高三数学极限及其运算

高三数学极限及其运算
高三数学极限及其运算

难点32 高考数学重点难点复习:极限及其运算

极限的概念及其渗透的思想,在数学中占有重要的地位,它是人们研究许多问题的工具.旧教材中原有的数列极限一直是历年高考中重点考查的内容之一.本节内容主要是指导考生深入地理解极限的概念,并在此基础上能正确熟练地进行有关极限的运算问题.

●难点磁场

(★★★★)求1

122lim +-∞→++n n n n n a

a . ●案例探究

[例1]已知lim ∞

→x (12+-x x -ax -b )=0,确定a 与b 的值.

命题意图:在数列与函数极限的运算法则中,都有应遵循的规则,也有可利用的规律,既有章可循,有法可依.因而本题重点考查考生的这种能力.也就是本知识的系统掌握能力.属★★★★★级题目.

知识依托:解决本题的闪光点是对式子进行有理化处理,这是求极限中带无理号的式子常用的一种方法.

错解分析:本题难点是式子的整理过程繁琐,稍不注意就有可能出错. 技巧与方法:有理化处理. 解:b

ax x x b ax x x b ax x x x x +++-+-+-=--+-∞

→∞

→1)()1(lim

)1(lim 2

2

22

b

ax x x b x ab x a x +++--++--=∞

→1)

1()21()1(lim

2

222

要使上式极限存在,则1-a 2=0, 当1-a 2=0时,

1)

21(1)21(1111)21(lim 1)1()21(lim 2

2

2

22=++-++-=+++--++-=+++--+--=∞→∞→a

ab a ab a x b x x

x b ab b ax x x b x ab x x 由已知得上式

∴?????=++-=-01)21(012a

ab a 解得?????-==211b a

[例2]设数列a 1,a 2,…,a n ,…的前n 项的和S n 和a n 的关系是S n =1-ba n -

n

b )

1(1

+,其中b 是与n 无关的常数,且b ≠-1. (1)求a n 和a n -1的关系式; (2)写出用n 和b 表示a n 的表达式; (3)当0<b <1时,求极限lim ∞

→n S n .

命题意图:历年高考中多出现的题目是与数列的通项公式,前n 项和S n 等有紧密的联系.有时题目是先依条件确定数列的通项公式再求极限,或先求出前n 项和S n 再求极限,本题考查学生的综合能力.属★★★★★级题目.

知识依托:解答本题的闪光点是分析透题目中的条件间的相互关系. 错解分析:本题难点是第(2)中由(1)中的关系式猜想通项及n =1与n =2时的式子不统一性.

技巧与方法:抓住第一步的递推关系式,去寻找规律. 解:(1)a n =S n -S n -1=-b (a n -a n -1)-1)1(1)1(1-+++n n b b =-b (a n -a n -1)+n

b b

)

1(+ (n ≥2)

解得a n =

1

1)1(1+-++

+n n b b

a b b (n ≥2) 代入上式得把由此猜想2

11132111

3

2

3212

1321222122

1111)

1()1()1(,)

1()1(

)1(])1(1[)1()1()1()1(1])1(1[1)1(,111)2(b b

a b b b b b a b b a b b

b b a b b b b b b b a b b b b b b

b a b b b b b a b b b b a b b

a b ba S a n n n n n n n n n n n n n n n +=

++++++

+=+++++=+++++++=+++

+=++++++=∴+=∴+-

-==+--+-+--+-+-

),

1()11(1)()1(11)1(1

)1)(1(1)1(11)3()

1(2)

1()1)(1()1(1

1111

1

1

1

2≠+---+-=+-+--?-=+--=???????=≠+--=++++=++++++++b b b b b b b b b b b b b b ba S b n b b b b b b b b b a n n n

n n n n n n n n n n n n

.1lim ,0)11(

lim ,0lim ,10=∴=+=<<∞→∞

→∞

→n n n

n n n S b

b b 时

●锦囊妙计

1.学好数列的极限的关键是真正从数列的项的变化趋势理解数列极限. 学好函数的极限的关键是真正从函数值或图象上点的变化趋势理解函数极限.

2.运算法则中各个极限都应存在.都可推广到任意有限个极限的情况,不能推广到无限个.在商的运算法则中,要注意对式子的恒等变形,有些题目分母不能直接求极限.

3.注意在平时学习中积累一些方法和技巧,如:

)1|(|0lim ,0)1(lim

<==-∞→∞→a a n

n n n

n ????

?

