Crispr Cas9 慢病毒构建的具体步骤及方法
基因编辑技术CRISPRCas9的详细操作步骤

基因编辑技术CRISPRCas9的详细操作步骤基因编辑技术CRISPR-Cas9是一种革命性的工具,能够精确切割和修改DNA 序列。
它已被广泛应用于实验室研究、农业、医学和生物技术领域。
CRISPR-Cas9的操作步骤分为设计目标序列、构建修饰体、细胞转染、筛选、验证等几个阶段。
以下是基因编辑技术CRISPR-Cas9的详细操作步骤:1. 设计目标序列首先,确定要编辑的基因序列。
识别目标区域,通常选择高度保守的DNA 区域,以最大程度减少非特异性修饰。
目标序列的设计需要遵循一些规则,例如避免重复、剪切酶的PAM序列靠近目标区域等。
2. 构建修饰体根据设计的目标序列,构建CRISPR修饰体。
修饰体通常由CRISPR核酸(包括crRNA或sgRNA)和Cas9核酸组成。
crRNA(或sgRNA)负责定位到目标序列,Cas9则负责剪切目标序列。
合成修饰体的DNA或RNA序列后,可以使用PCR扩增或化学合成的方法得到修饰体。
3. 细胞转染将构建好的修饰体转染至目标细胞中。
转染可以选择不同的方法,例如化学法、电穿孔法、超声波法或病毒载体等。
转染后,修饰体会逐渐进入目标细胞,并开始作用于基因组。
4. 筛选在转染后,大部分细胞仍然具有未被编辑的基因组。
为了筛选出完成编辑的细胞,可以使用筛选方法。
最常用的方法是通过引入荧光蛋白标记的修饰体,利用流式细胞术或显微镜检查标记的细胞。
5. 验证对于筛选出来的细胞,需要进行进一步的验证。
最常用的方法是通过测序确认基因组是否发生了预期的编辑。
此外,也可以使用T7E1酶切或限制性内切酶消化等方法,进一步验证编辑效果的准确性。
总结起来,基因编辑技术CRISPR-Cas9的详细操作步骤包括设计目标序列、构建修饰体、细胞转染、筛选和验证等几个阶段。
通过遵循这些步骤,研究人员可以实现对目标基因组的精确编辑,进而揭示基因功能、治疗遗传疾病,并在农业和生物技术领域开拓新的应用前景。
基因编辑技术CRISPRCas9的使用教程与最佳实践分享

基因编辑技术CRISPRCas9的使用教程与最佳实践分享在现代生物学研究中,基因编辑技术的出现为研究人员提供了一种高效、精确、低成本的方式来研究基因功能和调控机制。
CRISPR-Cas9系统作为一种革命性的基因编辑工具被广泛应用于基因组编辑、疾病治疗和农业改良等领域。
本文将为您介绍CRISPR-Cas9基因编辑技术的使用教程,并分享一些最佳实践。
CRISPR-Cas9基因编辑技术概述CRISPR-Cas9是一种依靠细菌天然的免疫机制发展而来的基因编辑技术。
CRISPR是一种特殊的DNA序列,可与Cas9酶一起,通过识别和切割DNA序列来精确编辑基因组。
CRISPR-Cas9系统的主要组成部分包括CRISPR RNA (crRNA)、转录单元结构化RNA(tracrRNA)和Cas9酶。
crRNA负责识别目标DNA序列,而tracrRNA将crRNA与Cas9酶结合起来形成活跃的CRISPR-Cas9复合物。
CRISPR-Cas9基因编辑技术的使用教程1. 设计并合成RNA引导序列在使用CRISPR-Cas9进行基因编辑之前,首先需要设计并合成RNA引导序列。
该序列用于指导Cas9酶精确识别和切割目标基因组DNA。
合成的RNA引导序列通常由crRNA和tracrRNA合成而成,也可以合成一个融合的single-guide RNA (sgRNA)。
2. 构建CRISPR-Cas9载体CRISPR-Cas9基因编辑需要将Cas9酶和RNA引导序列导入目标细胞内。
可使用载体如质粒或病毒进行基因编辑构建。
选择合适的载体需考虑目标细胞类型、转染效率和所需编辑范围等因素。
将Cas9基因和RNA引导序列克隆至载体后,可通过转染或病毒介导转染等方法将其导入目标细胞。
3. 确定编辑效果在导入CRISPR-Cas9系统后,使用分子生物学方法来验证编辑效果。
例如,PCR、测序、Western blot或免疫组化等技术可以用于检测目标基因的突变、修复或敲除效果。
CRISPRCas9基因编辑操作步骤及详细说明

CRISPRCas9基因编辑操作步骤及详细说明实验材料与方法一、细胞培养人宫颈癌细胞 HeLa,常规培养使用含 10% FBS 的 DMEM 培养基 ( 含 1.5 mg/L-Glutamine,100 U/mL Penicillin,100 μg/mL Streptomycin) 中,37ºC 5% CO2 饱和湿度培养箱中培养。
