t = 0 时刻的波形图,已知波速u = 20 m/s .试画出P 处质点与Q 处质点的振动曲线,然后写出相应的振动方程.如图所示,两列相干波在P 点相遇.一列波在B 点引起的振动是 t y π×=−2cos 103310 (SI);另一列波在C 点引起的振动是)212cos(103320π+π×=−t y (SI); 令=BP 0.45 m ,=CP 0.30m ,两波的传播速度u = 0.20 m/s ,不考虑传播途中振幅的减小,求P 点的合振动的振动方程.51. (本题 5分)(3336) 如图所示,两列波长均为λ 的相干简谐波分别通过图中的O 1和O 2点,通过O 1点的简谐波在M 1 M 2平面反射后,与通过O 2点的简谐波在P 点相遇.假定波在M 1 M 2平面反射时有相位突变π.O 1和O 2两点的振动方程为 y 10 =A cos(πt ) 和y 20 = A cos(πt ),且 λ81=+mP m O , λ32=P O (λ 为波长),求:(1) 两列波分别在P 点引起的振动的方程;(2) P 点的合振动方程.(假定两列波在传播或反射过程中均不衰减)2。
振动与波动(习题课)
A1
A
六、试画出谐振子的动能、振动势能和机械能随时间t而变的三 条曲线(设t=0时物体经过平衡位置)。
E
机械能 势能
o
动能
T/2
t
x 七、设反射波的表达式为 y2 A cos 2 ( t ) , 2 波在 x = 0 处反射,反射点为一自由端,求入射波和反射 波合成的驻波的波节位置所在处的坐标。
k 0,1, 2,
2
八、一列横波在绳索上传播,其表达式为 y1=0.05cos[2(t/0.05-x/4)]。 (1)现有另一列横波(振幅也是0.05m)与上已知横波在绳索上 形成驻波,设这一横波在x=0处与已知横波同位相,写出该波动 方程。 (2) 写出绳索上的驻波方程;求出各波节的位置坐标表达式; 并写出离原点最近的四个波节的坐标数值。
频率相同 振动方向相同 有恒定相位差 波密 波疏 存在 不存在
u vR S u vS
振动与波动的比较
定义 研究 对象
某个质 点的运 动状态
能量
速度
周期
频率
方程
y f (t )
一元函 数
y f ( x, t )
振 动
质点在平衡 位置附近来 回运动
能量守恒, 不向外传播
dy dt
1
2
试用旋转矢量法求合振动的振动方程。
解:
A A A 6 8 10 cm
2 1 2 2 2 2
6 tg ( ) 3 8
3
A1
6 tg 0.403 rad 3 8
1
A2
6
x
x 10 cos( 2t 0.403) cm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用标准文案 文档大全 振动与波动题库
一、选择题(每题3分) 1、当质点以频率ν 作简谐振动时,它的动能的变化频率为( )
(A) 2v (B)v (C)v2 (D)v4 2、一质点沿x轴作简谐振动,振幅为cm12,周期为s2。当0t时, 位移为cm6,且向x轴正方向运动。则振动表达式为( )
(A) )(3cos12.0tx (B))(3cos12.0tx (C))(32cos12.0tx (D))(32cos12.0tx 3、 有一弹簧振子,总能量为E,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量变为 ( ) (A)2E (B)4E (C)E /2 (D)E /4
4、机械波的表达式为mπ06.0π6cos05.0xty,则 ( ) (A) 波长为100 m (B) 波速为10 m·s-1 (C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、两分振动方程分别为x1=3cos (50πt+π/4) ㎝ 和x2=4cos (50πt+3π/4)㎝,则它们的合振动的振幅为( ) (A) 1㎝ (B)3㎝ (C)5 ㎝ (D)7 ㎝
6、一平面简谐波,波速为=5 cm/s,设t= 3 s时刻的波形如图所示,则x=0处的质点的振动方程为 ( ) (A) y=2×10-2cos (πt/2-π/2) (m) (B) y=2×10-2cos (πt + π) (m) (C) y=2×10-2cos(πt/2+π/2) (m) (D) y=2×10-2cos (πt-3π/2) (m)