????><==++++++--∞→时当不存在时当时当l k l k l k b a b x b x b a x a x a l l k k k n ,,0,lim 0

1

1

10110 ●歼灭难点训练 一、选择题

1.(★★★★)a n 是(1+x )n 展开式中含x 2的项的系数,则)1

11(

lim 21n

n a a a +++∞

→ 等于( )

A.2

B.0

C.1

D.-1

2.(★★★★)若三数a ,1,c 成等差数列且a 2,1,c 2又成等比数列,则n

n c a c a )

(lim 2

2++∞

→的值是( )

A.0

B.1

C.0或1

D.不存在

二、填空题

3.(★★★★) )(lim x x x x n -+++∞

→ =_________.

4.(★★★★)若)12(lim 2nb n n a n --+∞

→=1,则ab 的值是_________.

三、解答题

5.(★★★★★)在数列{a n }中,已知a 1=5

3,a 2=

10031,且数列{a n +1-10

1

a n }是公比为2

1的等比数列,数列{lg(a n +1-2

1a n }是公差为-1的等差数列.

(1)求数列{a n }的通项公式; (2)S n =a 1+a 2+…+a n (n ≥1),求lim ∞

→n S n .

6.(★★★★)设f (x )是x 的三次多项式,已知a

x x f a x x f a n a n 4)

(lim

2)(lim

42-=-→→=1,试求a

x x f n 3)

(lim

-∞→的值.(a 为非零常数). 7.(★★★★)已知数列{a n },{b n }都是由正数组成的等比数列,公式分别为p 、q ,其中p >q ,且p ≠1,q ≠1,设c n =a n +b n ,S n 为数列{c n }的前n 项和,求1

lim

-∞→n n

n S S 的值.

8.(★★★★★)已知数列{a n }是公差为d 的等差数列,d ≠0且a 1=0,b n =2n a (n ∈N *),S n 是{b n }的前n 项和,T n =

n

n

b S (n ∈N *). (1)求{T n }的通项公式; (2)当d >0时,求lim ∞

→n T n .

参考答案

难点磁场

???????-=-?=-+-=?-=++-=-++-=++-==??=++==++=++<<-=++=++-<>-+--+-+-+---∞→+-∞→∞→+-∞→-∞→+-∞→)(232232222)(612322222)2(22)2(22,2;21

623lim 22lim ,2;4

1)2

(221)2(lim 22lim ,22;1)2()2(11lim 22lim ,22:1

1

11111

1

1

11211

111

1

11

为偶数为奇数时当时当时当时或当解n n a a a a a a a a a a a a a

a a

a a a a a a n n n n n n

n n n n

n n n n

n n n n n n n n n n n n n n n

n n n n n n n n n n n n n n

n 歼灭难点训练 一、1.解析:)1

11(21,2)1(C 2n

n a n n a n n n --=∴-=

=, 2)1

1(2lim )111(

lim 21=-=+++∴∞→∞

→n

a a a n n n

答案:A

2.解析:?

??=+=+???=+=+???==+62

22 ,12222222c a c a c a c a c a c a 或得

答案:C

二、3.解析:x

x x x x x x x x x x x x x +++-++=-+++∞

→+∞

→lim

)(lim

.211

1

1111lim

2

3

=++

++

=+∞

→x x

x x 答案:2

1 4.解析:原式=112)2(lim

12)12(lim

2

2

22222

2222=+-+-+-=+-+--+∞

→∞

→nb

n n a a n a n b a nb

n n a b n n n a n n

??

?==??????=+=-42

21

20222b a b b a ∴a ·b =82 答案:82

三、5.解:(1)由{a n +1-

101a n }是公比为21的等比数列,且a 1=53,a 2=100

31

,

∴a n +1-101a n =(a 2-101a 1)(21)n -1=(10031-53×101)(21

)n -1=112

1)21(41+-=n n ,

∴a n +1=101

a n +12

1+n ①

又由数列{lg(a n +1-21a n )}是公差为-1的等差数列,且首项lg(a 2-2

1

a 1)

=lg(100

31-21×53)=-2,

∴其通项lg(a n +1-2

1

a n )=-2+(n -1)(-1)=-(n +1),

∴a n +1-21a n =10-(n +1),即a n +1=2

1a n +10-(n +1)

①②联立解得a n =25[(21)n +1-(10

1

)n +1]

(2)S n =])10

1()21([25111

11∑∑

==++=-=n k n k k k n

k k a

911

]10

11)61(211)21

([25lim 22=---=∴∞→n n S

6.解:由于a

x x f a x 2)