二、基因信息及双 gRNA 设计基因信息及分析1.hsa-mir-152 基因信息:pubmed2.hsa-mir-152 基因位于蛋白编码基因 COPZ2 内含子内,敲除hsa-mir-152 基因不会影响该蛋白编码3.hsa-mir-152 precursor 序列(87 bp):TGTCCCCCCCGGCCCAGGTTCTGTGATACACTCCGACTCGGGCTCTGGAGCAGTCAGTGCATGACAGAACTTGGGCCCGGAAGGACC双 gRNA 设计使用在线 gRNA 设计软件在 hsa-mir-152 precursor 基因组序列两侧设计双 gRNA注:dgRNA 即为双 gRNA.三、慢病毒侵染实验材料及试剂DMEM 培养基 + 10% FBSD-Hank’s SolutionTrypsin-EDTA Solution96 孔板24 孔板Lentivirus- 病毒液(GenePharma)步骤靶细胞侵染实验1.靶细胞铺板:24-well,加入2.5×105 cells/well(根据细胞种类调整),0.5 mL 完全培养基,37℃,5% CO2 过夜;2.稀释病毒:稀释液(靶细胞维持液培养基)400 μL + 终浓度 5 μg/mL Polybrene,将慢病毒原液按 1:9 加入到稀释液中;3.移去 Step1 中细胞培养液,加入 Step2 稀释后的病毒液,同时建立对照(blank、negative),37℃,5% CO2 过夜;4.12~24 小时移去细胞侵染后的病毒液,加入 0.5 mL 完全培养基,37℃,5% CO2 过夜;5.根据细胞状态和类型,如果必要分出 1/3~1/5,加入0.5 mL 完全培养基,继续培养 24~48 小时,荧光倒置显微镜下观察结果。
Cas9蛋白过表达慢病毒包装构建步骤

Cas9蛋白过表达慢病毒包装构建步骤概述:以下采用Polyfect-V转染试剂为例说明慢病毒包装过程。
您也可以采用其它品牌转染试剂进行慢病毒包装。
转染试剂和质粒用量请参考生产厂家的说明书,也可以通过预实验决定。
无论采用哪种转染试剂,3种载体的相对比例应保持不变。
本例中病毒包装采用10cm培养皿。
如需用其它规格细胞培养器皿进行转染和病毒包装,请根据细胞相对生长面积对培养液体积和转染试剂用量进行相应调整。
1、转染前24小时,将293V细胞以4-5×106/10cm平皿密度接种,加入10ml 293V培养基37℃,5% CO2培养。
细胞转染前密度应达到80-90%。
2、漩涡震荡混匀Polyfect-V转染试剂。
3、准备2个离心管,按以下顺序分别制备质粒和转染试剂稀释液。
离心管1(质粒DNA)离心管2(转染试剂)Cas9慢病毒载体5μgPolyfect-V转染试剂20 μlpH1载体3.75μgDMEM无血清培养基480 μlpH2载体1.25μg-DMEM无血清培养基X μl-总体积500μl总体积500μl4、充分混匀。
5、将转染试剂稀释液(离心管2)加入质粒DNA溶液(离心管1)中,立刻充分混匀。
注意加入顺序非常重要。
6、室温孵育转染混合液15分钟。
7、将1ml转染混合液逐滴加入步骤1准备的细胞培养皿,前后晃动培养皿,充分混匀。
8、37℃培养。
9、4-6小时后,用10ml新鲜的293V培养基换液。
转染后24小时,用10ml病毒培养基换液。
10、转染后48小时收集细胞培养上清。
11、病毒上清可以直接用于感染目的细胞或者浓缩纯化后感染目的细胞。
推荐通过超速离心纯化、PEG6000浓缩纯化或者超滤法浓缩后再感染目的细胞。
12、病毒纯化后可以冻存在-80℃以备以后使用。
注意:1、Cas9蛋白的基因长4kb,Cas9表达慢病毒的包装效率和感染力比一般慢病毒低,推荐经过浓缩纯化再用于感染目的细胞。
2、Cas9基因较大,包装时产生的空壳病毒(即有病毒外壳,但没有组装进目的基因的病毒)比较多。
基因编辑技术CRISPRCas9的使用方法与注意事项

基因编辑技术CRISPRCas9的使用方法与注意事项基因编辑技术是一种快速、高效修改生物体基因组的方法,近年来取得了显著的进展。
其中,CRISPR-Cas9技术被广泛应用于基因组编辑领域,成为一种常用的工具。
本文将介绍CRISPR-Cas9的使用方法和相关的注意事项。
CRISPR-Cas9基因编辑技术是通过RNA引导的Cas9蛋白复合物识别特定DNA序列,并将其切割,以实现对基因组的修改。
下面将详细介绍使用CRISPR-Cas9的步骤和注意事项。