7、一平面简谐波,沿X轴负方向 传播。x=0处的质点的振动曲线如图所示,若波函数用余弦函数表示,则该波的初位相为( ) (A)0 (B)π (C) π /2 (D) - π /2
8、有一单摆,摆长m0.1l,小球质量g100m。设小球的运动可看作筒谐振动,则该振动的周期为( ) (A) 2 (B)32 (C)102 (D)52 实用标准文案 文档大全 9、一弹簧振子在光滑的水平面上做简谐振动时,弹性力在半个周期内所做的功为 [ ] (A) kA2 (B)kA2 /2 (C)kA2 /4 (D)0 10、两个同方向的简谐振动曲线(如图所示) 则合振动的振动方程为( )
(A))()(22cos12tTAAx (B))()(22cos12tTAAx (C))()(22cos12tTAAx
(D))()(22cos12tTAAx 11、一平面简谐波在t=0时刻的波形图如图所示,波速为=200 m/s ,则图中p (100m) 点的振动速度表达式为( ) (A) v=-0.2πcos (2πt-π) (B) v=-0.2πcos (πt-π) (C) v=0.2πcos (2πt-π/2) (D) v=0.2πcos (πt-3π/2) 12、一物体做简谐振动,振动方程为x=Acos (ωt+π/4), 当时间t=T/4 (T为周期)时,物体的加速度为( )
(A) -Aω2×22 (B) Aω2×22 (C) -Aω2×23 (D) Aω2×23 13、一弹簧振子,沿x轴作振幅为A的简谐振动,在平衡位置0x处,弹簧振子的势能为零,系统的机械能为J50,问振子处于2/Ax处时;其势能的瞬时值为( ) (A) 12.5J (B)25J (C)35.5J (D)50J 14、两个同周期简谐运动曲线如图(a) 所示,图(b)是其相应的旋转矢量图,则x1 的相位比x2 的相位( )
(A) 落后2π (B)超前2π (C)落后π (D)超前π 15、图(a)表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b)为一质点的振动曲线.则图(a)中所表示的x =0 处振动的初相位与图(b)所表示的振动的初相位分别为 ( )
(A) 均为零 (B) 均为2π
(C) 2π (D) 2π 与2π
16.一平面简谐波,沿X轴负方向 y 实用标准文案 文档大全 传播,圆频率为ω,波速为,设t=T/4
时刻的波形如图所示,则该波的波函数 A 为( ) X
(A)y=Acosω(t-x /) -A
(B) y=Acos[ω(t-x /)+π /2]
(C)y=Acosω(t+x /) (D) y=Acos[ω(t+x /)+π] 17.一平面简谐波,沿X轴负方向传播,波长λ=8 m。已知x=2 m处质点的振动方程为
)610cos(4ty 则该波的波动方程为( )
(A))125810cos(4xty ; (B))61610cos(4xty (C))32410cos(4xty; (D))31410cos(4xty 18.如图所示,两列波长为λ的相干波在p点相遇,S1点的初相位是φ1,S1点到p点距离是r1;S2点的初相位是φ2,S2点到p点距离是r2,k=0,±1,±2,±3 ···· ,则p点为干涉极大的条件为( ) (A) r2-r1= kλ s1 r1 p (B) φ2-φ1-2π(r2-r1)/ λ=2kλ (C) φ2-φ1=2kπ r2
(D) φ2-φ1-2π(r2-r1)/ λ=2kπ s2
19.机械波的表达式为mπ06.0π6cos05.0xty,则( ) (A) 波长为100 m (B) 波速为10 m·s-1 (C) 周期为1/3 s (D) 波沿x 轴正方向传播
20.在驻波中,两个相邻波节间各质点的振动( ) (A) 振幅相同,相位相同 (B) 振幅不同,相位相同 (C) 振幅相同,相位不同 (D) 振幅不同,相位不同 二、填空题(每题3分) 1、一个弹簧振子和一个单摆,在地面上的固有振动周期分别为T1和T2,将它们拿到月球上去,相应
的周期分别为1和2,则它们之间的关系为1 T1 且 2 T2 。
2、一弹簧振子的周期为T,现将弹簧截去一半,下面仍挂原来的物体,则其振动的周期变为 。 3、一平面简谐波的波动方程为m24cos080πxπty..则离波源0.80 m及0.30 m 两处的相位差Δ 。