(lim 2-→=1,可知,f (2a )=0

同理f (4a )=0

由①②可知f (x )必含有(x -2a )与(x -4a )的因式,由于f (x )是x 的三次多项式,故可设f (x )=A (x -2a )(x -4a )(x -C ),这里A 、C 均为待定的常数,

,1))(4(lim 2)

)(4)(2(lim ,12)(lim

222=--=----=-→→→C x a x A a

x C x a x a x A a x x f a x a x a x 即由

1)2)(42(=--C a a a A 得,即4a 2

A -2aCA =-1

同理,由于a

x x f a x 4)

(lim

4-→=1,得A (4a -2a )(4a -C )=1,即8a 2A -2aCA =1

由③④得C =3a ,A =

221a ,因而f (x )= 2

21a (x -2a )(x -4a )(x -3a ), 21

)(21)4)(2(21lim 3)(lim 2

233-=-??=--=-∴→→a a a a x a x a a x x f a x a x 1

1111111111111111

11)1()1()1()1()1()1()1()1(1)

1(1)1(1)

1(1)1(1)1(1)1(:.7----------+------+-=

--+

----+

--=

∴--+

--=n n n

n n n n n n n

n n n q p b p q a p b q a q p b p q a p b q a q

q b p p a q q b p p a S S q q b p p a S 解

由数列{a n }、{b n }都是由正数组成的等比数列,知p >0,q >0

.0

1

)1(00

)1(01)

)(1(1)1()

1()1())(1()1()1()1(lim )1()1()1()1()1()1()1()1(lim lim 1111111111

1111

11

11111111p p

q a q a p p q p b p q a p p b q a p q p b q a p p b q a p q p b p q a p b q a p q p b p q a p b q a S S p n n n

n

n n

n n n

n

n n n n n =------=

-----+------+-=-----+------+-=>--∞→--∞→-∞→时当

当p <1时,q <1, 0lim lim lim lim 11====-∞

→∞

→-∞

→∞

→n n n n n n n n q q p p

1lim

1

=∴-∞→n n

n S S

8.解:(1)a n =(n -1)d ,b n =2n a =2(n -1)

d

S n =b 1+b 2+b 3+…+b n =20+2d +22d +…+2(n -1)

d

由d ≠0,2d

≠1,∴S n =d

n

d 21)2(1--

∴T n =nd

d n nd d n d n

d n n b S 2221221)2(1)1()1(--=--=--

(2)当d >0时,2d >1

12212

1101211)

2(1lim )2()2()2(1lim 2221lim lim 1)1(-=--=--=--=--=∴∞

→-∞→-∞→∞→d

d d d n

d n n

d n d n

d n nd d n nd n n n T

高中数学知识点专题复习-极限的概念

极 限 的 概 念(4月27日) 教学目的:理解数列和函数极限的概念; 教学重点:会判断一些简单数列和函数的极限; 教学难点:数列和函数极限的理解 教学过程: 一、实例引入: 例:战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭。”也就是说一根长为一尺的木棒,每天截去一半,这样的过程可以无限制地进行下去。(1)求第n 天剩余的木棒长度n a (尺),并分析变化趋势;(2)求前n 天截下的木棒的总长度n b (尺),并分析变化趋势。 观察以上两个数列都具有这样的特点:当项数n 无限增大时,数列的项n a 无限趋近于某个常数A (即A a n -无限趋近于0)。n a 无限趋近于常数A ,意指“n a 可以任意地靠近A ,希望它有多近就有多近,只要n 充分大,就能达到我们所希望的那么近。”即“动点n a 到A 的距离A a n -可以任意小。 二、新课讲授 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数A (即A a n -无限趋近于0) ,那么就说数列}{n a 的极限是A ,记作 A a n n =∞ →lim 注:①上式读作“当n 趋向于无穷大时,n a 的极限等于A ”。“n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思。A a n n =∞ →lim 有时也记作当n →∞时,n a →A ②引例中的两个数列的极限可分别表示为_____________________,____________________ ③思考:是否所有的无穷数列都有极限? 例1:判断下列数列是否有极限,若有,写出极限;若没有,说明理由 (1)1,21,31,…,n 1,… ;(2)21,32,43,…,1 +n n ,…;

极限的四则运算教案(1)