1. 目标序列选择与设计在使用CRISPR-Cas9进行基因组编辑之前,首先需要选择并设计一个适合的目标序列。
目标序列应具有特异性,同时应具备足够的保守性,以确保CRISPR-Cas9的高效性和准确性。
此外,目标序列还应远离重要基因或调控区域,以避免非特异性的剪切事件。
2. CRISPR RNA合成CRISPR RNA(crRNA)是一种由CRISPR序列和目标序列组成的RNA分子。
它通过碱基配对与Cas9蛋白结合,从而指导Cas9蛋白与目标DNA序列配对,并发生切割。
在合成crRNA时,需要注意避免污染和二聚体的形成。
3. Cas9蛋白表达和纯化Cas9蛋白是CRISPR-Cas9系统的核心组成部分,它能够与crRNA形成复合物并介导DNA的切割。
在使用Cas9蛋白之前,需要将其进行表达和纯化。
选择合适的Cas9表达系统和纯化方法,确保获得高纯度的蛋白样品。
4. CRISPR-Cas9复合物形成将crRNA与Cas9蛋白复合形成CRISPR-Cas9复合物,是基因组编辑过程中的关键步骤。
将纯化的Cas9蛋白与合成的crRNA按照一定的比例混合,在适当的条件下进行复合,形成稳定的复合物。
注意事项包括避免RNase和DNA酶的污染,以及控制复合物的浓度和组装时间。
5. 细胞渗透与转染在进行基因组编辑之前,需要将CRISPR-Cas9复合物引入目标细胞内。
细胞渗透和转染是常用的方法,常用的技术包括细胞渗透剂、转染试剂、电穿孔等。
CRISPRCas9基因敲除细胞株详细构建流程

CRISPRCas9基因敲除细胞株详细构建流程Puro 抗性浓度摸索实验将细胞如下图1稀释。
给药7天后,弃培养液,用台盼蓝染色2 min,显微镜下观察细胞存活情况。
确定细胞多克隆细胞筛选和单克隆细胞筛选浓度。
图1 抗性浓度摸索单克隆形成验证实验细胞计数,将细胞悬液稀释混匀后加入96孔板,用封口胶将孔板封好,放于培养箱中培养。
静置培养48 h后每日观察并记录单克隆形成情况。
sgRNA 靶标设计根据基因序列信息,设计 sgRNA。
靶标位点序列信息确认PCR扩增(图2),测序验证基因序列,以确定sgRNA区域有无SNP。
图2 靶标序列扩增sgRNA克隆引物合成根据sgRNA设计sgRNA克隆引物。
lentiCRISPRv2-sgRNA载体构建退火,连接,转化,涂板(LB/Amp)培养。
lentiCRISPRv2-sgRNA载体验证每个实验组各挑取6个单克隆菌落,于LB/ Amp培养基中扩增,提取质粒,琼脂糖凝胶电泳检测质粒抽提效果(图3)。
图3 质粒抽提酶切验证:取3个单克隆进行酶切,琼脂糖凝胶电泳检测酶切效果(图4)。
选择2个样品送样测序。
图4 单克隆酶切验证病毒包装lentiCRISPRv2-sgRNA无内毒素质粒提取,病毒包装。
细胞转染配制梯度病毒稀释液,细胞于培养箱中静置培养48h。
阳性单克隆细胞株筛选细胞转染48h后,更换完全培养基,筛选至对照组大部分细胞死亡,实验组细胞扩大培养,进行单克隆筛选。
几天后挑选阳性单克隆进行扩增,并取样验证。
阳性单克隆细胞株验证测序验证阳性单克隆细胞株的基因序列,以确定是否敲除成功。
实验结果示例:该基因有两个单克隆细胞株,A1和A2。
单克隆细胞A1的目的基因在sgRNA2位置出现两种突变形式,分别缺失1个和19个碱基,在新序列的第337位和第355位碱基提前出现终止密码子。
单克隆细胞A2的目的基因在sgRNA2位置发生突变,插入1个碱基,在新序列的第340位碱基提前出现终止密码子。
CRISPR-Cas9体系实验流程 (2)
一、材料试剂准备1)质粒:pSpCas9(BB)-2A-GFP (Addgene plasmid ID: 48138),用于转染cas9,该质粒含有Cas9与GFP,Cas9的nickase活性将用于特定目的基因的ko,GFP可做为转染标签。
pSpCas9(BB) (Addgene plasmid ID: 42230),若实验用sgRNA为PCR扩增纯化产物,则需要该质粒做为U6的模版。
pUC19(Invitrogen, cat.no.15364-011)可用于构建sgRNA,若用PCR产物进行转染,则需要该质粒来进行共转染,做为DNA carrier。
上述三种质粒,根据实验选择sgRNA的表达方式(PCR产物/ 单载体系统/ 双载体系统)来确定具体使用哪种。
2)超纯水,DNase/RNase-free (Life Technologies, cat. no. 10977-023)3)高保真聚合酶,Kapa HiFi (Kapa Biosystems), PfuUltra (Agilen),Herculase II fusion polymerase 均可,只需保真效果好,扩增过程不产生突变。