4、两个同方向、同频率的简谐振动,其合振动的振幅为20㎝,与第一个简谐振动的相位差为π/6,若第一个简谐振动的振幅为103=17.3 cm,则第二个简谐振动的振幅为 cm, 两个简谐振动相位差为 。 5、一质点沿X轴作简谐振动,其圆频率ω= 10 rad/s,其初始位移x0= 7. 5 cm,初始速度v0= -75 cm/s。实用标准文案 文档大全 则振动方程为 。 6、一平面简谐波,沿X轴正方向传播。周期T=8s,已知t=2s时刻的波形如图所示,则该波的振幅A= m ,波长λ= m,波速μ= m/s。
7、一平面简谐波,沿X轴负方向传播。已知x=-1m 处,质点的振动方程为x=Acos (ωt+φ) ,若波速为,则该波的波函数为 。 8、已知一平面简谐波的波函数为y=Acos(at-bx) (a,b为正值),则该波的周期为 。 9、传播速度为100m/s,频率为50 HZ的平面简谐波,在波线上相距为0.5m 的两点之间的相位差为 。 10、一平面简谐波的波动方程为y=0.05cos(10πt-4πx),式中x,y以米计,t以秒计。则该波的波速u= ;频率ν= ;波长λ= 。 11、一质点沿X轴作简谐振动,其圆频率ω= 10 rad/s,其初始位移x0= 7. 5 cm,初始速度v0=75 cm/s;则振动方程为 。
12. 两质点作同方向、同频率的简谐振动,振幅相等。当质点1在 2/1Ax处,且向左运动时,另
一个质点2在 2/2Ax 处, 且向右运动。则这两个质点的位相差为 。 13、两个同方向的简谐振动曲线(如图所示) 则合振动的振幅为A= 。
14. 沿一平面简谐波的波线上,有相距m0.2的两质点A与B,B点振动相位比A点落后6,已知振动周期为s0.2,则波长λ= ; 波速u= 。 15.一平面简谐波,其波动方程为)(2cosxtAy 式中A = 0.01m,λ = 0. 5 m,μ = 25 m/s。则t = 0.1s时,在x = 2 m处质点振动的位移y = 、速度v = 、加速度a = 。
16、 质量为0.10kg的物体,以振幅1.0×10-2 m 作简谐运动,其最大加速度为4.0 m·s-1,则振动的周期T = 。 17、一氢原子在分子中的振动可视为简谐运动.已知氢原子质量m =1.68 ×10-27 Kg,振动频率=1.0 ×
1014 Hz,振幅A =1.0 ×10-11m.则此氢原子振动的最大速度为maxv
。
18.一个点波源位于O点,以O 为圆心,做两个同心球面,它们的半径分别为R1和R2。在这两个球实用标准文案 文档大全 面上分别取大小相等的面积△S1和△S2,则通过它们的平均能流之比21PP= 。
19.一个点波源发射功率为W= 4 w,稳定地向各个方向均匀传播,则距离波源中心2 m处的波强(能流密度)为 。 20.一质点做简谐振动,振动方程为x=Acos(ωt+φ),当时间t=T/2 (T为周期)时,质点的速度为 。 三、简答题(每题3分) 1、从运动学看什么是简谐振动?从动力学看什么是简谐振动?一个物体受到一个使它返回平衡位置的力,它是否一定作简谐振动? 2、拍皮球时小球在地面上作完全弹性的上下跳动,试说明这种运动是不是简谐振动?为什么? 3、如何理解波速和振动速度?
4、用两种方法使某一弹簧振子作简谐振动。 方法1:使其从平衡位置压缩l,由静止开始释放。 方法2:使其从平衡位置压缩2l,由静止开始释放。
若两次振动的周期和总能量分别用21TT、和21EE、表示,则它们之间应满足什么关系? 5、从能量的角度讨论振动和波动的联系和区别。. 四、简算题
1、若简谐运动方程为mπ25.0π20cos10.0tx,试求:当s2t时的位移x ;速度v 和加速度a 。 2. 原长为m5.0的弹簧,上端固定,下端挂一质量为kg1.0的物体,当物体静止时,弹簧长为m6.0.现将物体上推,使弹簧缩回到原长,然后放手,以放手时开始计时,取竖直向下为正向,请写出振动方程。
3. 有一单摆,摆长m0.1l,小球质量g10m.0t时,小球正好经过rad06.0处,并以角速度rad/s2.0•向平衡位置运动。设小球的运动可看作筒谐振动,试求: (1)角频率、周期;(2)用余弦函数形式写出小球的振动式。 4. 一质点沿x轴作简谐振动,振幅为cm12,周期为s2。当0t时, 位移为cm6,且向x轴正方向运动。求振动表达式; 5. 质量为m的物体做如图所示的简谐振动,试求:(1)两根弹簧串联之后的劲度系数;(2)其振动频率 。