2.4 极限的四则运算(一) 古浪五中---姚祺鹏 【教学目标】 (一)知识与技能 1.掌握函数极限四则运算法则; 2.会用极限四则运算法则求较复杂函数的极限; 3.提高问题的转化能力,体会事物之间的联系与转化的关系; (二)过程与方法 1.掌握极限的四则运算法则,并能使用它求一些复杂数列的极限. 2.从函数极限联想到数列极限,从“一般”到“特殊”. (三)情态与价值观 1.培养学习进行类比的数学思想 2.培养学习总结、归纳的能力,学会从“一般”到“特殊”,从“特殊”到“一般”转化的思想.同时培养学生的创新精神,加强学生的的实践能力。 (四)高考阐释: 高考对极限的考察以选择题和填空题为主,考察基本运算,此类题目的特点在于需要进行巧妙的恒等变形,立足课本基础知识和基本方法 【教学重点与难点】 重点:掌握函数极限的四则运算法则; 难点:难点是运算法则的应用(会分析已知函数由哪些基本函数经过怎样的运算结合而成的). 【教学过程】 1.提问复习,引入新课 对简单函数,我们可以根据它的图象或通过分析函数值的变化趋势直接写出它们的极

限.如 1lim ,2121lim 1 1==→→x x x x . 让学生求下列极限: (1)x x 1lim →; (2)x x 21lim 1→; (3))12(lim 21+→x x ; (4)x x 2lim 1→ 对于复杂一点的函数,如何求极限呢?例如计算??? ? ?+→x x x 21lim 1即x x x 212lim 21+→,显然通过画图或分析函数值的变化趋势找出它的极限值是不方便的.因此、我们有必要探讨有关极限的运算法则,通过法则,把求复杂函数的极限问题转化为求简单函数的极限. 板书课题:极限的四则运算. 2.特殊探路,发现规律 考察x x x 212lim 21+→完成下表: 根据计算(用计算器)和极限概念,得出2 3212lim 21=+→x x x ,与1lim 2121lim 11==→→x x x x 、 对比发现:2321121lim lim 21lim 212lim 11121=+=+=??? ? ?+=+→→→→x x x x x x x x x x . 由此得出一般结论:函数极限的四则运算法则: 如果b x g a x f x x x x ==→→)(lim ,)(lim 0 0,那么 []b a x g x f x x ±=±→)()(lim 0 []b a x g x f x x ?=?→)()(lim 0 )0()()(lim 0≠=??????→b b a x g x f x x 特别地:(1)[])(lim )(lim 0 0x f C x f C x x x x →→?=?(C 为常数) (2)[])N ()(lim )(lim *00∈??????=→→n x f x f n x x n x x

高等数学极限计算方法总结

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可 以用上面的极限严格定义证明,例如: )0,(0lim ≠=∞→a b a an b n 为常数且; 5 )13(lim 2 =-→x x ; ???≥<=∞→时当不存在, 时 当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运 用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x

(2) e x x x =+→10 ) 1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+ ∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的 等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且 )(x f ~)(1x f ,)(x g ~)(1x g ,则当) ()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)(x f )()(lim 110 x g x f x x →,即)() (lim 0x g x f x x →=) ()(lim 110x g x f x x →。 5.洛比达法则 定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满 足:(1))(x f 和)(x g 的极限都是0或都是无穷大; (2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3)) () (lim x g x f ''存在(或是无穷大);

高中数学选修本(理科)函数的极限

函数的极限 教学目标:1、使学生掌握当0x x →时函数的极限; 2、了解:A x f x x =→)(lim 0 的充分必要条件是A x f x f x x x x ==- +→→)(lim )(lim 0 0 教学重点:掌握当0x x →时函数的极限 教学难点:对“0x x ≠时,当0x x →时函数的极限的概念”的理解。 教学过程: 一、复习: (1)=∞ →n n q lim _____1

求下列函数在X =0处的极限 (1)121 lim 220---→x x x x (2)x x x 0lim → (3)=)(x f ,10,00 ,22<+=>x x x x x 四、小结:函数极限存在的条件;如何求函数的极限。 五、练习及作业: 1、对于函数12+=x y 填写下表,并画出函数的图象,观察当x 无限趋近于1时的变化趋势,说出当1→x 时函数12+=x y 的极限 2、对于函数12 -=x y 填写下表,并画出函数的图象,观察当x 无限趋近于3时的变化趋势,说出当3→x 时函数12 -=x y 的极限 3* 121lim 221---→x x x x 32302)31()1(lim x x x x x +-+-→ )cos (sin 2lim 2 2 x x x x --→ π 2 321lim 4 --+→x x x x a x a x -+→20lim (0>a ) x x 1lim 0→