4)Taq DNA polymerase with standard Taq buffer (NEB, cat. no. M0273S)用于一般检测。
5)QIAquick gel extraction kit (Qiagen, cat. no. 28704)6)QIAprep spin miniprep kit (Qiagen, cat. no. 27106)7)Fast Digest BbsI (BpiI) (Fermentas/Thermo Scientific, cat. no. FD1014),如需要将sgRNA构建到pSpCas9(BB)-2A-GFP质粒上,则需要该酶。
8)T7 DNA ligase with 2× rapid ligation buffer (Enzymatics, cat. no. L602L). 或者T4 DNA ligase,二者无区别。
crispr-cas9复合体构建流程
crispr-cas9复合体构建流程1.为了构建CRISPR-Cas9复合体,首先需要设计和合成cas9核酸序列。
In order to construct the CRISPR-Cas9 complex, it is necessary to design and synthesize the Cas9 nucleic acid sequence.2.接着需要选择适当的crispr RNA或gRNA序列,与cas9相结合以指导靶向基因组的位置。
Then, an appropriate CRISPR RNA or gRNA sequence needs to be selected to guide the Cas9 to the targeted position in the genome.3.将设计好的cas9和crispr RNA或gRNA序列合并形成合成DNA 片段。
The designed Cas9 and CRISPR RNA or gRNA sequences are combined to form a synthetic DNA fragment.4.制备好的合成DNA片段需要进行定向克隆到适当的表达载体中。
The prepared synthetic DNA fragment needs to be directionally cloned into an appropriate expression vector.5.表达载体通常需要包含启动子、编码区和终止子,以确保目标基因能够被正确表达。
The expression vector usually needs to contain a promoter, coding region, and terminator to ensure proper expression of the target gene.6.将构建好的表达载体转化到大肠杆菌或酵母等宿主细胞中。
CRISPRCAS9慢病毒系统概述.pdf
CRISPR/CAS9验证:
Cancer Cell. 2014 May 12;25(5):652-65. doi: 10.1016/r.2014.03.016. Epub 2014 May 1. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia
date:2014 May
Paper 2: Genome-wide recessive genetic screening in mammalian cells with
a lentiviral CRISPR-guide RNA library.
• IF:39.08
Journal:Nat Biotechnol date:2014 Mar
Paper 1:
MLL3 is haploinsufficient 7q tumor suppressor in acute myeloid leukemia.
IF:24
Journal: cancer cell
date:2014 May
MDS(骨髓发育不良症候群)和AML(急性髓细胞样白血病)常见染色体7q部分
吉凯CAS9双载体慢病毒系统介绍
ctl nc C1 C2
Cas9
nc G1 nc G2 nc G3
切割: Lenti-CAS9-puro 滴度可达2E+8 已成功构建两株CAS9稳定表达细胞株
让我们用心,换取您的放心!