同济第六版《高等数学》教案WORD版-第01章 函数与极限

第一章函数与极限 教学目的: 1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。 2、了解函数的奇偶性、单调性、周期性和有界性。 3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4、掌握基本初等函数的性质及其图形。 5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限 之间的关系。 6、掌握极限的性质及四则运算法则。 7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限 的方法。 8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有 界性、最大值和最小值定理、介值定理),并会应用这些性质。 教学重点: 1、复合函数及分段函数的概念; 2、基本初等函数的性质及其图形; 3、极限的概念极限的性质及四则运算法则; 4、两个重要极限; 5、无穷小及无穷小的比较; 6、函数连续性及初等函数的连续性; 7、区间上连续函数的性质。 教学难点: 1、分段函数的建立与性质; 2、左极限与右极限概念及应用; 3、极限存在的两个准则的应用; 4、间断点及其分类; 5、闭区间上连续函数性质的应用。 §1. 1 映射与函数 一、集合 1. 集合概念 集合(简称集): 集合是指具有某种特定性质的事物的总体. 用A, B, C….等表示. 元素: 组成集合的事物称为集合的元素. a是集合M的元素表示为a?M. 集合的表示: 列举法: 把集合的全体元素一一列举出来. 例如A?{a, b, c, d, e, f, g}. 描述法: 若集合M是由元素具有某种性质P的元素x的全体所组成, 则M可表示为

极限四则运算法则

极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理1:若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且 )(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±。 证明: 只证B A x g x f +=+)]()(lim[,过程为0x x →,对0,01>?>?δε,当 100δ<-?δ,当2 00δ<-

高数求极限方法总结

第一章极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义: 数列极限、函数极限, 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:0)1(1 lim 2=+-∞→n n ;5)13(lim 2=-→x x ;1,0lim <=∞ →q q n n 当等。 定义证明按着总结的四个步骤来,缺一不可!(2)在后面求极限时,(1)中提到的简单极限 作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在, 且(1)B A x g x f ±=±)]()(lim[(2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 0)1(lim ; e x x x =+∞→)11(lim 说明:(1)不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式。 (2)一定注意两个重要极限成立的条件。 例如: 133sin lim 0=→x x x ,e x x x =--→210)21(lim ,e x x x =+∞→3)31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数 )(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且)(x f ~)(1x f , )(x g ~)(1x g ,则当)()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)()(lim 1 10x g x f x x →。 5.连续性 定理5 一切连续函数在其定义去间内的点处都连续,即如果0x 是函数)(x f 的定义去间内

高中数学极限

高中数学极限、数学归纳法 一、选择题(本大题共6个小题,每小题6分,共36分) 1.(精选考题·江西高考) lim n →∞ (1+13+132+…+1 3n )=( ) A.53 B.3 2 C .2 D .不存在 解析:lim n →∞ (1+13+132+…+13n )=11-13=32 . 答案:B 2.设函数f (x )=(x +1)2 (x -2),则lim x →-1 f ′(x ) x +1 等于( ) A .6 B .2 C .0 D .-6 解析:∵f ′(x ) x +1=(x +1)2+2(x +1)(x -2)x +1 =3x -3, ∴lim x →-1 f ′(x ) x +1=-6. 答案:D 3.已知函数f (x )=??? ?? x 2+2x -3x -1(x >1) ax +1 (x ≤1)在x =1处连续,则f - 1 (3)等于( ) A .0 B .1 C .-2 3 D.23

解析:∵函数f (x )在x =1处连续,∴f (1)=lim x →1 x 2+2x -3 x -1=4.又当x =1时,f (1)=a +1,∴a =3.当x >1时,令x 2+2x -3 x -1=3,得x =0或1,不满足题设.当x ≤1时,令3x +1=3,得x =2 3,满足题 设.∴f -1(3)= 2 3 . 答案:D 4.用数学归纳法证明1n +1+1n +2+…+12n >11 34时,由n =k 到n =k +1,不等式左边的变化是( ) A .增加1 2(k +1)一项 B .增加12k +1和1 2k +2 两项 C .增加12k +1,12k +2两项,同时减少1 k +1一项 D .以上结论均错 解析:n =k 时,不等式左边为1k +1+1k +2+…+1 2k ,n =k +1 时,不等式左边为1k +2+1k +3+…+12k +12k +1+1 2k +2 , 故增加12k +1,12k +2两项,减少1 k +1一项. 答案:C 5.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),而a 1=1,通过计

【精品】高中数学新课 极限 教案 (9)

课题:2.4极限的四则运算(二) 教学目的:掌握数列极限的运算法则,并会求简单的数列极限的极限 教学重点:运用数列极限的运算法则求极限。 教学难点:数列极限法则的运用. 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 1。数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a ,那么就说数列}{n a 以a 为极限。记作lim n n a a →∞ =. 2。几个重要极限: (1)01lim =∞→n n (2)C C n =∞ →lim (C 是常数) (3)无穷等比数列}{n q (1

记作:+∞→x lim f (x )=a ,或者当x →+∞时,f (x )→a . (2)当自变量x 取负值并且绝对值无限增大时,如果函数f (x )无限趋近于一个常数a ,就说当x 趋向于负无穷大时,函数f (x )的极限是a . 记作-∞→x lim f (x )=a 或者当x →-∞时,f (x )→a 。 (3)如果+∞→x lim f (x )=a 且-∞ →x lim f (x )=a ,那么就说当x 趋向于无穷大时,函数f (x )的极限是a ,记作:∞→x lim f (x )=a 或者当x →∞时,f (x )→a . 4.常数函数f (x )=c 。(x ∈R ),有∞ →x lim f (x )=c 。 ∞→x lim f (x )存在,表示+∞→x lim f (x )和-∞→x lim f (x )都存在,且两者相等.所以∞→x lim f (x )中的∞既有+∞,又有-∞的意义,而数列极限∞ →x lim a n 中的∞仅有+∞的意义

高考数学一轮复习数列的极限知识点

17年高考数学一轮复习数列的极限知识点 极限是微积分中的基础概念,下面是整理的数列的极限知识点,希望考生可以认真学习。 1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限; 2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限存在; 3、渐近线,(垂直、水平或斜渐近线); 4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在. 下面我们重点讲一下数列极限的典型方法. 重要题型及点拨 1.求数列极限 求数列极限可以归纳为以下三种形式. ★抽象数列求极限 这类题一般以选择题的形式出现, 因此可以通过举反例来排除. 此外,也可以按照定义、基本性质及运算法则直接验证. ★求具体数列的极限,可以参考以下几种方法: a.利用单调有界必收敛准则求数列极限. 首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极

限,解方程, 从而得到数列的极限值. b.利用函数极限求数列极限 如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解. ★求项和或项积数列的极限,主要有以下几种方法: a.利用特殊级数求和法 如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果. l b.利用幂级数求和法 若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值. c.利用定积分定义求极限 若数列每一项都可以提出一个因子,剩余的项可用一个通项表示, 则可以考虑用定积分定义求解数列极限. d.利用夹逼定理求极限 若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解. e.求项数列的积的极限,一般先取对数化为项和的形式,然

高数求极限的16种方法(超经典)高彦辉总结

L .+'''+.+'''+. + 天天快乐+ '+. .+' "+.+" 爱 爱爱 爱祝爱 爱愿爱 爱你爱 爱永爱 爱远爱 爱被爱 爱爱爱 爱包爱 爱围爱 爱爱 爱爱 爱爱 爱 漂亮吧!送给你,希望你会幸福一生,梦想成真! 高数中求极限的16种方法 假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面。首先,对极限的总结如下: 极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。 1 .极限分为一般极限,数列极限(区别在于数列极限时发散的,是一般极限的一种) 2.解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???) 1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记(x趋近无穷的时候还原成无穷小) 2 LHopital 法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是X趋近而不是N 趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0LHopital 法则分为3中情况 1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开sina 展开cos 展开ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!) 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。这两个很重要!!!!!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大无穷小都有对有对应的形式(地2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法,非常方便的方法 就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方快于x!快于指数函数快于幂数函数 快于对数函数(画图也能看出速率的快慢)!!!!!!当x趋近无穷的时候他们的比值的极限一眼就能看出来了12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换

高中数学--极限

高中数学-极 限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1-=a ,则n n n n a )1(lim lim -=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim

高三数学教案:数列极限的运算法则

数列极限的运算法则(5月3日) 教学目标:掌握数列极限的运算法则,并会求简单的数列极限的极限。 教学重点:运用数列极限的运算法则求极限 教学难点:数列极限法则的运用 教学过程: 一、复习引入: 函数极限的运算法则:如果,)(lim ,)(lim 0 B x g A x f x x x x ==→→则[]=±→) ()(lim 0 x g x f x x ___ []=→)().(lim 0 x g x f x x ____,=→) () (lim x g x f x x ____(B 0≠) 二、新授课: 数列极限的运算法则与函数极限的运算法则类似: 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 推广:上面法则可以推广到有限.. 多个数列的情况。例如,若{}n a ,{}n b ,{}n c 有极限, 则:n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 特别地,如果C 是常数,那么CA a C a C n n n n n ==∞ →∞ →∞ →lim .lim ).(lim 二.例题: 例1.已知,5lim =∞ →n n a 3lim =∞ →n n b ,求).43(lim n n n b a -∞ → 例2.求下列极限: (1))45(lim n n + ∞ →; (2)2)11 (lim -∞→n n 例3.求下列有限: (1)1312lim ++∞→n n n (2)1 lim 2-∞→n n n 分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限, 上面的极限运算法则不能直接运用。