定位:Lenti-sgRNA-EGFP 滴度可达3E+8以上 可成功引入突变
CRISPR/CAS9 VS RNAi-表型呈现
RNAi 敲减OK 无表型
CRISPR及Cas9基因编辑技术具体步骤及方法
CRISPR/Cas9基因编辑技术具体步骤及方法CRISPR/Cas9 是一种能够对基因组的特定位点进行精确编辑的技术。
其原理是核酸内切酶Cas9蛋白通过导向性RNA(guide RNA, gRNA)识别特定基因组位点并对双链DNA进行切割,细胞随之利用非同源末端连接(Non homologous End Joining,NHEJ)或者同源重组(Homologous Recombination, HR)方式对切割位点进行修复,实现DNA水平基因敲除或精确编辑。
CRISPR基因敲除利用CRISPR / Cas9 进行单基因敲除目前研究最透彻、应用最广泛的II 型-CRISPR/Cas9 系统由两部分组成:1. 单链的guide RNA(single-guide RNA,sgRNA)2. 有核酸内切酶活性的Cas9 蛋白CRISPR/Cas9 系统利用sgRNA 来识别靶基因DNA,并引导Cas9 核酸内切酶剪切DNA(图1)。
当基因组发生双链DNA 断裂后,细胞通过非同源性末端接合(Non-homologous end joining, NHEJ) 将断裂接合,在此过程中,将随机引入N 个碱基的缺失或增加,若N 非3 的倍数,则目的基因发生移码突变,实表1 CRISPR/Cas9 基因敲除与RNAi 比较CRISPR过表达利用CRISPR / Cas9 进行单基因过表达通过修饰CRISPR/Cas9 系统中的一些元件,形成一种蛋白复合物-协同激活介质(SAM),可实现对多数细胞内源基因的特异性激活。
该系统灵活方便,为研究基因功能提供了极为便利的工具。
CRISPR-SAM 系统由三部分组成:1. 失去核酸酶活性的dCas9(deactivated Cas9)-VP64 融合蛋白2. 含2 个MS2 RNA adapter 的sgRNA3. MS2-P65-HSF1 激活辅助蛋白CRISPR-SAM 系统中的MS2-P65-HSF1 激活辅助蛋白就是SAM,全称为SynergisticActivation Mediator( 协同激活调节器),这也就是CRISPR-SAM 的命名由来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Crispr/Cas9 慢病毒构建的具体步骤及方法
简介
Cas9蛋白的CDS长达4kb,克隆难度和包毒难度都相对大,将Cas9基因高效导入细胞是应用Cas9/CRISPR系统进行基因敲除的难点之一,极大地限制可供选择的将基因导入细胞的方法。
并且在用CRISPR/Cas9系统进行基因敲除时,还需要同时转入识别靶点的gRNA,筛选阳性细胞的抗性基因或荧光基因,用同源重组法进行基因敲除,还需要导入同源重组模板。
如此多的基因共同表达,很难得到较高的基因编辑效率,造成后续的阳性克隆筛选和检测工作难度大。
慢病毒Cas9表达体系,该体系采用慢病毒体系先在细胞中稳定表达Cas9蛋白,构建稳定表达Cas9蛋白的细胞系,再在该细胞系的基础上导入gRNA和基因敲除实验中用到的其它原件用于特异性基因敲除。
方法:
a、实验方案设计更灵活。
由于不必表达大蛋白Cas9,可以根据细胞特性选择化学转染、腺病毒、腺相关病毒等多种方法导入或敲除相关基因;
b、提高基因敲除效率。
在稳定表达Cas9蛋白的细胞系上进行基因敲除比瞬时转染Cas9进行基因敲除的效率更高;
c、可对同一细胞进行多个基因敲除实验。
对于需要在同一个细胞系中进行多个基因的编辑或需要长期用一个细胞模型进行多项基因研究,先构建一个Cas9蛋白稳定表达的细胞系可显著提高后续实验的效率,降低实验难度。
优势:
a、适用于在同一个细胞系中需要进行多个基因敲除的实验;
b、基因敲除效率比直接质粒转染更高;
c、提供多种不同荧光和抗性标记的慢病毒表达载体,更易筛选到基因敲除成功细胞;
d、接受cas9蛋白稳定表达不同细胞系定制。
步骤流程
A、cas9载体构建及慢病毒包装
将cas9基因CDS区克隆至慢病毒载体,并进行cas9慢病毒包装。
B、稳定株筛选
将cas9慢病毒感染特定的目的细胞,进行cas9稳定表达的细胞株筛选。