数列极限四则运算法则的证明

数列极限四则运算法则的证明 设limAn=A,limBn=B,则有 法则1:lim(A n+B n)=A+B 法则2:lim(An-Bn)=A-B 法则3:lim(An ? Bn)=AB 法则4:lim(An/Bn)=A/B. 法则5:lim(An的k次方)=A的k次方(k是正整数) (n T+R的符号就先省略了,反正都知道怎么回事.) 首先必须知道极限的定义: 如果数列{Xn}和常数A有以下关系:对于?£> 0(不论它多么小),总存在正数N,使得对于满足n > N的一切Xn,不等式|Xn-A| v &都成立, 则称常数A是数列{Xn}的极限,记作limXn=A. 根据这个定义,首先容易证明:引理1: limC=C.(即常数列的极限等于其本身) 法则1的证明: ?/ limAn=A,二对任意正数 &存在正整数N?,使n > N?时恒有|An-A| v&①(极限定义)同理对同一正数&存在正整数N?,使n>N?时恒有|Bn-B| v 设N=max{N ?,N?},由上可知当n > N时①②两式全都成立. 此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)| < |An-A|+|Bn-B| v & + & =2 &. 由于&是任意正数,所以2&也是任意正数. 即:对任意正数2 &存在正整数N,使n > N时恒有|(An+Bn)-(A+B)| v 2 &. 由极限定义可知,lim(An+Bn)=A+B. 即:对任意正数C&存在正整数N,使n > N时恒有|C ? An-CA|v C&. 由极限定义可知,lim(C ? An)=C?A若C=0的话更好证) 法则2的证明: lim(A n-B n) =limA n+lim(-B n)(法则1) =limAn+(-1)limBn (引理2) =A-B. 为了证明法则3,再证明1个引理. 引理3:若limAn=0,limBn=0,则lim(An ? Bn)=0. 证明:?/ limAn=0,二对任意正数 &存在正整数N?,使n>N?时恒有|An-0| v &③(极限定义)同理对同一

高三数学极限同步

1. 用数学归纳法证明(n + 1) + (n + 2) +…+ (n + n)= n(3n—的第二步中,n=k+ 2 1时等式左边与n=k时的等式左边的差等于() (A)2k + 2(B)4k+ 3 (C)3k + 2 (D)k+ 1 2.若f (n) =1+1 11(n€ N*),则当n=1 时,f (n)为1 2 32n 1 (A) 11 (B) 13 1 (C) 1 + 11(D)非以上答案 23 4 ° 2 3. 用数学归纳法证明1+a+a2+…+a n+1=一a一 (a^ 1, n€ N*),在验证n=1成立 1 a 时,左边计算所得的项是 (A) 1 (C) 1+a+a2(B) 1+a (D) 1+a+a2+a3 4.用数字归纳法证明1+2+…+(2n+1)=(n+1)(2n+1)时,在验证n=1成立时,左边所得的代数式是() (A)1 (B) 1+3(C)1+2+3(D)1+2+3+4 5.用数学归纳法证明丄2 1 + a+ a +…+ n 2 n+1 1 a a = (n N, a 1 a 1)中,在验证n=1成 立时,左边应为() (A)1 (B)1+ a (C)1+ a+ a2(D)1i i 2 | 3 + a+ a + a 6. 用数学归纳法证明等式“ 1 + 2+ 3+-+( n+ 3) =(n 3)(n 4) (n N)”, 2 当n=1时,左边应为 ____________ 。 111 1 1 7. 用数学归纳法证明某个命题时,左式为1 1 1丄—丄(n为正偶数) 2 3 4 n 1 n 从” n=2k到n=2k+2” ,左边需增加的代数式是____ 。 8. 用数学归纳法证明1+2+3+- +(2 n+1)=( n+1)(2 n+1)时,从“n=k到n=k+1” , 左边需增添的代数式是______ 0

高三选修2教案2.4极限的四则运算(一)

课 题:2.4极限的四则运算(一) 教学目的:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于..... 某个常数a ,那么就说数列}{n a 以a 为极限.记作lim n n a a →∞ =. 2.几个重要极限:

(1)01 lim =∞→n n (2)C C n =∞ →lim (C 是常数) (3)无穷等比数列}{n q (1

高三数学试题数列的极限

数列的极限 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞ →n lim C =C (C 为常数);②∞ →n lim n 1 =0;③∞→n lim q n =0 (|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a ( b ≠0). ●点击双基 1.下列极限正确的个数是 ①∞ →n lim α n 1=0(α>0) ②∞ →n lim q n =0 ③∞ →n lim n n n n 3 232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞ →n lim [n (1-3 1)(1-4 1)(1-51) (1) 2 1 +n )]等于 A.0 B.1 C.2 D.3 解析: ∞ →n lim [n (1-3 1)(1-4 1)(1-5 1) (1) 2 1 +n )]

=∞ →n lim [n ×32×43×54×…×2 1++n n ] =∞ →n lim 2 2+n n =2. 答案:C ●典例剖析 【例1】 求下列极限: (1)∞ →n lim 7 5722 2+++n n n ;(2) ∞ →n lim ( n n +2-n ); (3)∞ →n lim ( 2 2n + 2 4n +…+2 2n n ). 剖析:(1)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(2)因 n n +2与 n 都没有极限,可先分子有理化再求极限;(3)因为极限的运算法则只适用于有限个数列,需先求和再求极限. 解:(1)∞ →n lim 7 57 222 +++n n n =∞→n lim 2 2757 12n n n +++ =5 2. (2)∞ →n lim ( n n +2-n )= ∞ →n lim n n n n ++2=∞ →n lim 1111++ n =2 1. (3)原式=∞ →n lim 2 2642n n ++++Λ=∞ →n lim 2 )1(n n n +=∞→n lim (1+n 1 )=1. 评述:对于(1)要避免下面两种错误:①原式=) 75(lim ) 72(lim 22+++∞ →∞ →n n n n n =∞ ∞=1, ②∵∞ →n lim (2n 2+n +7), ∞ →n lim (5n 2+7)不存在,∴原式无极限.对于(2) 要避免出现下面两种错误: ①∞ →n lim ( n n +2-n )= ∞ →n lim n n +2-∞ →n lim n =∞-∞=0;②原式=∞ →n lim n n +2-∞ →n lim n =∞-∞不存在.

高中数学 极限与导数【讲义】

极限与导数 一、基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|< ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为)(lim ),(lim x f x f x x -∞ →+∞ →,另外)(lim 0 x f x x + →=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右极限。类似地)(lim 0 x f x x - →表示x 小于x 0且趋向于x 0时f(x)的左极限。 2.极限的四则运算:如果0 lim x x →f(x)=a, 0 lim x x →g(x)=b ,那么0 lim x x →[f(x)±g(x)]=a ±b, 0 lim x x →[f(x)?g(x)]=ab, lim x x →).0()()(≠=b b a x g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0 lim x x →f(x)存在,并且0 lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。 4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。 5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若x y x ??→?0lim 存在,则称f(x)在x 0处可导,此极限值称为f(x)在 点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或 x dx dy ,即0 00) ()(lim )('0 x x x f x f x f x x --=→。由定义知 f(x)在点x 0连续是f(x)在x 0可导的必要条件。若f(x)在区间I 上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点x 0处导数'f (x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率。 6.几个常用函数的导数:(1))'(c =0(c 为常数);(2)1)'(-=a a ax x (a 为任意常数);(3) ;cos )'(sin x x =(4)x x sin )'(cos -=;(5)a a a x x ln )'(=;(6)x x e e =)'(;(7))'(log x a x x a log 1 =;(8).1 )'(ln x x = 7.导数的运算法则:若u(x),v(x)在x 处可导,且u(x)≠0,则 (1))(')(')]'()([x v x u x v x u ±=±;(2))(')()()(')]'()([x v x u x v x u x v x u +=;(3))(')]'([x u c x cu ?=(c 为常数);(4))()(']')(1[ 2x u x u x u -=;(5)) () ()(')(')(]')()([2x u x v x u x v x u x u x u -=。 8.复合函数求导法:设函数y=f(u),u=?(x),已知?(x)在x 处可导,f(u)在对应的点u(u=?(x))处可导,则复合函数y=f[?(x)]在点x 处可导,且(f[?(x)])'=)(')](['x x f ??. 9.导数与函数的性质:(1)若f(x)在区间I 上可导,则f(x)在I 上连续;(2)若对一切x ∈(a,b)有0)('>x f ,则f(x)在(a,b)单调递增;(3)若对一切x ∈(a,b)有0)('

相关文档
最新文档